
Semantic analysis requires:
 - checking the types of all expressions
 - showing the program satisfies
 all non-grammatical requirements

Let's consider the non-grammatical requirements first.

.

Three deal with function names at the global level:

• each function name is defined exactly once
• there is a user-defined function named main
• there is not a user-defined function named print

.

We can implement each of these checks with a loop over the
list of function definitions that make up the program.

For example:

for p in list of defs
 if p.name = "print" then
 addError
 ("user-defined function named 'print'")

All three of these checks can be done with a single loop:

f_named_main = false
list_of_names = []

for f in list of function defs
 if f.name = "print"
 then addError
 ("user-defined function named 'print'")
 if f.name = "main"
 then f_named_main = true
 if f.name in list_of_names
 then addError("duplicate function named", f.name)
 else add f.name to list_of_names

if !f_named_main
 then addError("no user-defined function named 'main'")
.

The other two deal with names used within a function:

• each parameter name
is defined exactly once in a given function

• each function
refers only to its formal parameters and other functions

We can implement the first with a loop over the parameter
list and the second with a tree traversal of the function's
body that validates each identifier and function call.
.

To type-check this or any other node, a semantic checker
needs to...

1. Type-check its parts.
2. Apply a type rule to the results.

.

The type rule for divide and other binary arithmetic ops is:

if type(left operand) == integer
 and
 type(right operand) == integer

 then type of node = integer
 else type of node = error

.

Consider this Klein if expression:

if (a < b)
 then b / a
 else 1

Its AST looks something like this:
.

Our type checker must:
• type check the condition
• type check the then clause
• type check the else clause

And then apply a rule:

if type(condition) == boolean
 and type(then) == type(else)
 then
 type(if-exp) = type(then)
 else
 type(if-exp) = error

Quick exercise:

What type expression might a semantic checker assign to
this Klein if expression?

 if (a < b)
 then b / a
 else false

What if we change (a < b) to true ?
.

Applying that type rule, the if expression from our
exercise:

 if (a < b)
 then b / a
 else false

has a type of error. We can never use this expression as the
body of a function. It cannot guarantee to return an integer
or a boolean.

.

But what of this expression?

 print(
 if (a < b)
 then b / a
 else false
)

.

Our Klein compiler can support this feature by assigning a
new kind of type to the if expression:

OR(type1, type2)

This is a new kind of constructed type.

It says an expression is either type1 or type2.

.

Types have structure.

.

function divides(x: integer, n: integer): boolean
 MOD(n, x) = 0

The rule we need to type-check a function definition looks
like this:

if type of body == type of return type
then
 type of function def
 = function(parameters type, return type)

else
 type of function def = error

.

divides(count(1, binary_n), n)

The rule we need to type-check a function call looks like
this:

if type of function def == function(s, t)
 and
 type of argument list == s
then
 type of function call = t
else
 type of function call = error

