
1

Write a TM program
that prints 1.

(You need only three lines.)

2

Write a TM program
that computes 3 + 4
and prints the result.

(You need only five lines.)

3

Write a TM program
that squares its argument

and prints the result.

(You need only four lines!)

4

Same as #3, but the code
jumps to the multiplication
instruction and jumps back.

(This took me eight lines...)

What does it mean to
"jump to an instruction"?

The caller puts arguments in a specific place
and then transfers control.

The callee accesses the arguments, does its work,
stores its result, and branches back.

The Subroutine Design Pattern

call a function: load R1,n
load R0,PC+2
branch SQUARE

the function: SQUARE:
 [use R1]

 branch @R0
.

The Subroutine Design Pattern

Without a call stack and
other program overhead,

this is simply branch and return.

Branch and Return in TM

There is no instruction
to branch unconditionally.

R7 is the program counter.
Load an address there — boom.

(Only 5 + 3 lines...)

4

Same as #3, but the code
jumps to the multiplication
instruction and jumps back.

(This took me eight lines...)

5

Same as #4, but by
calling both main(n)

and square(n)

(Fourteen lines for me...)

