
*
* RUN-TIME SYSTEM
*
 0: LD 5,1(0) ; read command-line arg into r5, the funcall arg slot
 1: LDA 6,1(7) ; store return address in r6
 2: LDA 7,5(0) ; branch to MAIN, at [r0]+5
 3: OUT 4,0,0 ; print value in r4, the funcall return slot
 4: HALT 0,0,0
*
* MAIN
*
 5: MUL 5,5,5 ; compute result
 6: ADD 4,0,5 ; store return value from r5 into r4
 7: LDA 7,0(6) ; store return address in r7, for branch back

*
* RUN-TIME SYSTEM
*
 0: LD 5,1(0) ; read command-line arg into r5, the funcall arg slot
 1: LDA 6,1(7) ; store return address in r6
 2: LDA 7,5(0) ; branch to MAIN, at [r0]+5
 3: OUT 4,0,0 ; print value in r4, the funcall return slot
 4: HALT 0,0,0
*
* MAIN
*
 5: MUL 5,5,5 ; compute result
 6: ADD 4,0,5 ; store return value from r5 into r4
 7: LDA 7,0(6) ; store return address in r7, for branch back

Calling code sets up a function call

*
* RUN-TIME SYSTEM
*
 0: LD 5,1(0) ; read command-line arg into r5, the funcall arg slot
 1: LDA 6,1(7) ; store return address in r6
 2: LDA 7,5(0) ; branch to MAIN, at [r0]+5
 3: OUT 4,0,0 ; print value in r4, the funcall return slot
 4: HALT 0,0,0
*
* MAIN
*
 5: MUL 5,5,5 ; compute result
 6: ADD 4,0,5 ; store return value from r5 into r4
 7: LDA 7,0(6) ; store return address in r7, for branch back

Called code receives an argument

*
* RUN-TIME SYSTEM
*
 0: LD 5,1(0) ; read command-line arg into r5, the funcall arg slot
 1: LDA 6,1(7) ; store return address in r6
 2: LDA 7,5(0) ; branch to MAIN, at [r0]+5
 3: OUT 4,0,0 ; print value in r4, the funcall return slot
 4: HALT 0,0,0
*
* MAIN
*
 5: MUL 5,5,5 ; compute result
 6: ADD 4,0,5 ; store return value from r5 into r4
 7: LDA 7,0(6) ; store return address in r7, for branch back

Called code returns to caller

*
* RUN-TIME SYSTEM
*
 0: LD 5,1(0) ; read command-line arg into r5, the funcall arg slot
 1: LDA 6,1(7) ; store return address in r6
 2: LDA 7,5(0) ; branch to MAIN, at [r0]+5
 3: OUT 4,0,0 ; print value in r4, the funcall return slot
 4: HALT 0,0,0
*
* MAIN
*
 5: MUL 5,5,5 ; compute result
 6: ADD 4,0,5 ; store return value from r5 into r4
 7: LDA 7,0(6) ; store return address in r7, for branch back

Calling code responds to return from call

This is ...

 function main(n : integer)
 : integer
 n*n

What about ...

 function main(n : integer)
 : integer
 square(n)

 function square(m : integer)
 : integer
 m * m

?

