
*
* RUN TIME! gets command line args and calls main
* uses r6 for return address
* expects program value in r2
*
 0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
 1: LDA 6,1(7) ; store return address
 2: LDA 7,8(0) ; branch to MAIN, at [r0]+8
 3: OUT 2,0,0 ; print program value
 4: HALT 0,0,0
*
* SQUARE expects argument in r5, puts result in r4
*
 5: MUL 5,5,5 ; compute result in place
 6: ADD 4,0,5 ; store return value from r5 into r4
 7: LDA 7,0(6) ; return to address [r6]+0
*
* MAIN expects argument in r3, puts result in r2
*
 8: ADD 5,0,3 ; store parameter into SQUARE's arg slot
 9: ST 6,2(0) ; save return address in DMEM[2]
 10: LDA 6,1(7) ; store return address
 11: LDA 7,5(0) ; branch to SQUARE, at [r0]+5
 12: ADD 2,0,4 ; copy SQUARE's return value into return slot
 13: LD 7,2(0) ; return to address in DMEM[[r0]+2]

*
* RUN TIME! gets command line args and calls main CALLING SEQUENCE
* uses r6 for return address main (caller)
* expects program value in r2
*
 0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
 1: LDA 6,1(7) ; store return address
 2: LDA 7,8(0) ; branch to MAIN, at [r0]+8
 3: OUT 2,0,0 ; print program value
 4: HALT 0,0,0
*
* SQUARE expects argument in r5, puts result in r4
*
 5: MUL 5,5,5 ; compute result in place
 6: ADD 4,0,5 ; store return value from r5 into r4
 7: LDA 7,0(6) ; return to address [r6]+0
*
* MAIN expects argument in r3, puts result in r2
*
 8: ADD 5,0,3 ; store parameter into SQUARE's arg slot
 9: ST 6,2(0) ; save return address in DMEM[2]
 10: LDA 6,1(7) ; store return address
 11: LDA 7,5(0) ; branch to SQUARE, at [r0]+5
 12: ADD 2,0,4 ; copy SQUARE's return value into return slot
 13: LD 7,2(0) ; return to address in DMEM[[r0]+2]

*
* RUN TIME! gets command line args and calls main CALLING SEQUENCE
* uses r6 for return address main (callee)
* expects program value in r2
*
 0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
 1: LDA 6,1(7) ; store return address
 2: LDA 7,8(0) ; branch to MAIN, at [r0]+8
 3: OUT 2,0,0 ; print program value
 4: HALT 0,0,0
*
* SQUARE expects argument in r5, puts result in r4
*
 5: MUL 5,5,5 ; compute result in place
 6: ADD 4,0,5 ; store return value from r5 into r4
 7: LDA 7,0(6) ; return to address [r6]+0
*
* MAIN expects argument in r3, puts result in r2
*
 8: ADD 5,0,3 ; store parameter into SQUARE's arg slot
 9: ST 6,2(0) ; save return address in DMEM[2]
 10: LDA 6,1(7) ; store return address
 11: LDA 7,5(0) ; branch to SQUARE, at [r0]+5
 12: ADD 2,0,4 ; copy SQUARE's return value into return slot
 13: LD 7,2(0) ; return to address in DMEM[[r0]+2]

*
* RUN TIME! gets command line args and calls main CALLING SEQUENCE
* uses r6 for return address square (caller)
* expects program value in r2
*
 0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
 1: LDA 6,1(7) ; store return address
 2: LDA 7,8(0) ; branch to MAIN, at [r0]+8
 3: OUT 2,0,0 ; print program value
 4: HALT 0,0,0
*
* SQUARE expects argument in r5, puts result in r4
*
 5: MUL 5,5,5 ; compute result in place
 6: ADD 4,0,5 ; store return value from r5 into r4
 7: LDA 7,0(6) ; return to address [r6]+0
*
* MAIN expects argument in r3, puts result in r2
*
 8: ADD 5,0,3 ; store parameter into SQUARE's arg slot
 9: ST 6,2(0) ; save return address in DMEM[2]
 10: LDA 6,1(7) ; store return address
 11: LDA 7,5(0) ; branch to SQUARE, at [r0]+5
 12: ADD 2,0,4 ; copy SQUARE's return value into return slot
 13: LD 7,2(0) ; return to address in DMEM[[r0]+2]

*
* RUN TIME! gets command line args and calls main CALLING SEQUENCE
* uses r6 for return address square (callee)
* expects program value in r2
*
 0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
 1: LDA 6,1(7) ; store return address
 2: LDA 7,8(0) ; branch to MAIN, at [r0]+8
 3: OUT 2,0,0 ; print program value
 4: HALT 0,0,0
*
* SQUARE expects argument in r5, puts result in r4
*
 5: MUL 5,5,5 ; compute result in place
 6: ADD 4,0,5 ; store return value from r5 into r4
 7: LDA 7,0(6) ; return to address [r6]+0
*
* MAIN expects argument in r3, puts result in r2
*
 8: ADD 5,0,3 ; store parameter into SQUARE's arg slot
 9: ST 6,2(0) ; save return address in DMEM[2]
 10: LDA 6,1(7) ; store return address
 11: LDA 7,5(0) ; branch to SQUARE, at [r0]+5
 12: ADD 2,0,4 ; copy SQUARE's return value into return slot
 13: LD 7,2(0) ; return to address in DMEM[[r0]+2]

*
* RUN TIME! gets command line args and calls main RETURN SEQUENCE
* uses r6 for return address square (callee)
* expects program value in r2
*
 0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
 1: LDA 6,1(7) ; store return address
 2: LDA 7,8(0) ; branch to MAIN, at [r0]+8
 3: OUT 2,0,0 ; print program value
 4: HALT 0,0,0
*
* SQUARE expects argument in r5, puts result in r4
*
 5: MUL 5,5,5 ; compute result in place
 6: ADD 4,0,5 ; store return value from r5 into r4
 7: LDA 7,0(6) ; return to address [r6]+0
*
* MAIN expects argument in r3, puts result in r2
*
 8: ADD 5,0,3 ; store parameter into SQUARE's arg slot
 9: ST 6,2(0) ; save return address in DMEM[2]
 10: LDA 6,1(7) ; store return address
 11: LDA 7,5(0) ; branch to SQUARE, at [r0]+5
 12: ADD 2,0,4 ; copy SQUARE's return value into return slot
 13: LD 7,2(0) ; return to address in DMEM[[r0]+2]

*
* RUN TIME! gets command line args and calls main RETURN SEQUENCE
* uses r6 for return address square (caller)
* expects program value in r2
*
 0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
 1: LDA 6,1(7) ; store return address
 2: LDA 7,8(0) ; branch to MAIN, at [r0]+8
 3: OUT 2,0,0 ; print program value
 4: HALT 0,0,0
*
* SQUARE expects argument in r5, puts result in r4
*
 5: MUL 5,5,5 ; compute result in place
 6: ADD 4,0,5 ; store return value from r5 into r4
 7: LDA 7,0(6) ; return to address [r6]+0
*
* MAIN expects argument in r3, puts result in r2
*
 8: ADD 5,0,3 ; store parameter into SQUARE's arg slot
 9: ST 6,2(0) ; save return address in DMEM[2]
 10: LDA 6,1(7) ; store return address
 11: LDA 7,5(0) ; branch to SQUARE, at [r0]+5
 12: ADD 2,0,4 ; copy SQUARE's return value into return slot
 13: LD 7,2(0) ; return to address in DMEM[[r0]+2]

*
* RUN TIME! gets command line args and calls main RETURN SEQUENCE
* uses r6 for return address main (callee)
* expects program value in r2
*
 0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
 1: LDA 6,1(7) ; store return address
 2: LDA 7,8(0) ; branch to MAIN, at [r0]+8
 3: OUT 2,0,0 ; print program value
 4: HALT 0,0,0
*
* SQUARE expects argument in r5, puts result in r4
*
 5: MUL 5,5,5 ; compute result in place
 6: ADD 4,0,5 ; store return value from r5 into r4
 7: LDA 7,0(6) ; return to address [r6]+0
*
* MAIN expects argument in r3, puts result in r2
*
 8: ADD 5,0,3 ; store parameter into SQUARE's arg slot
 9: ST 6,2(0) ; save return address in DMEM[2]
 10: LDA 6,1(7) ; store return address
 11: LDA 7,5(0) ; branch to SQUARE, at [r0]+5
 12: ADD 2,0,4 ; copy SQUARE's return value into return slot
 13: LD 7,2(0) ; return to address in DMEM[[r0]+2]

*
* RUN TIME! gets command line args and calls main RETURN SEQUENCE
* uses r6 for return address main (caller)
* expects program value in r2
*
 0: LD 3,1(0) ; read command-line arg into MAIN's arg slot
 1: LDA 6,1(7) ; store return address
 2: LDA 7,8(0) ; branch to MAIN, at [r0]+8
 3: OUT 2,0,0 ; print program value
 4: HALT 0,0,0
*
* SQUARE expects argument in r5, puts result in r4
*
 5: MUL 5,5,5 ; compute result in place
 6: ADD 4,0,5 ; store return value from r5 into r4
 7: LDA 7,0(6) ; return to address [r6]+0
*
* MAIN expects argument in r3, puts result in r2
*
 8: ADD 5,0,3 ; store parameter into SQUARE's arg slot
 9: ST 6,2(0) ; save return address in DMEM[2]
 10: LDA 6,1(7) ; store return address
 11: LDA 7,5(0) ; branch to SQUARE, at [r0]+5
 12: ADD 2,0,4 ; copy SQUARE's return value into return slot
 13: LD 7,2(0) ; return to address in DMEM[[r0]+2]

