Semantic analysis requires:

- checking the types of all expressions
- showing the program satisfies
all non-grammatical requirements

Let's consider the non-grammatical requirements first.

Three deal with function names at the global level:

e each function name is defined exactly once
e there is a user-defined function named main
e there is not a user-defined function named print

We can implement each of these checks with a loop over the
list of function definitions that make up the program.

For example:

for p in 1list of defs
if p.name = "print" then
addError
("user—-defined function named 'print'")

All three of these checks can be done with a single loop:

f _named_main = false
list_of_names = []

for f in list of function defs

if f.name = "print"

then addError
("user—-defined function named 'print'")

if f.name = "main"
then f_named_main = true

if f.name in list_of_names
then addError("duplicate function named", f.name)
else add f.name to list_of_names

if !'f_named_main
then addError("no user—-defined function named 'main'")

The other two deal with names used within a function:

e each parameter name
is defined exactly once in a given function

e each function
refers only to its formal parameters and other functions

We can implement the first with a loop over the parameter
list and the second with a tree traversal of the function's
body that validates each identifier and function call.

binary-op

/

LEFT RIGHT

/ N

‘ ANY EXP || ANY EXP \

To type-check this or any other node, a semantic checker
needs to...

1. Type-check its parts.
2. Apply a type rule to the results.

The type rule for divide and other binary arithmetic ops is:

1f type(left operand) == integer
and
type(right operand) == integer

then type of node = 1integer
else type of node error

Consider this Klein 1f expression:

if (a < b)
then b / a
else 1

Its AST looks something like this:

if-exp

blnary-o<perat|on l integer-literal: 1 |
‘ identifier: a || identifier: b

Y

binary-operation
/

l identifier: b H identifier: a |

Our type checker must:

e type check the condition

e type check the then clause
e type check the else clause

And then apply a rule:

if type(condition)

and type(then)
then

type(if-exp) =
else

type(if-exp)

== poolean
== type(else)

type(then)

error

Quick exercise:

What type expression might a semantic checker assign to
this Klein 1 f expression?

if (a < b)
then b / a
else false

What if we change (a < b) to true ?

Applying that type rule, the 1 expression from our
exercise:

if (a < b)
then b / a
else false

has a type of error. We can never use this expression as the
body of a function. It cannot guarantee to return an integer
or a boolean.

But what of this expression?

print(
if (a < b)
then b / a
else false

Our Klein compiler can support this feature by assigning a
new kind of type to the 1f expression:

OR(typel, type2)
This is a new kind of constructed type.

It says an expression is either typel or type?2.

Types have structure.

integer

array

/

sequence [0..9]

boolean

tuple

pointer
integer
integer string
function
tuple int

/

strina

N\

int

N\

int

function divides(x: integer, n: integer): boolean
MOD(n, x) = ©

The rule we need to type-check a function definition looks
like this:

if type of body == type of return type
then

type of function def
= function(parameters type, return type)

else
type of function def = error

divides(count(1, binary_n), n)

The rule we need to type-check a function call looks like
this:

if type of function def == function(s, t)
and
type of argument list == s
then
type of function call
else
type of function call = error

Il
—t

