* ok ok ok

RUN TIME!
O LD
1: LDA
2: LDA
3: ouT
4: HALT
SQUARE

5: MUL
6: ADD
7 LDA
MAIN

8: ADD
9: ST

10: LDA
11: LDA
12: ADD
13: LD

gets command line args and calls main
uses r6 for return address
expects program value in r2

3,1(0) ; read command-line arg into MAIN's arg slot

6,1(7) ; store return address
7,8(0) ; branch to MAIN, at [r0]+8
2,0,0 ; print program value

0,0,0

expects argument in r5, puts result 1in r4

5,5,5 ; compute result in place
4,0,5 ; store return value from r5 into r4
7,0(6) ; return to address [r6]+0

expects argument in r3, puts result in r2

5,0,3 ; store parameter into SQUARE's arg slot
6,2(0) ; save return address in DMEM[2]

6,1(7) ; store return address

7,5(0) ; branch to SQUARE, at [r@]+5

2,0,4 ; copy SQUARE's return value into return slot

7,2(0) ; return to address in DMEM[[r@]+2]

RUN TIME! gets command line args and calls main CALLING SEQUENCE
uses r6 for return address main (caller)

* ok ok ok

expects program value in r2

0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
1: LDA 6,1(7) ; store return address

2: LDA 7,8(0) ; branch to MAIN, at [r0]+8

3: ouT 2,0,0 ; print program value

4: HALT 0,0,0

SQUARE expects argument in r5, puts result 1in r4

5: MUL 5,5,5 ; compute result in place

6: ADD 4,0,5 ; store return value from r5 into r4

7: LDA 7,0(6) ; return to address [r6]+0

MAIN expects argument in r3, puts result in r2

8: ADD 5,0,3 ; store parameter into SQUARE's arg slot

9: ST 6,2(0) ; save return address in DMEM[2]

10: LDA 6,1(7) ; store return address

11: LDA 7,5(0) ; branch to SQUARE, at [rO]+5

12: ADD 2,0,4 ; copy SQUARE's return value into return slot
13: LD 7,2(0) ; return to address in DMEM[[r@]+2]

RUN TIME! gets command line args and calls main CALLING SEQUENCE
uses r6 for return address main (callee)

* ok ok ok

expects program value in r2

0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
1: LDA 6,1(7) ; store return address

2: LDA 7,8(0) ; branch to MAIN, at [r0]+8

3: ouT 2,0,0 ; print program value

4: HALT 0,0,0

SQUARE expects argument in r5, puts result 1in r4

5: MUL 5,5,5 ; compute result in place

6: ADD 4,0,5 ; store return value from r5 into r4

7: LDA 7,0(6) ; return to address [r6]+0

MAIN expects argument in r3, puts result in r2

8: ADD 5,0,3 ; store parameter into SQUARE's arg slot

9: ST 6,2(0) ; save return address in DMEM[2]

10: LDA 6,1(7) ; store return address

11: LDA 7,5(0) ; branch to SQUARE, at [rO]+5

12: ADD 2,0,4 ; copy SQUARE's return value into return slot
13: LD 7,2(0) ; return to address in DMEM[[r@]+2]

RUN TIME! gets command line args and calls main CALLING SEQUENCE
uses r6 for return address square (caller)

* ok ok ok

expects program value in r2

0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
1: LDA 6,1(7) ; store return address

2: LDA 7,8(0) ; branch to MAIN, at [r0]+8

3: ouT 2,0,0 ; print program value

4: HALT 0,0,0

SQUARE expects argument in r5, puts result 1in r4

5: MUL 5,5,5 ; compute result in place

6: ADD 4,0,5 ; store return value from r5 into r4

7: LDA 7,0(6) ; return to address [r6]+0

MAIN expects argument in r3, puts result in r2

8: ADD 5,0,3 ; store parameter into SQUARE's arg slot

9: ST 6,2(0) ; save return address in DMEM[2]

10: LDA 6,1(7) ; store return address

11: LDA 7,5(0) ; branch to SQUARE, at [r0]+5

12: ADD 2,0,4 ; copy SQUARE's return value into return slot
13: LD 7,2(0) ; return to address in DMEM[[r@]+2]

RUN TIME! gets command line args and calls main CALLING SEQUENCE
uses r6 for return address square (callee)

* ok ok ok

expects program value in r2

0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
1: LDA 6,1(7) ; store return address

2: LDA 7,8(0) ; branch to MAIN, at [r0]+8

3: ouT 2,0,0 ; print program value

4: HALT 0,0,0

SQUARE expects argument in r5, puts result 1in r4

5: MUL 5,5,5 ; compute result in place

6: ADD 4,0,5 ; store return value from r5 into r4

7: LDA 7,0(6) ; return to address [r6]+0

MAIN expects argument in r3, puts result in r2

8: ADD 5,0,3 ; store parameter into SQUARE's arg slot

9: ST 6,2(0) ; save return address in DMEM[2]

10: LDA 6,1(7) ; store return address

11: LDA 7,5(0) ; branch to SQUARE, at [rO]+5

12: ADD 2,0,4 ; copy SQUARE's return value into return slot
13: LD 7,2(0) ; return to address in DMEM[[r@]+2]

RUN TIME! gets command line args and calls main RETURN SEQUENCE
uses r6 for return address square (callee)

* ok ok ok

expects program value in r2

0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
1: LDA 6,1(7) ; store return address

2: LDA 7,8(0) ; branch to MAIN, at [r0]+8

3: ouT 2,0,0 ; print program value

4: HALT 0,0,0

SQUARE expects argument in r5, puts result 1in r4

5: MUL 5,5,5 ; compute result in place

6: ADD 4,0,5 ; store return value from r5 1into r4

7: LDA 7,0(6) ; return to address [r6]+0

MAIN expects argument in r3, puts result in r2

8: ADD 5,0,3 ; store parameter into SQUARE's arg slot

9: ST 6,2(0) ; save return address in DMEM[2]

10: LDA 6,1(7) ; store return address

11: LDA 7,5(0) ; branch to SQUARE, at [rO]+5

12: ADD 2,0,4 ; copy SQUARE's return value into return slot
13: LD 7,2(0) ; return to address in DMEM[[r@]+2]

RUN TIME! gets command line args and calls main RETURN SEQUENCE
uses r6 for return address square (caller)

* ok ok ok

expects program value in r2

0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
1: LDA 6,1(7) ; store return address

2: LDA 7,8(0) ; branch to MAIN, at [r0]+8

3: ouT 2,0,0 ; print program value

4: HALT 0,0,0

SQUARE expects argument in r5, puts result 1in r4

5: MUL 5,5,5 ; compute result in place

6: ADD 4,0,5 ; store return value from r5 into r4

7: LDA 7,0(6) ; return to address [r6]+0

MAIN expects argument in r3, puts result in r2

8: ADD 5,0,3 ; store parameter into SQUARE's arg slot

9: ST 6,2(0) ; save return address in DMEM[2]

10: LDA 6,1(7) ; store return address

11: LDA 7,5(0) ; branch to SQUARE, at [rO]+5

12: ADD 2,0,4 ; copy SQUARE's return value into return slot
13: LD 7,2(0) ; return to address in DMEM[[r@]+2]

RUN TIME! gets command line args and calls main RETURN SEQUENCE
uses r6 for return address main (callee)

* ok ok ok

expects program value in r2

0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
1: LDA 6,1(7) ; store return address

2: LDA 7,8(0) ; branch to MAIN, at [r0]+8

3: ouT 2,0,0 ; print program value

4: HALT 0,0,0

SQUARE expects argument in r5, puts result 1in r4

5: MUL 5,5,5 ; compute result in place

6: ADD 4,0,5 ; store return value from r5 into r4

7: LDA 7,0(6) ; return to address [r6]+0

MAIN expects argument in r3, puts result in r2

8: ADD 5,0,3 ; store parameter into SQUARE's arg slot

9: ST 6,2(0) ; save return address in DMEM[2]

10: LDA 6,1(7) ; store return address

11: LDA 7,5(0) ; branch to SQUARE, at [rO]+5

12: ADD 2,0,4 ; copy SQUARE's return value into return slot
13: LD 7,2(0) ; return to address in DMEM[[re]+2]

RUN TIME! gets command line args and calls main RETURN SEQUENCE
uses r6 for return address main (caller)

* ok ok ok

expects program value in r2

0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
1: LDA 6,1(7) ; store return address

2: LDA 7,8(0) ; branch to MAIN, at [r0]+8

3: ouT 2,0,0 ; print program value

4: HALT 0,0,0

SQUARE expects argument in r5, puts result 1in r4

5: MUL 5,5,5 ; compute result in place

6: ADD 4,0,5 ; store return value from r5 into r4

7: LDA 7,0(6) ; return to address [r6]+0

MAIN expects argument in r3, puts result in r2

8: ADD 5,0,3 ; store parameter into SQUARE's arg slot

9: ST 6,2(0) ; save return address in DMEM[2]

10: LDA 6,1(7) ; store return address

11: LDA 7,5(0) ; branch to SQUARE, at [rO]+5

12: ADD 2,0,4 ; copy SQUARE's return value into return slot
13: LD 7,2(0) ; return to address in DMEM[[r@]+2]

