Compiler Construction
Principles and Practice

Kennefh C. Louden

San Jose State University

PWS Publishing Company
(TP

An International Thomsen Publishing Company

Boston » Albany * Bann « Cincinnati » Detroit « Londan * Madrid = Melboume * Mexico Gty = New York

Pacific Grove * Paris = San Francisco * Singapore *+ Tolyo Toronto * Washington

Chapter 7

Runtime Environments

7.0 Memory Organization During 7.4 Dynamic Memory

Program Execution 7.5 Parameter Passing Mechanisms
72 FU"}’ Static Runtime 7.6 A Runtime Environment for
Environments the TINY Language
7.3 Stack-Based Runtime
Environments

In previous chapters we have studied the phases of 2 compiler that perform static
analysis of the source language. This has Included scanning, parsing, and static seman-
tic analysis, This analysis depends only on the properties of the source language-—It
is cempietely independent of the target (assembly or machine) language and the
properties of the target machine and its operaring system.

In this chapter and the next we turn to the tasic of studying how a compiler gen-
erates executable code. This can involve additional analysis, such as that performed
by an optimizer, and some of this can be maching independent, But much of the task
of code generaticn is dependent on the details of the target machine. Nevertheless,
the general characteristies of code generation remain the same across a wide variety
of architectures. This Is particulariy true for the runtime environment, which is
the structure of the target computer's regiszers and memory that serves to manage
memory and mainzain the information needed to guide the execution process. In
fact, almost all programming languages use one of three kinds of rungime enviren-
ment, whose essentfal scructurs does not depend on the specific details of the targer
machine, These three kinds of environments are the fuily static environment
characteristic of FORTRANT77; the stacke-based enviranment of ianguages like C,
C++, Pascal, and Ada; and the fuily dynamic environment of functional lan-
guages like LISP. Hybrids of these are alsa possibla,

In this chapter, we will discuss each of these kinds of environments in turn,
together with the language features that dictate which. environments are feasible, and
what, their properties must be. This includes scoping and aliocation issues, the na-
ture of procedure calls, and the varieties of parameter passing mechanisms, Here,
the focus will be on the general structura of the environment, while in the next
chaprer, the focus will be on the actual code that needs to be generated to maintain

345

346

CHAPTER 7 / RUNTIME EXYIRONMENTS

the environment. In this regard, it is important to keep in mind that a compiler can
maintain an envirenment only indirectly, in that it must generate gode to perform
the necessary maintenance operations during program execution, By contrast, an
tnterpreter has an easier task, since it can maintain the environment directly within
its own data structures.

The first section of this chapter contains a diseussion of the general characteris-
ties of all runtime environments and their relationship to the architecture of the tar-
get machine, The next two sections discuss the static and stack-based environments,
together with examples of their operation during execudon. Since the stack-based
environment is the most common, some detail is given about the different varieties
and structure of a stack-based system. A subsequent section discusses dynamic
memory issues, including fully dynamic environments and object-oriented environ-
ments. Following that is a discussion of the effect of various parameter passing tech-
niques on the operation of an environment. The chapter closes with a brief descrip-
tion of the simple environment needed to implement the TINY language.

71 MEMORY ORGANIZATION DURING

PROGRAM EXECUTION

The memory of a typical computer is divided into a register area and & slower directly
addressible random access memory (RAM). The RAM area may be further divided into
a code area and a data area. In most compiled languages, it is not possible to make
changes to the code area during execation, and the code and data arza can be viewed as
conceptually separate. Further, since the code area is fixed prior w execution, all code
addresses are computzble at compile time, and the code area can be visualized as
follows:

Entry pelnt for procedure 1 —= code for
proc?dure

Entry point for procadure 2 —- sode for
proogdure

Entry point for procedure 1 —-w cade for
procedure
q

Code memory

In particular, the entry point of each procedure and funetion is lmown at compile time."
The same cannot be said for the allocation of data, only a small part of which can be
assigned fixed locations in memory before execution beging. Much of the rest of the
chapter will be taken up with how to deal with nonfixed, or dynarric, data allecation.

1. More likely, the code is loaded by lcader into an area in memory that is assigned at the
beginning of execurion and, thus, is not absolutely predictable, However, all actual addresses are
then antomaticaily computed by offset from a fixed base load address, so the principle of fixed
addresses remains the same. Sometimes, the compiler writer must take care to generate so-called
relocatable code, in which jumps, calls, and references are all performed relative to some base,
usually a register. Examples of this will be given in the next chapter.

L1 Memory Orgarization During Program Exccution 347

Thgre is one class of data that can be fixed in IREINOTY prior to execution and that
comeprises the global and/or static data of a program. (Tn FORTRANTT, tmlike most
Ianglfages,. ail datz are in this class.) Such data are usuaily allocated separately in a fixed
area in 2 similar fashion to the code. In Pascal, global variables are in this class, as are
the external aud static variables of C. '

One question that arises in the organization of the global/static area involves con-
stants that are known at compile time. These include the const declarations of C and
Pascal, as well as literal values used in the code itself, such as the string "Hello
%d\n" and the integer value 12345 in the C staternent

printf(vHello %d\n",12345);

Smail compillc«timc constants such as 0 and 1 are usually inserted directly into the code
by the‘ compiler and are not allocated any data space. Also, no space needs to be allo-
cated m the global data area for global functions or procedures, since their eatry points
are]mpwn to the compiler and can be inserted dirsctly into the code as well. HO\;/evcr.
large integer values, floating-point values, and particularly sting literals are usually
allocated memory in the global/static area, stored once on start-up and then are fetched
frqm those locations by the executing code. (Indeed, in C string literals are viewed as
pointers, so they must be stored in this way.)

. The memory arex used for the ailocation of dynamic data can be organized in many
mﬁmt ways, A typical organization divides this memory into 2 stack area and a heap
area, Wlﬁ'l the stack area used for data whose allocation oceurs in LIFO (tast-in, first-
out) fashion and the heap area used for dynamic allocation that does 10t conform to a
LIFO prqtocol (pointer allocation in C, for example).® Often the architecture of the tar-
get machine will include a processor stack, and using this stack makes it possible to use
processor support for procedure calls and returns (the principal mechanism that uses
stacl.c—‘.oascd memory allocation). Sometimes, a compiler will have to arrange for the
explicit allocarion of the processer stack in an appropriate place in memory,

ﬁ} gen?.ral organization of runtime storage that has all of the described memory cat-
egones might look as follows: :

code area

global/static area

stack

© free space

heap

2. It should be noted that the heap is usually a simple linear memory area, It is called a heap

for historical reasons and is unrelated to the heap data stracture used in algorithms such as heap-
sort,

348

CHAPTER 7 / RUNTIME EXVIRONMENTS

The arrows in this picture indicate the directon of growth of the stack a.gd hcag:.
Traditicnally, the stack is pictured as growing downward in Imemory, s .that 11‘5 .top is
actally at the bottom of its pictured area. Also, the heap is pxctfzrcd as .bemg similar t.n
the stack, but it is not a LIFO structure and its growth and shrinkage is more compii-
cated than the arrow indicates (see Section 7.4). In some organizations the stack and
heap are allocated separate sections of memory, rather than occgp)d.u.g the same area.

An important unit of memory allocation is the procedure activation Fecord, w1?1c.h
contains memory allocated for the local data of a procedure or func.:uou when ki
called, or activated. An activation record, at a minimum. must contain the following
sections:

space for arguments
(paramaters)

space for bookkeeping
infermation, including
roturn address

space for local data

space for local temporarios

‘We emphasize here (and repeatedly in following sections) th'at this p‘ictu?:e only s~
trates the general organization of an activation record. Specific details, %ncludmg the
order of the data it contains, will depend on the architecture of target m.achme‘. the prop-
erties of the language being compiled, and even the taste of the compiler writer.

Some parts of an activation record have the same size ffar all procedures—the space
for bookkeeping information, for example. Other parts, like the space for arguments
and Jocal data, may remain fixed for each individual procedure, but will vary from pro-
cedure to procedure. Also, some parts of the activation record may be allocated auto-
matically by the processor on procedure calls (storing the return address, for e{earlnple).
Other parts (like the local temporary space) may need 10 be allocatefl e:Ephc:tly by
instructions generated by the compiler. Depending on the language, activation records
may be allocated in the static area (FORTRAN7TT), t}:e stack area (C, Pascal), or the
heap area (LISP). When activation records are kept in the stack, they are sometimes
referred to as stack frames.])

Processor registers are also part of the structhure of the runtime cnvzrqnment Reg-
isters may be used to store temporaries, local variables, or even global vagables..When
a processor has many registers, as in the newer RISC processors, the entire static area
and whole activation records may be kept entirely in registers, Processors also have
special-purpose registers to keep track of execution, such as the program count.er (pe)
and stack pointer {sp) in most architectures. There may also be r.egtsters specifically
designed to keep track of procedure activatons. Typical such registers are the fz:ame
pointer (fp), which points to the eurrent activation record, and the argument pointer

1

7.2 Fully Static Runtitne Environments 349

(ap). which points to the area of the activation record reserved for arguments (parame-
ter values).?

A particulzrly important part of the design of 2 runtime environment is the deter-
mination of the sequence of operations that must occnr when a procedure or function is
called. Such operations may include the allocation of memory for the activatien record,
the computation and storing of the arguments, and the storing and setting of the neces-
sary registers o effect the call. These operations are usually referred to as the calling
sequence, The additional operations needed when a procedure or function returns, such
as the placing of the return value where it can be accessed by the caller, the reagjust-
ment of registers, and the possible releasing of activation record memory, are come
monly also considered to be part of the calling sequence. If pecassary, we will refer to
the part of the calling sequence that is pexformed during a call as the call sequence and
the part that is performed ca return the return: sequence,

Important aspects of the design of the calling sequence are (1) how to divide the
calling sequence operations between the caller and callee (that is, how much of the code
of the calling sequence to place at the point of call and how much to place at the begin-
ning of the code of sach procedure) 2nd (2) to what extent to rely on processor support
for calls rather that generating explicit code for each step of the calling sequence. Point
(1) is a particularly thorny issue, since it is usually easier to generate calling sequence
code at the point of call rather than mside the eallee, but doing $0 canses the size of the
generated code to grow, since the same code must be duplicated at each call site. ‘These
issues will be handled in more detail Jater on.

At 2 mininum, the caller is responsitle for computing the arguments and placiag
them in locations where they may be found by the callee (pethaps directly in the acti-
vation record of the calles). In addition, the state of the machine at the point of call,
including the return address and, possibly, registers that are in use, must be saved, either
by the caller or the callee, or partially by both. Finally, any additional bookkeeping
information must 2is0 be set up, again in some possibly cooperative manner between
caller and callee.

FULLY STATIC RUNTIME ENVIRONMENTS

The simplest kind of 2 runtime environment is that in which all data are stade, remain-
ing fixed in memory for the duration of program execution, Such an envirenment can
be used to implement 4 language in which there are no pointers or dynamic allocation,
and in which procedures may not be called tecursively, The standard example of such
a language is FORTRANT?.

In a fully static envirenment not only the global variables, but all variables are allo-
cated statically, Thus, sach procedure has only a single activation record, which is allo-
cated statically prior to execution. All variables, whether local or global, can be
accessed directly via fixed addresses, and the entire progratm memory can be visualized
as foilows:

————— i
3. These names are taken from the VAX architecture, but similar names occur in other archi-

tectures.

350

Exampie 7.1

CHAFTER 7 / RUNTIME ENVIRONMENTS

cede for main procadure

code for precodure 1

Code
area
code for procedure n
giobal dats, area
acthretion record of main procedura
Data
area

activation record of pracedura 1

aciivation record of pracedura n

In such an environment there is relatively little overhead in terms of bookkeeping infor-
mation 1o retain in each activation record, and no extra information about the environ-
ment (other than possibly the return address) needs to be kept in an activation record.
The calling sequence for such an environment is also particularly simple, When 2 pro-
cedure is called, each argument is computed and stored fnto its appropriate parameter
location in the activation of the procedure being called, Then the retumn address in the
code of the caller is saved, and a jump is made to the beginning of the code of the called
procedure. On retarn, a simple jump is made to the return address.*

As a eoncrete example of this kind of environment, consider the FORTRANTT program
of Figure 7.1. This program has a main procedure and 2 single 2dditional procedure
QUADNMEAN.” There is 2 single global variable given by the COMMON MAXST®E dec-
laration in both the main procedure and QUATMEAN.?

4.In most architectures, 4 subroutine jump automatically saves the retarn address; this
address is also antomatically relaaded when a return instruction is executed,

5, We ignore the library function SQRT, which is called by QUADMEAN and which is linked
in prior to execution.

6. In fact, FORTRANT? allows COMMON variables to have different names in different
procedures, while still referring 1o the same memory location. From now on in this exampie, we
will silently ignore such cormplexities,

Hgare 71
A FORTRANTT sample
pregram

12 Fully $tatfc Rantime Enviranments 351

FROGRAM TEST

COMMON MAXSIZE

TNTEGER MAXSLZE

REAL TABLE (10}, TEMP

MAXSTZE = 10

READ ~, TABLE(L),TABLE(2),TABLE(3}
CALL QUADMEAN({TABLE, 3, TENP)

PRINT *, TEMP

END

SUBROUTINE QUADMEAN (A,SIZE, QMEAN)
COMMON MAXSIZE
. INTEGER MAXSIZE,SIZE
REAL A(SIZE),QMEAN, TEMP
INTEGER K
TEMP = 0.0 .
IF ((STIZE.GT.MAXSIZE) .OR. (SIZE.LT.1)} GOTO 96
DG 10 K = 1,SIZE
TEMP = TEMP + A(K}*A(X)
10 CONTINUE
99 QMEAN = SQRY{TEMR/SIZE)
RETURN
END

Ignoring the possible size difference between integer and floating-point values in mem-
ory, we show a runtime environment for this program in Figure 7.2 (page 352).7 In this
picture we have drawn in arrows fo mdicate the values that the parameters A, STZE.,
and QMEAN of procedure QUADIMEAN have during the call from the main procedure, In
FORTRANTY, parameter values are implicitly memory references, so the locations of
the arguments of the call (¥3BLE, 3, and TEMP) are copied into the parameter loca-
tions of QUADMEAN. This has several consequences, First, an extra dereference is
required to access parameter values, Second, array parameters de not need to be real-
located and copied (thus, array parameter & in QUADMERAN is allocated only one space,
which points to the base location of TABLE during the call). Third, constant arguments,
such as the value 3 in the call, must be stored to a memory location and this lecation
wed during the call. (Parameter passing wmechanisms are more fuily discussed in
Section 7.5.)

Thers is one more feature of Figure 7.2 that requires explanation, and that is the
unnamed location allocated at the end of the activation record of QUADMERN. This
location is a “serawch” location used to store ternporary values during the cornputation
of arithmetic expressions. There are two computations in QUABMEAN where this may

7. Again we emphasize that the detadls of this picture are meant 1o be illustrative only, Actual
implementations may differ substantially from those given hers,

Figure 72
A runtime envirsnment for
the program of Figure 7.1

CHAPTER 7 / RUNTIME ENVIRONMENTS

be needed. The first is the computation of TEMP + A(K) *A{X) in the loop, and the
second is the computation of TEMP/SIZE as the parameter in the czll to SORT. We
have already discussed the need to allocate space for parameter values (although in a
call to a library function the convention may in fact be different). The reason a lempo-
Tary memory location may alse be needed for the loop computation is that each arith-
metic operation must be applied in a single step, s¢ that A (R} *A (K) is computed and
ther: added to the value of TEMP in the next step. If there are not enough registers avail-
able to hold this temporary value, or if a call it made requiring this value to be saved,
then the value will be stored in the activagon record pricr to the completion of the
computation, A compiler can always predict whether this will te necessary dur-
ing execution, and arrange for the allocaton of the appropriate number (and size)
of temporary locations.

Global area MAXSIZE
TABLE (1) e
Activation record .(33
of main procedure - {10)
TEMR e
3 —-—y
A
StEE
Actlvaticn racord QUERN
of pracedure teturm address
QUADMERN
TENMP
b4
§

13 STACK-BASED RUNTIME ENVIRONMENTS

In 2 langnage in which recursive cails arg allowed, and in which loca] variables are
newly allocated at each call, activation records cannot be allocated statically. Instead,
activation records must be allocated in a stack-based fashion, in which each new acti-
vation record is allocated at the top of the stack as a new procedure call is made (a push
of the activation record) and deallocated again when the call exits (a pop of the activa-
tion record). The stack of activation records (also referred 1o as the runtime staek or
call stack) then grows and shrinks with the chair of calls that have occurred in the exe-
cuting program. Each procedure may have several different activation records on the
cal stack at one time, each representing a distinct cali, Such an environment requires a
more complex strategy for bookkeeping and varisble access than a fully static environ-
ment. In particular, additional bookkeeping informatior. must be kept in the activation
records, and the calling sequence must alsoe include the Steps necessary to set up and

Example 7.2

Pigera 23
£ code for Example 7.2

13 Stack-Based Auntme Emvironments 3583

maintain this extra information. The correctness of 4 stack-baged environment, and the
amount of bookkeeping information required, depends heavily on the properties
of the language being compiled. In this section we will consider the organization
of stack-based enviromments in order of increasing complexity, classifi;d by the
language properties involved.

131 Stack-Based Environments Without
Local Procedures

In a.la.ngnagc wheze all procedures are global (such s the C language), a stack-based
envirenment requires two things: the maintenance of a pointer to the current activation
Fecord 10 allow aecess to local variables and 2 record of the position or size of the
medjatcly preceding activation record (the caller’s activation record} to allow that
activation record to be recovered (and the eurrent activation to be discarded) when the
current call ends. The pointer to the current activation is usually called the frame
pointer, or fp, and is usually kept in a register (ofter alse referred to as the 1p). The
mfor.maﬁon about the previous activation j comumonly kept in the current activation ag
2 pointer 1o the previous activation record and is referred to as the control Link or
dynamic link (dynamic, since it points to the caller's activation record during execa-
tion). Sometimes this pointer is calied the old fp, since it represents the previous value
of the fp. Typically, this pointer is kept somewhere in the middle of the stack, between
tpr: parameter area and the local variable area, and points to the Jocation of the contro]
link of the previous activation record, Addidorally, there may be a stack pointer, or
sp. which always points to the last location allocated on the cail stack (sometimes thig
18 called the top of stack pointer, or tos).
We consider some examples.

Consider_ the simple ‘recursive implementation of Euclid's algorithm to computs the
geatest common divisor of two nonnegative integers, whose code (in C) is given in
igure 7.3,

#include <stdic.h>
int x,y:

iat ged(imt u, int)

{ &€ (v == 0) raetum u;
else xeturm gediv,u % vz

3

main)

{ scanf (“%a%dn, &x, &y)
primtd ("Sd\ar, ged (x,y) } ; .
raturn §;

354

Tigure 7.4
Stack-based environment for
Example 72

Example 7.3

CHAPTER 7 / RUNTIME ENVIRONMENTS

Suppose the user Inputs the values 15 and 10 to this program, so that main initally
makes the call ged (15, 10) . This cail resalts in a second, recursive call ged (10, 5)
(since 15 % 10 = 35). and this results in a third call ged(5,0) (since 10% 5 = 0),
which then retarns the valve S, During the third call the runtime environment may be
visualized as in Figure 7.4, Note how each call to ged adds a new activation record of
exactly the same size to the top of the stack, and in each new activatior: record, the con-
trol link points 10 the control ink of the previous activation record. Note also that the
fp points to the control ok of the clrrent activation record, 5o on the next cali the cur-
rent fpp becomes the control link of the next activatien record.

x b | @iobavstatic area
Activation record of
maln

u: 15

v: 10 Activation rezord of

control link first call 1o god
return address

=i L0

vi 5 Activation record ot

controi link

return address second call fo ged

ur 5
v 0 ik Activation record of
— cenirol lin thlrd call to god
ﬁ,‘L.... return address g
"' free space ’ l Dlraction of
U stack growih

After the final call to ged, each of the activations is removed in tarn from the stack,
so that when the print £ statement is executed in main, only the activation record for
main and the global/static area remain in the envirenment. (We have shown the acti-
vation record of main as empty. In reality, it would contain information that would be
used to transfer control back to the operating system.)

Finally, we remark that no space in the caller is needed for the argument values in
the calls to ged (unlike the constant 3 in the FORTRAN77 environment of Figure 7.2},
since the C language uses vaive parameters. This point will be discussed in more detail
in Section 7.5, §

Consider the C code of Figure 7.5. This code contains variables that will be used to
illustrate forther points later in this seetion, but its basic operation is as follows. The

Figure 75
C program of Example 7.3

13 _Smdt«Based Runtime Envil;anmems 353

int x = 2;
vold g(int); /* prototype */

woid £(int n)

{ static int = o I;
ginl;
ez

vold g{int m)
{ int ¥ = m-~1;
i€ (¥ > 0}
{ £{¥};
o
gly):

main{}
{ gtx);
return 0;

first call from main is to g(2) (since = has the value 2 at that point). In this ¢all, m
becomes Z, and ¥ becomes 1. Then, ¢ makes the call £{1), and £ in turn makes the
call g (1). In this call 16 &, m becomes 1, and ¥ becomes 0, 5o 0o further calls are made.
The runtime environment at this point (during the second call to g) is shown in Figure
7.6(a) {page 356).

Now the calls 1o g and £ exit (with £ decrementing its static local variable x before
returning), their activation records are popped from the stack, and control is returned o
the point directly following the call to £ in the first call to g. Now g decrements the
external variable x and makes a further call ¢ (1), which setsm to 2 and ¥ 1o 1, result-
ing in the runtime environment shown in Figure 7.6(b). After that no further calls are
mzf.de. the remaining activation records are popped from the stack, and the program
exits,

Note how, in Figure 7.6(b), the activation record of the third call to g occupies (and
overwrites) the ares of memory previously occupied by the activation record of £. Note,
also, that the statfc variable % in £ cannot be allocated in an activation record of #, since
it must persist across ail calls to £, Thus, it must be allocated in the global/static area
along with the external veriable x, even thovgh it is not 2 global variable. There can in
fact be no confusion with the external s, since the symbo} table will always distinguish
them and determine the comrect variable to access at each point in the program,

356

Figure 7.6

(3) Runtime environment of
the program of Figure 7.5
during the second cal 19 &

(b) Buntime enviranment of
the program of Figure 7.5
during the third call 2

CHAPTER 7 / RUNTIME ENVIRONMENTS

@ *: 2 Global/statle area
x {frem £):; L o
Activation record of
main
m: 2
L contrel link Activation record of
rotum address cailto g
¥yi 1
n: 1
control link Activation record of
retum address callte £
mz 1
2 contrel link Actlvation record of
ratum address calltog
P ¥: 9
fraa space
2 w1
x (fzom £)3: 0 Global/static area
Activation recerd of
madn
m: 2
control fink Activation record of
return address callto g
y: oL
m: 1
0 control fink Activation record of
- retum address caltog
BT e ¥: ©
froa 5 acé. . :
P §

A usefui tool for the analysis of complex calling structures in a program is the acti-
vation tree: each activation record (or cail) becomes a node in this tree, and tpc descen-
dants of each node represent all the calls made during the call corresponfiang to l‘.hé.l.l‘.
node, For example, the activation tree of the program of Figure 7".3 is linear and is
depicted (for the inputs 15 and 10) in Figure 7.7(a). while the acliv:}uen tree of the pro-
gram of Figure 7.5 is depicted in Figure 7.7(b). Note that the environments shown in
Figures 7.4 and 7.6 represent the environments during the calls represented by each.of
the leaves of the activation trees. In general, the stack of activation records at the bcgim-
ning of a particular call has a structure equivalent to the path from the corresponding
node in the activation tree to the root.

Azcess o Names In a stack-based environment, parameters and‘ local variables can no
lenger be accessed by fixed addresses as in a fully static environment. Instead, they

Figure 7.7

Activation trees for the
programs of Figures 7.3
and 1.3

Exampie 7.4

13 Stack-Based Runtime Enviropments . 357
m:i..n() ma:i.nl {3

ged {15,10) @{2)

ged (10,5) £(1) (1)

gcd (5,0) ()

@ (&)

must be found by offset from the current frame pointer. In most languages, the offset
for each local declaration js stilt statically computable by the compiler, since the dec-
larations of a proceduze are fixed at compile time and the memory size to be allocated
for each declaration is fixed by its data type. :

Consider the procedure g in the C program of Figure 7.5 (ss¢ also the rontime envis
ronments pictured in Figure 7.6). Each activation record of ¢ has exactly the same
form, and the parameter m and the local variable ¥ are aiways in exactly the same rel.
ative location in the activation record. Let us call these distances mo£fset and

yOffset. Then, during any call to g, we have the following picture of the local envi
ronment

m

control link

I mCffset

£p

return address yOffset
L y

Both m and ¥ can be accessed by their fixed offsets from the fp. For instance, assume
for conereteness that the rantime stack grows from higher to lower memory addresses,
that integer variables require 2 bytes of storage, and that addresses require 4 bytes, With
the organization of an activation record as shown, we have moffzet = +4 and
yoffset = —6, and references tom and y ¢an be written jn machine code {assuming
standard assembler conventions) as 4 (£p) and -6 {£p), respectively.

Local arrays and structares are no more difficult to allocate and compute addresses
for than are simple variables, as the following example demonstrates,

Consider the C procedure

void #(int x, char)
{ int a[10];
double ¥;

358

CHAPTER 7 / RUKTTHE ENVIRONMEXTS

The zctivation record for 2 call to £ would appear as

Qifset of
A x

Cffset of
<

centrel link I

£p ——n

raturn address

af[9]

alll

alo) Ottsat of
e &

¥ Offset of
. 3 ¥

and, asswming two bytes for integers, four bytes for addresses, one byte for cl‘na.ractcxs.
and eight bytes for double-precision floating point, we would have the f:o]lomng offset
values (again assuming a negative direction of growth for the stacl), which are all com-
patable at compile time:

Narme Offset
E3 45
< wd
-3 —24
¥ ~32

Now an access of, say, a[i] would require the computation of the address

(-24+2*1) (£p)

(here the facter of 2 in the product 2+*4. is the scale factor resulting from. th.e assump-
don that integer values occupy two bytes). Such a EIMOLY 200833, depending on the
location of 4 and the architecture, might only need a single instruction. §

Nonlocal and static names in this environment canmot be accessed in the same way
that local names are. Indeed, in the case we are considering hcrewl‘angx?ages with no
local procedures—all nonlocals are global and hence static. Thus, in Figure 7.6, the

Example 7.5

73 Stack-Based Runtime Environments 359

external {giobal) C variable x has a fixed static location, and so can be accessed directly
{or by offset from some base pointer other than the 1p). The static local variable x from
£ is accessed exactly the same fashion. Note that this mecharism implements static
(or lexical) scope, as described in the previous chapter. If dynamic scope is desired,
then 2 more complex accessing mechanism is required (deseribed later in this secticn).

The Calling Saquencs The calling sequence now comprises approximately the following
steps.® When a procedure is called,

1. Compute the arguments and store them in their correct positions in the new acti-
vation record of the procedure (pushing thera in order onto the runtime stack will
achieve this).

- Store (push) the fp as the control link in the new activation record,

« Change the fp so that it points to the beginning of the new activation record (if
there is an sp, copying the sp into the p at this point will achieve this).

- Store the retumn address in the new activation record (if necessary).

. Perform a jump 10 the code of the procedure 1o be called,

When a procedure exis,
- Copy the To 10 the sp.
. Load the control link into the fp.

Perform 2 jurnp to the return address.
- Change the sp o pop the arguments.

w3

h

PP

Consider the situation just before the last call to ¢ in Figure 7.6(b):

(rest of stack)

oy 2

s €ONLro} link

ip Activation record of
return address calltog
y: 1
L s
free space '

As the new call to g is made, first the value of parameter m is pushed onto the runtime
stack:

8. This description ignores any saving of registers that must take place. It also ignores the
need 10 place a return value into an available location.

360 CHAPTER 7 / RUNTIME ENVIRONMENTS

{rast of stack)

m: 2

central link

Activation racord of

rotum address

caltog

Then the fp is pushed onto the stack:

{rest of stack)

m: 2

control link

Activation record of

rotum address

calltog

¥y 1

m: 1

controi lInk

B et

Now the sp is copied into the fp, the return address is pushed onto the stack, and the

g

Jump to the new call of g is made:

(rast of stack)

m: 2

control link

return address

¥y: 1

m: 1

contral link

B et

taturn address

- free space

Activation racord of
callto g

New activation record of
calltog

73 Stack-Based Runtime Environments 361

Finally, g allocates and initializes the new ¥ on the stack to complete the construction
of the new activation record:

{rast of stack)

m: 2

contro! nk

Activation record of
/ returm address calfto o

. Now agtivatlon racord of
centroi fink
£ o callteg
raturm address

Dealing with Variable-length Data So far we bave deseribed a situation in which all data,
whether local or global, can be found in & fixed place or at a fixed offset from the fp
that can be computed by the compiler. Sometimes a compiler must deal with the possi-
bility that data may vary, both in the number of data objects and in the size of each
object, Two examples that occur in languages that support stack-based environrments
are (1) the number of arguments in a call may vary from cail to call, and (2} the size of
an array parameter or 2 jocal array variable may vary from call to call.

A typical example of situatior: 1 is the print£ function in C, where the number of
arguments is determined from the format siring that is passed as the first argument.
Thus,

printf ("%@%g%e", o, prompt,ch) ;

has four arguments (including the format string »%d%s%e "), while

printf("Hello, worldimh};

has only one argument. C compilers typically deal with this by pushing the arguments
to 2 call in reverse order onto the runtime stack. Then, the first parameter (which tells
the code for print:£ how many more parameters there are) is always located at a fixed
offset from the fp in the implementation desoribed above (indeed +4. using the
assumptions of the previcus example). Another option is to use a processor mechanism
stch as the ap (argument pointer) in VAX architectures. This and cther possibilities are
treated Turther in the exercises.

262

Example 7.6

CHAPTER 7 / RUNTIME ENYIRONMENTS

An examaple of sitwation 2 is the nnconstrained array of Ada:

type Int Vector iz
array (INTEGER range <>) of INTHGER:

procedure Sum (low,high: INTECER:
A: Int Vector) reburs INTEGER
is
temp: Int Array (low..high);
begin

and, Swmy

(Note the local variable temp which also has unpredicrable size.) A typical_ method for
dealing with this situation is to use an extra level of indirection for the. va.nablcdeng:'th
data, storing a pointer to the actual data in a location that can b_c prBd.lCtﬁfi at compile
time, while performing the actual allocation at the top of the runtime stack in way that
can be managed by the sp during execution,

Given the Ada Sum procedure as defined above, and assunﬁ:t.lg the same organization
for the environment as before,” we could implement an activation record for. Sum as foi-
lows (this picture shows, for ¢concreteness, a call to St with an array of size 10):

(rest of stack)

Az Activation record of
call 1o Sun

sizoofa ;10

control link

refurn address

Variabie-length
data area

Now, for instance, access t0 Al4] can be achieved by computing
@6 (£p) +27*i

9. This is actually not sufficient for Ada, which allows nested procedares: see the discussion
later in this section.

13 StadeBased Runtime Envirsnmens 363

where the @ means indirection, and where we are ag

ain assuming two bytes for integers
and four bytes for addresses,

§

Note that in the implementation described in the previous example, the caller myst
imow the size of any activation record of Sum. The size of the parameter part and the
bookkeeping part is known to the compiler at the peint of call (since the arguments
sizes can be counted, and the booickeeping part is the same for all procedures), but the
size of the local variable part is not, in geaeral, known at the peint of call. Thus, this
implementation requires that the compiler precompute a local-variable size attribute for
each procedure and store it in the symbol table for this Jater nse. Varizble-length local
variables can be dealt with in a similar way.

It is worth remarking that C arrays do not fall into the class of such variable-length
data. Indeed, C arrays are pointers, so array parameters are passed by reference in C and
not allocated locally (and they carry no size information).

Local Temporaries and Nested Deciarations
stack-based mmntime environment that
declarations,

Local teraporaries are partial results of computations that must be saved across pro-
cedure calls, Consider, for example, the C expression

There are two more complications to the basic
deserve mention: local tereporaries and nested

AT = (1 v 3%k + £(3))

In a left-to-right evaluation of this expression, three partial results nsed to be saved
aczoss the call to £: the address of = [1] (for the pending assignment), the sum i+3
(pending the multiplicaticn), and the quotient i/ (pending the sum with the result of
the call £(5}). These partial results could be computed into registers and saved and
restored according to some register management mechanisin, or they could be stored as
temporaries on the ruatime stack prior to the call to £. Tn this latter case, the runtime
stack might appear as follows at the point just before the call to £:

{rest of stack)
1= contro! link Activation record of procadure
e * return address containing the expression

addross of x[4)]

result of 34 Stack of tamporaries

rosultof L/3

New activation record of
call 1o £ {about to be created)

free space

In this sitzation, the previously described calling sequence using the sp works without
change. Alternatively, the compiler can also easily compute the position of the stack top
from the fp (in the zbsence of variable-length data), since the number of required tern-
porades is a compile-time quantity.

364

CHAPTER 7 / RUNTIME ENVIRONMENTS

Nested declarations present a similar problem. Consider the C code

wvoid p(int =, doubls ¥)
{ chaxr a;
int i;

A:{ double =:;
int j;

In this code there are two blocks (also called compound statements), Jabeled A and B,
nested inside the body of procedure p, each with two local declarations whose scope
extends only over the block in which they are located (that is, up until the next closmg
bracket). The local declarations of each of these blocks do not need to be allocated until
the block is entered, and the declarations of block A and block B do not need to be allo-
cated simultaneously. A compiler could treat a block just like a procedure and create a
new activation record each time a block is entered and discard it on exiz. However, this
would be inefficient, since such blocks are much simpler than procedures: such a block
has no parameters and no retarn address and is always executed immediately, rather
than called from elsewhere. A simpler method is to treat declarations n nested bloci?s-
in 2 similar way to temporary expressions, allocating them on the stack as the block is
entered and deallocating them on exit.)

For instance, just after entering block A in the sample C code just given, the run-
tme stack would appear as follows:

frest of staci)

P controi fink Activation racord of
retum address callto?

Eprrim

Allocated area for
s block A

73 Stack-Based Runtime Environments 363

and just after entry to block B it would lock as follows:

(rest of stack)

. e cantrol link Activation record of

roturm addross callto®

Allecated area for
X block B

AP e -

Such an implementation must be careful to allocate nested declarations in such a way
that the offsets from the fp of the surrounding procedure block are ¢computable at
compile time. In particular, such data zaust be allocated before any variable-length
data. For exarnple, in the code just given, the variable 5 local 1o block & would have
offset ~17 from the fp of p (assuming again 2 bytes for integers, 4 bytes for addresses,

8 bytes for floating-point reals, and 1 byte for characters), while k in bleck B wonid
have offset ~13.

132 Stack-Based Environments with Local Procedures

If local procedure declarations are permited in the language being compiled, then the
Tuntime environment we have deseribed so far is insufScient, since no provision has
been made for nenlocal, nonglobal references.

Consider, for example, the Pascal code of Figure 7.8, page 366 (similar prograros
could be writter in Ada). During the call to g the runtime envizonment would appear
as in Figure 7.9. Using the standard static scoping rule, any mention of o inside q must
refer to the local integer variable n of p. As we can see from Figure 7.9, this »1 cannot
be found using any of the bookkeeping information that is kept in the runtime environ-
ment up to now,

It would be possible to find n using the contro] links, if we are willing to accept
dynamie scoping. Locking at Figure 7.9, we see that the n in the activation record of
could be found by following the control link, and if = had no declaration of n, then the
= of p could be found by following a second control link {this process is called chain-
ing, 2 method we will see again shortly), Unfortunately, not only does this implement
dynamic scope, but the offsets at which n ¢an be found may vary with different calls
{note that the = in x has a different offset from the o in ®). Thus, in such an imple-

366

Figure 78

Figire 78

Runtime stack for the
program of Figure 7.8

Pascal program shewing
nonlocal, nonglobal reference

CHAPTER 7 / RUNTIME ENVIRONMENTS

mentation, local symbol tables for each procedure must be kept du.‘!ir.xg c:fecution to
allow an identifier 1o be looked up in each activaton record, 1o see if it cxwts a:}d 10
determine its offset, This is a major additional complication to the runtime environ~
ment,

program nonbocalRef;

procedure p;
var n: integexr;

procedure «;
begin
{* a reference to n is now
non-local non-global *})
end; {(* q *)

procedure x{n: intagex):
hegin

Q7
end; (¥ r ™

begin (* p *)
n o= 1;
={2);

end; (* p *)

begin {* main *)

P
end.,
Activation recerd of
[: main program
control link Activation record of
™ ratum address cailtop
n: 1
n: 2
control link Activation record of
== return addrees callto =
control link Activation record of
Eprrem refurn address callto g
R i -
" - freespace

Figure 710

Runtime stack for the
prograie: of Figure 7.8 with
aceess finks adkied

73 Stack-Based Runtime Environments 367

The soluticn to this problem, which also implements static scoping, is to add an
exera piece of bookkeeping information called the access link to each activation record,
The access link is like the control link, except that it points to the activation record that
represents the defining environment of the procedure instead of the calting environ-
ment. For this zeason, the accsss link is sometimes also called the static link, even
though it is not a compile-time quantity.'®

Figure 7.10 shows the runtime stack of Sigure 7.9 modified to inclode access links.
Tn this new environment, the access links of the activagion records of both 2 and ¢ point
to the activation record of p, since r and g are both declared within p. Now a nonlocal
reference to n inside g will cause the access link to be followed, where = will be found
at 2 fixed offset, since this will always be an activation record of ». Typically, this can
be achieved in code by loading the access link into a register and then accessing = by
offser from this register (which now functions as the fp). For instance, using the size
conventions described earlier, if register ¢ is usad for the access link. then = inside p
can: be accessed as —6(r) after r has been loaded with the value 4(fp) (the access link
has offset +4 from the fp in Figure 7.10).

Agtivation record of

main program
<no access links
contral link
raturn address Activation racord of
n: 1 caltop '
n: 2 .
20Ca58 link ——— Activation racord of
congrot fink. calltox
refurn address
access link w—— U
control link Activation record of
| retum address cailto g
B e E G
. tree space -

Note that the activation record of procedure p itself containg no access link, as indi-
cated by the bracketed comment in the location where it would go. This is because pis
a global procedure, so any nonlocal reference within p must be a global reference and
is accessed via the global reference mechanism. Thus, there is no need for an access
link. (In fact, a ull or otherwise arbirary aceess link may be inserted simply for con-
sistency with the other procedures.)

The case we have been deseribing is actually the simplest sitnation, where the non-
local reference is to a declaration in the next outermost scope. It is also possible that
nonlocal references refer to declarations in more distant scopes. Consider, for examnple,
the code in Figure 7.11.

[
10, The defining procedure is of course known. but not the exact location of its activation
record,

368

Figure 712
Pascal code demanstrating
acgest chaining

CHAPTER 7 / RUNTIME EXYIRONMENTS
Drogram chaing

rocedure p;
vaxr x: Lntegex;

procadure g
procedure x;
bagina

x 3= 2;
if ... then p;
end; (¥ © %)
baegin
r;
and; (* q *}

*p™

begin (* main *}
b=
end.

In this code, procedure x is declared in procedurfe g, which in turn is declared in pro-
cedure p. Thus, the assignment to s inside x, which re_fers to the x of p, must fraverse
two scope levels to. find x, Figure .12 shows the runtime stack aft-::r the (first). call to
= {there may be more than one ¢all to z, since ¥ may ca.'EI p recursively). In t%ns cm;;
ronment, x must be reached by following fwo access links, a process that is call
access chaining, Access chaining is implemented by repeatedly fetching the access
link, using the previously fetched link as if it wete the fp. As.a concrete cxa.u'lplc. xin
Figure 7.12 can be accessed (using the previous size conventions) as follows:

Load A(fp) into register 1,
Load 4(r) into register r.
Now access x as —6{r).

For the method of access chaining to work, the compilc.r must be able to demc
how many nesting levels to chain through before accessing the name locally. ms
requires the compiler to precompute 2 nesting leve} attribute for each declarauon%
Usually, the outermost scope (the main program, lc\fel in Pascal or thc‘ extcmaldscgpe: v
C) is given nesting level 0, and each time a function or procedurs is entered (m;mg
compilation), the nesting level is increased by 1, and decre:‘asefi by the Same 2OULLE on
exit. For example, in the code of Figure 7.11, prfacedure P is given nesting level O since
itis global; variable x is given nesting level 1, since the {:csm.:g_level s mtn:eased when
Pp is entered; procedure ¢ is also given nesting level 1, since itis l?cal top; and proce-
dure x is given nesting level 2, since the nesting level is again increased when q is
entered. Finally, inside = the nesting level is again increased to 3.

Figmre 712

Rantime staek after the frst
all to = in the code of
Figare 7.1}

13 Stack-Based Runtime Environments 369

Activation record of
main program

<N access linic

cantrel link
return address

Kena

Activation record of
call o p

accass fink
control limk
refum address

Activation racerd of
callto g

aceess link
e control link

retumn address

Activation record of
call to =

freo space .

Now the amount of chaining necsssary 1o access a noniocal namme can be deter-
mined by comparing the nesting level at the point of access with the pesting level of the
declargtion of the name; the number of access links to follow is the difference between
these two nesting levels, For exzmple, in the previous situation, the assignment 1o 3¢
occurs at nesting level 3, and x hag nesting level 1, 50 two access links must be fol-
lowed. In general, if the difference in nesting levels is m, then the code that mast be
generated for access chaining must have m loads to a register r, the first using the fp,
and the remainder using 7,

It may seem that access chaining is ar inefficient method for variable aceess, since
2 lengthy sequence of instructions must be executed for each nonlocal reference with a
large nesting difference. In practice, however, nesting levels are rarely more than two
or three deep, and most nonlocal references are 1 global variables (nesting level 0,
which can continne to be aceessed by the direct methods previously discussed. There is
a method of implementing access links in 1 loclkup table indexed by nesting level that
does not carry the execution overhead of chaining. The data structure used for this
method is called the display. Its structure and use are treated in the exercises.

Toe Calling Sequence The changes to the calling sequence needed to implement access
links are relatively straightforward, In the implementation shown, during a call, the
access link must be pushed onto the runtime stack Just before the fp, and after an exit,
the sp must be adjusted by an extra amount o remove the access link as well as the
arguments.

The only problem is that of finding the access link of a procedure during a eall, This
can be achieved by using the (compile-tims) nesting level information attached to the
declaration of the procedure being called, Indeed, all we need to do is to generate an
access chain, just as if we were going 10 access a variable at the same nesting level as

then the access link and the control link are the same (and are equal 1o the fp at the point
of the call),

370

Hgure 7.3

Runtime stack afer the
second call te = in the code
of Figure 7.1

CHAPIER 7 / RUNTIME ENVIRONMENTS

Consider, for example the call to ¢ from within » in Figure 7.8. Inside x, we arc at
nesting level 2, while the declaration of g carries a nesting level of 1 (since g is local
to p and inside p the nesting level is 1), Thus, one access step is required to compute
the access link of ¢, and indeed in Figure 7.10, the access link of g points to the act-
vation record of p (and is the same as the aceess link of).

Note that even in the presence of multiple activations of the defining environment.
this process will compute the correct access link, since the computatior: is performed ag
runtime (nsing the compile-time nesting levels), not at compile time. For example,
given the code of Figure 7.11, the runtime stack after the second call to x (assuming 2
recursive call to ») would lock as in Figure 7.13. In this picture, x has two different
activation records with two different aceess lnks, pointing at the different activation
records of q, which represent different defining environments for =.

Activation record of
main prograrn

<no aceess linke-

—— gontrol ink Actlvation record of
return address calltop
Hiaes
access link Activation record of
e cOTIERO] K callto g

return address
accoss link
e GONYTON Ik Activation record of

—— return addross calltox
<aceoss links
control fink -, Activation record of
return address calltop
Xiaaw
access link Activation record of
— control link call to o
e
return address
aﬁﬁ gir’:f: Activation record of
c I
— callto =
» return address
-3 - JRS—
7 free space’

133 Stack-Based Environments with
Procedure Parameters

In some Janguages, not ondy are iocal procedures allowed, but procedures may also be
passed as parameters. In such a Janguage, when a procedure that has been: passed as a
parameter {5 called, it is impossible for a compiler to generate code to compute the
access link at the time of call, as described in the previous section. Tnstead, the access
Iink for a procecure must be precomputed and passed along with a pointer to the code

Example 7.7

Figore 714
Sundard Paseal cade with
4 procedure 25 garameter

[
. 11. This term has its ori,

13 Stack-Based Runtime Environments

371

for the procedure when the procedure is passed as 2 parameter, Thus, a procedure para-
meter vahl:c can no longer be viewed as a simple code pointer, but must also inclugc an
access pointer 'd;at defines the environment in which nonlocal references are resolved
This pair of pointers—a ¢ode pointer and an access link or an instruction, pointer a.nc.;
an environment pointer—together represent the value of 2 procedure or function para-
meter and are commonly called a closure (since the aceess link “closes™ the “holes”
caused by nonlocal references).’’ We will write closures as <ip, ep>>, where ip refers
to the mstruction pointer (code pointer or entry point) of the procedure, and ep refers ;o
the environment pointer (access link) of the procedure,

Congider the Standard Pasca] program, of Figure 7.14, which has a procedure g, with &
pazapaeter & that s also a procedure, After the call to P in g, in which the Iocaf proce-
dure x of ¢ is passed to p, the cal] to & inside p actually calls r, and this call must stll
fing the nonlog.l variable x in the actvation of G- When p is called, a is constructed
asa closr:re <Ip, ep>>, where ip is a pointer to the code of = aed ep is a copy of the fp
a the point of call (that js. it points to the environment of the call t© g in which r
is det‘meq). The vaive of the ep of a is indicated by the dashed line in Figuze 7.15 {page
372), which represents the environment just after the call 1o P in q. Then, when a is

callcdinsidep,thecpofaisuscdasthesw.ﬁclink’ its activati indi
i Figmenir n 1ts activation record, as md:_cate;

brogram closurelx(output);

Drocedure p(procedura al;

Procedure g; -
var x:integer;

procedura r;
begin

writeln (x);
end;

hegin
® o= 27
»lx;

and; (* g =)

begin (* main *)
CH
end.

§

e | gin i Jambda calewtus and is not to be confused with the (Kleepe,
closwre operadon in regular expressions or the s-closure of # set of NFA states. (eae)

372

Figure 21§

Runtime stack just after the
il to o in the code of
Figure 7.14

Figare 716

Runtime stack just after the
all v ain the code of
Figure T.14

CHAPTER 7 / RUNTIKE ENVIRONMENTS

Activation record of
main program
=g accoss nk>
control ink
- return addross Activation record of
/ - x: 2 calltog
\\ - ar<ip., ap> :
e 1730 Ecwfﬁ Tb‘ Activation record of
o control fin
f:n return address caltop
free space -
Activation recerd of
main program
<no aceess link>
control link - e ot
- return address Activation reco
. *: 2 calitog
\\ a:<ip,, ap>
"I T ™ 2o accass lnks)
contral link Activation record of
""' roturn address calltop
access Ink ——-
£ e contral link Actlvation record of
- retum address callioa
B e -
" fre space

The calling sequence in an eavironment such a5 we have just described must now
distinguish clearly between ordinary procedurss and procefim'e parametess. An ord;
nary procedure is called, as before, by fetching the access link using Eh.e nesting lew
of the procedure and jumping directly to the code of the proccdu're (which is known at
compile time). A procedure parameter, on the other hand. has its access _hnk a]reftdy
available, stored in the local activation tecord, which must be fetched and mscrte:; into
the new activation record. The location of the code for the procedure, however, is 10t
known directly to the compiler; instead, an indirect call must be performed 10 the ip

in the current activation record.) o
StorcAdcompiler writer may, for reasens of simplicity or uniformity, wish to aveid this
distinction between ordinary procedures and procedure parameters and ke.cp. all proce-
dures as closures in the environment. Indeed, the more general a language is in its treaf—
ment of procedurss, the more reasenable sach an approach becomes.. For example, i
procedure variables are allowed, or if procedure values can be glynamca.‘lly compmefi,
then the <ip, ep> representation of procedures becomes a requirement for alt _suclfl site
uations. Figure 7.17 shows what the environment of Figure 7.16 would look like if all
procedure values are stored in the environment ag closures.

Higurs 717

Runcme stack just after
the cill 10 & in the code
of Figure 7.14 with af
procedures kegt 2 clostres
in the environment

T4 Dynamic Memory 373

piedp,, > Global/static area
Q<D >
Activatlon record of
main program
<N aceess links
controt link
retum address Activation record of
®: 2 callteg
r:<ip ., ep.>
ar<ip., ap>
<no a“-ggﬁ ILﬂb . Activation record of
contral linl
return adcress calltop
. aceoess link .
control fink Activation record of
["
return address callto a
ap
i free spaoé g

Finally, we note that C, Modula-2, and Ada a1l avoid the complications described
in this subsection: C, because it has no local procedures (even though it has procedure
parameters and variables); Modala-2, becanse of a special rule restricting procedure
pazameter and procedure variable values to global procedures: and Ada, because it has
0o procedure parameters or varizbles.

T4 DYNAMIC MEMORY

T4l Fully Dynamic Runtime Environments

The stack based runtime environments discussed in the previcus section are the most
commoen forms of environment among the standard imperative languages such as C,
Pascal, and Ada. Such environments do have Limitations, however. In particular, in 2
language where a reference to a local variable in a procedure can be returned to the
caller, either implicitly or explicitly, a stack-based environment will result in a dan-
gling reference when the procedure is exited, singe the activation record of the proce-
dure will be deatlocated from the stack. The simplest example of this is when the
address of a local variable is returned, as for instance in the C code:

int * dangle(void)
{ int x;
return &y}

An assignment addr = dangle () now causes addr to point to an unsafe location
in the activation stack whose value can be arbimarily changed by subsequent calls 10
any procedure. C gets around this problem by stmply declaring such a program to be
erzoneous (although no compiler will give an emor message), In other words, the
semantics of C are built around the underlying stack-based environment.

374

figure 718

Preudo-{ code showing a
dangfing reference caused
by the return of a loeil
function

CHAPTER 7 / RUNTTME EXVIRONMENTS

A somewhat more complex instance of a dangling reference eccurs if a lecal func-
tion can be returned by a call. For instance, if C were to allow local functioa definitions,
the code of Figure 7.18 would result in an indirect dangling reference to the parameter
x of g, which can be accessed by calling £ after ¢ has exited, C, of course, aveids this
problem by probibiting lecal procedures. Other languages, like Modula-2, which bave
local procedures as well as procedure variables, parameters, and returned valuesj must
state a special rule that makes such-programs erroneous. (In Modula-2 the rule is that
only global procedures can be arguments or returned values——a major retreat even from.
Pascal-style procedure parameters.)

typadaf int (* proc) (void);

proc g{int x)

{ ine f£(wvoid) /* illegal local functiom */
{ zetumm x:}
zoturn £;)

wain{)

{ proe «;
a = g{2);
printf ("%d\n",c()); /* sbould pziat 2 */
return 6;

There is a large class of languages, however, where such rules are unacccptab}c.
that is, the functional programming languages, such as LISP and ML. An essential prin-
ciple in the design of a functional langnage is that functions be as general as possible,
and this means that fanctions must be able te be locally defined, passed as parameters,
and returned as results, Thus, for this large class of langnages, a stack-based runtime
environment is inadequate, and a rmore general form of environment is required. We
call such an environment fully dynamic, because it can deallocate activation records
only when all references to them have disappeared, and this requires that activation
records be dyparnically freed at arbitrary times during execution. A fully dynarsic mun-
time environment is significantly mere complicated than a stack-based environment,
since it involves the tracking of references during execution, and the ability to find and
deallocate maccessible areas of memory at arbitrary times during execution (this
process is called garbage collection).)

Despite the added complexity of this kind of environment, the basic structure of an
activation record remaing the same: space must be allocated for parametets and local
variables, and there is stll a need for the control and access links, Of course, now when
control is returned to the caller (and the control link is used to restore the previous envi-
rorenent), the exited activation record remains in memory, to be deallocated at some
later time. Thus. the entire additional complexity of this environment ¢an be encapsu-
lated in a memory manager that replaces the runtime stack operations with more gen-

74 Dynamie Memory 375

eral aliocation and deallocation routines. We discuss some of the issues in the design of
such a mernory manager later in this section,

42 Dynamic Memory in Object-Oriented Languages

Object-oriented languages require special mechanisms in the runtime environment to
implement their added features: objects, methods, fuheritance. and dynamic binding. In
this subsection we give a brief overview of the variety of implementation techniques
for these features. We assume the reader is familiar with basic cbject-oriented termi-
nology and concepts, '

Object-oriented languages vary greatly in their requirements for the runtime envi-
ronment. Smalltalk and C++ are good representatives of the extremes: Smalltalic
requizes a fully dynamic environment similar to that of LISP, while much of the design
effort in C++ has gone into retaining the stack-based enviromment of C, without the
need for automatic dynamic memory management. In both these languages, an object
in memory can be viewed as a cross between a traditional record strueture and an acti-
vation record, with the instance variables (data members) as the fields of the record.
This structivre differs from a traditional record in how methods and inherited fearares
are accessed. .

One straightforward mechanism for implementing objects would be for mitializas
tion code to copy all the currently inherited features (and methods) directly into the
record structure (with methods as code pointers). This is extremely wasteful of space,
however. An alternative is to keep a complete description of the class structure in mem-
ory at each point during execution, with mheritance maintained by superciass pointers,
and all method pointers kept as fields in the class structare (this is sometimes called an
inheritance graph), Eack object then keeps, along witk fields for its instance varizbles,
a peinter to its defining class, through which all methods (both local and inherited) are
found. In this way, method pointers are recorded oaly once (in the class structure) and
not copied in memary for each object. This mechanism alsc implements inheritance
and dynamic binding, since methods are found by a search of the class hierarchy. The
disadvantage is that, while instance variables may have predictable offsets (just as local
variables in a standard envirenment), the metheds do not, 2nd they must be maintained
by name in a symbol table structure with lookup capabilities. Nevertheless, this is a rea-
sozable structure for a highly dynamic lauguage like Smailtalk, where changes to the
class stracture can cceur during execution.

An altemative to keeping the entire class structure within the environment is 10
compute the list of code pointers for available methods of each class, and store this n
{static) memeory as a virtual function table (ia C++ terminology). This has the advan-
tage that it can be amranged so that each method has a predietable offset, and a traver-
sal of the class hierarchy with a series of tble lookups is no longer necessary. Now
cach object contains a pointer to the appropriate virtal function tabie, rather than to the
class stracture, (Of course, the loeation of this peinter must also have predictable off-
set.} This simplification onfy works if the class structure itself is fixed prior to eXecy-
ton, It is the method of choice in C++,

12. The following discussion also assumes only single inheritancs is available. Multiple
inheritance is treated in some of the works cited in the Notes and References section.

'- T4 Dynamic M :
376 CHAPYER 7 / RUNTIME EMVIRONMENTS o emory | 377

) Lo _ allocated a5 a linear block of memory i such a way that it can grow, it necessary, while
Example 7.8 Consider the following C-++ class declarations: interfering as litde as possible with the stack, (On page 347 we showed the heap sitting
in a block of remory at the Opposite end of the stack arez,)

class A So far in this chapter, we have concentrated on the organization of activation
: { public: ' tecords and the runtime stack, In this section, we want to describe how the beap ¢an be
double x,¥: : managed, and how the heap operations might be extended to provide the kind of
vold £{}; : . dynamic allocation required in languages with general function capabiiities.
\|. ‘ virtual void g(}; _ # beap provides two aperations, allssare and Jree. The allocate opetation takes 2
i ¥z) size parameter {either explicitly or implicitly), usually in bytes, and retnrns a pointer to
‘ b i : a block of memery of the comect size, or a null pointer if none exists. The free opera-
- clazz B: public A don takes a pointer to an allocared block of memory and marks it ag being free again,
Ii | { public: (The free operation must also be able to discover the size of the block to be freed, either
i double z; implicitly or by ap explicit parameter.) These two operations exist under differens
‘ woid £{}; : 22mes in muany languages: they are cailed new and dispose in Pascal and new and
l}‘ vixtual woid h(); . delete in C+++, The C langrage bas several versions of thess operations, but the
| }: . . basic ones are called mallec and free and arc part of the standard Hbrary
an object of class A wouid appear in memory (with its virtual function table) as follows: (std1lib.h), where they have essentially the following declarations:
. : vold * mallec (unaigned nbytes);
: " e void free (void * ap);
: e
irtual function o We will use these declarations as the basis for our description of beap management,
w&(ae :;;mtar ““‘“““"‘"- virtual function tabla for » 0 A standard method for maintaining the heap and implementing these fencrions is ©

use a circular linked list of fres blocks, from which memory is taken by malleoc and
teturned to by £ree, This has the advantage of simplicity, but it also has drawbacks,

g One is that the free operation cannot tell whether its pointer argument is reaily peint-
L I ing at a legitimate biock that was previously allocated by malloc. If the user should
i] * : Ppass an invalid pointer, then the heap can become easily and quickly corrupted. A, sec-

while an object of class B would appear as follows:

: ¥ ond, but much less sericus, drawback is that sare must be taken to coalesce hlocks that
i . are returned 10 the free list with blocks that are adjacent to it, so that a free block of
)| virtual funetion) tle for B

i tabla pelnter s1g | virtual function table for

i

maximal size will resals, Without coalescing, the heap can quickly become frag-
- oes mented, that is, divided ito 2 Jarge number of small-sized blocks, so that the alloca-
" tion of a large block may fail, even though there is enough total space available to allo-

Note how the virtual function pointer, once added to the object structure, remains in a : cate it. (Fragmentation is of course possible even with coalescing.)

fixed location, so that its offset is known prior to execution. Note als?_tt}at thf funccll:on
£ does not obey dypamic binding in C++ (since it is not decl:?red ‘\n.rtual). an .so
does not appear in the virtual function table (or anywhere else in the environment); g
call to £ is resolved at compile time,

743 Heap Management :

In Section 7.4.1, we disctissed the need fora nmtime.envimnment th.at is more f:nynim:
than the stack-based environment used in most compiled languages, if general func ont
are 10 be fully supported. In most langnages, however..even a stacl_c-based ;.gu:ro:;;zz

needs some dynamic capabilities in order to handle pointer allocation m}? Lo o N
The data structure that handles such allocation is calied a heap, and the heap is usu y

We offer here a slightly different implementation of malloc and free thet uses
& circular linked list data structuze that keeps track of both allocated and free blocks
(and thus is less susceptible to corruption) and that also has the advantage of providing
self-coalescing blocks. The code is given in Figure 7.19 (page 379).

This code uses a statically allocated array of size MEMSIZE as the heap, but an
operating system cal? could also be used to allocate the heap. We define a data type
Hoader that will hold each memory block’s bookkeeping information, and we define
the heap wray 10 have elements of type Headex 5o that the bookkeeping information
can be easily kept in the taemory blocks themselves, ‘The type Header contains three
pieces of information: 5 pointer to the next block in the list, the size of the currently

378 CHAPTER 7 / RUNTTHE ENVIRONMENTS .74 Dynamic Memory)
’ . 379

aext 3 Figere 218 #idefine NULL O
Headex usedsize Code 1o maintoin 2 heap ~ #dofinme MEMSIZE 8096 /* change for different sizes */
fraenize of contiguaus memory using
: a fist of pointers to btk typedef double Align;
used space used and free hlucks typedef union headexr
. { struct { union headaxr *mext;
: _frée.ét::aca. unsigned usedsize;
o ungigned freesize;
LI-H
The definition of type Headex in Figure 7.19 zlso uses a vnion declaration and an . J:-ign a;
nadex;

Align data type (which we have set 10 double in the code). This is to align the mem-
ory elements on a reasonable byte boundary and, depending on the system, may or may
not be necessary. This complication ¢an be safely ignored in the remainder of this
description.

The one additional piece of data needed by the heap operations is a pointer to one
of the blocks in the circular linked List, This pointer is called memptx, and it always
points 1o 2 block that has some free space (usually the last space to be allocated or
freed). It is initialized to MILL, but on the first call to malles, nitialization code is
executed that sets memptr to the beginning of the heap array and initializes the header

static Header mem|[MEMSIZE];
static Header *memptr = NULL;

woid *malloc (unsigned nbytes)

{ Header *p, *newp;
unsigned nunits;
nDunits = (abytes+aizeosf (Header)-1) /eizect (Headex) + 1;
if (memptr == NULL)

in the array, as follows: :
- { memptr->s.next = mamptr = mem;
A menpts->s.usedsize = 1;
TOTDET — prPe—T— O et Mmemptx<>s. fx¥easize = MEMSTZE-1;
: }
for{p-memptx;

(pr>8,.next lomemptz) && {p~>s.freesize<nunits) ;
Pep=>2.naxt) ;

i€ (p=-»>8.freesize < nunits) retnym WULYL

I* mo hloek big eneugh */

newp = pip->s.usedsize;

newp->g.uzadsize = nunits;

newp~>rs.freesize = p->s.freesize - nunitg;

newp-r5.0ext = H->g.next;

r-rs.freesize = 0;

This initial header that is ajlocated on the first call to malloc will never be freed.
There is now one block in the list, and the remainder of the code of malloc searches
the list and retuns a new block from the first block that has enough free space (this

is a first fit algorithm), Thus, after, say, three calls to malloc, the list will Took as :;:;;:e’:tn:w:?“""

follows:
G CFetuzn (vold %) (mewpsl):

veid free{void *ap)
{ Headex *bp, *p, *prev;
bp = (Header *} ap = 1;
. for (provamenpt, pomempti->z.next;
oot - : {pl=bp) && (p!ememptr); pxev=p,p=p->3.next);
e Lk 1% (pl=bp) retuxn;
oo = /* corrupted list, do nothing */
: prev->s.freasize += p->g.usedsize + Pr>5.fraasize;
prev-rgs.next = p->3.nexc;
mempty = prev;

used

used

WY,

HOMPEL -

380

CHAPTER 7 / RUNTIME ENVIRONMENTS

Note that as the blocks are allocated in succession, a new block is cxeated each time,
and the free space left over from the previcus block is carried with it {so that the free
space of the block from which the allocation took place always has £xeesize set to
0). Also. memptx follows the construction of the new blocks, and so always points to
a block with some free space. Note also that mallec always ncrements the pointer
to the newly created block, so that the header is protected from being overwritten by
the client program (as long 25 only positive offsets into the returned memory are used),

Now consider the code for the £ree procedure. It first decrements the pointer

‘passed by the user to find the header of the block, It then searches the list for a pointer

that is identical to this one, thus protecting the list from becorning corrupted, and also
allowing the pointer to the previons block to be computed. When found, the block is
removed from the list, and both its nsed and free space are added to the free space of
the previous block, thus automatically coalescing the free space. Note that memptx, is
also set to point 1o the block cortaining the memory just freed.

As an example, suppose the middle block of the three used blocks in the previous
picturs is freed. Then the heap and its associated block list would look as follaws:

"

METPLE ——t

T4 Automatic Management of the Heap

The use of malloc and £ree to perform dyvamic allocation and deallocation of
pointers is a mamual method for the management of the heap, since the programmer
must write explicit calls to allocate and free memory. By contrast, the runtime stack is
managed antomatically by the calling sequence. In a language that needs a fully
dynamic runtime environment, the heap must similarly be managed automatically,
Unfortumately, while calls to malloe can be easily scheduled at each procedure call,
the calls to £ree cannot be similardy scheduled on exit, since activation records must
persist untl ail references to them have disappeared. Thus, automatic memory man-
agement involves the reclamation of previously allocated but no longer used storage,
possibly long after it was allocated, and without an explicit call to £ree. This process
is called garbage collection.

Recognizing when a block of storage is no longer referenced, either directly or indi-
rectly through pointers, is a much more difficult task than is the maintenence of = list
of blocks of heap storage. The standard technique is to perform marck and sweep
garbage collection.” In this method, no memory is freed until a ¢sll to malloc fails,

13. A simpler alternative called reference counting is also occasionally used. See the Notes
and References section,

75 Parameter Passing Mechasisms 381

at which point a garbage coilector is activated that locks for 211 storage that can be ref-
erenced and frees all unreferenced storage. It doss this in two Ppasses. The first pass foi-
lows all pointers recursively, starting with all currently accessible pointer values, and
marks each block of storage reached. This process requires an exta bit of storage for
the marking. A second pass then sweeps lincarly through memory, returning anmarked
biocks to free memory. While this process usnally will find enough contigucus fiee
memory to satisfy a series of new requests, it is possible that memory is stiil so frag-
mented that a large memory request will still fail, even after garbage collection has been
performed. Hence, a garbage collection nsually also performs memory compaction by
moving all the allocated space to one end of the heap, leaving only one large block of
contiguous free space at the other end. This process must alse update all references to
those areas in memory that were moved within the executing program.

Mark and sweep garbage collection has several drawbacks: it requires extra storage
(for the marks), and the double pass through memory canses 4 significant delay in pro- -
cessing, sometimes as much as a few seconds, each time the garbage collector is
invoked—which can be every few minutes. This is clearly unacceptable for ruany appli-
cations involving interactive or immediate response.

A bookkeeping improvement ¢an be made to this process by splitting available
memory into two halves and allocating storage only from one half at a fime. Then dur-
ing the marking pass, all reached blocks are immediately copied to the second haif of
storage not in use. This means that no extra mark bit is required in storage, and only
one pass is required. It also performs compaction automatically, Once all reachable
blocks in the used area have been copied, the used and urvsed hatves of memory are
interchanged, and processing continues. This method is called stop~and-copy or two-
space garbage collection, Unfortunately, it does little to improve processing delays dur-
ing storage reclamation.

Recently, 2 method has been invented that reduces this delay significantly, Called
generational garbage collection, it 2dds a permanent storage area to the reclamation
scherne of the previous paragraph. Aliocated objects thar survive long enough are sim-
piy copied into permanent space and are never deallocated during subsequent storage
reclamations. This means that the garbage collector needs to search only 2 very small
section of memory for newer storage allocations, and the time for such a search is
redueed to a fraction of 2 second. Of course, it is possible for permanent memory still
to become exhausted with unreachable storage, but this is 2 much less severe problem
than before, since temporary storage tends to disappear quickly, while storage that stays
allocated for some time tends to persist anyway. This process has been shown 10 work
very well, especially with a virtal memory systern,

We refer the reader to sources listed in the Notes and References section for details
on this and other metheds of garbage collection,

13 PARAMETER PASSING MECHANISMS

We have seen how, in a procedure call, parameters correspond 10 locations in the act-
vation record, which are filled in with the argumems. or parameters values, by the
caller, prior 10 jumping to the code of the called procedure, Thus, to the code of the
called procedure, & parameter represents a purely formal value to which no code is
‘attached, but which serves only to establish 2 location in the activation record, where
the code can find its eventusl value, which will enly exist once a call has taken place.

382

CHAFTER 7 / RUNTIME ENVIRONMENTS

The process of building these values is sometimes referred to as the binding of the
pararneters to the arguments. How the argument values are interpreted by the procedure
code depends cn the particular parameter passing mechanism(s) adopted by the
source Janguage. As we have already indicated, FORTRAN7Y7 adopts a mechanista that
binds parameters to locations rather than values, while C views all arguments as values.
Other languages, like C++, Pascal, and Ada, offer a choice of parameter passing
meckanisms.

In this section we will discuss the two most common parameter passing mecha-
nisms—pass by value and pass by reference (sometimes also referred to as call by
value and call by reference)—as well as two additional important methods, pass by
value-result ard pass by name (also called delayed evaluation). Some variations on
these will be discussed in the exercises.

One issue not addressed by the parameter passing mechanism itself is the order in
which arguments are evaluated, In most situations, this order is unimportant for the
execution of a program, and any evaluation order will produce the same results, In that
case, for efficiency or other reascns, a corpiler may choose to vary the order of argu-
ment evaluation. Many languages, however, permit arguments to calls that cause side
effects (changes to memory). For example, the C Tunction call

B (wdx,) s

causes a change in the value of x, so that different evaluation orders have different
results. In such languages, a standard evaluation order such as left to right may be spec
iffed, or it may be left to the compiler writer, in whick case the result of 2 call may vary
from implementation o impiementation. € compilers typically evaluate their argu-
roents from right to left, rather than Ieft to right. This ailows for a variable number of
arguments (such as in the printf function), as discussed in Section 7.3.1, page 361.

131 Pass by Value

In this mechanism, the arguments are expressions that are evaluzted at the time of the
call, and their values become the values of the parameters during the execution of
the procedare. This is the only parameter passing mechanism available in C and is
the default in Paseal and Ada (Ada also allows such parameters to be explicitly speci-
fied as in parameters).

In its simplest form, this means that value parameters bebave as constant values
during the execution of 2 procedure, and one can interpret pass by value as replacing
all the parameters in the body of a procedure by the values of the arguments, This form
of pass by value is used by Ada, where such parameters cannot be assigned to or oth-
erwise used as local variables. A more relaxed view is waken by C and Pascal, where
value parameters are viewed essentially as injtialized local variables, which can be used
as ordinary variables, but changes to them never ¢ause any nonloczl changes to take
place.

In a language like C that offers only pass by value, it is impossible to directly write
a procedure that achieves its effect by maldng changes to its parameters. For example,
the following ine2 function written in C does not achieve its desired effect:

15 Parameter Passing Mechanisms 383

void ince2(int =)
/% incorrect! */
{ ++reexr)

White in theory it is possible, with suitable generality of functions, to perform all com-
putations by reurning appropriate values instead of changing parameter vakues, lan-
guages Like C usuzlly offer a method of using pass by value in such a way as to achieve
nonlocal changes. In C, this takes the form of passing the address instead of the value
{and thus changing the data type of the parameter):

veid ine2{ iat* x)
/* new ok */
O+ (Fa)s+rivu):)

Of course, now 10 incremient a variable ¥ this function must be called as ine2 (&y).
since the address of ¥ and not its value is required.

This methed works especially well in C for arrays, since they are tmplicitly point-
ers, and so pass by value allows the individual array elervents to be changed:

vold init{int =[],int siza)
/* this works fine when called

as init{a), where a is an arxay */
{ int :'.,'_

for(i=0;i<size;++i) =[i]1=0;

}

Pass by value requires no special effort on the part of the compiler. It is easily
implemented by taking the most straightforward view of argument computation and
activation record construction,

192 Pass by Reference

In pass by reference, the arguments must (at least in principle) be variables with allo-
cated locations. Instead of passing the value of a variable, pass by reference passes the
location of the variable, so that the parameter becomes an alias for the argument, and
any changes made to the parameter occur to the argument as well. In FORTRANT77,
pass by reference is the only parameter passing mechanism. In Pascal, pass by refer-
ence is achieved with the use of the var keyword and in C-++ by the use of the special
symbol & in the parameter declaration:

wold ine2(int & %) -
/* C++ reference parametar */
{ +xyam;)

This function can new be called without a special use of the address operator:
incz (¥} works fine.

Pass by reference requires that the compiler compute the address of the argument
(and it must have such an address), which is then stored in the local activation record,

384

CHAPTER 7 / RUNTIME ENVIRONMENTS

The compiler must aiso turn local accesses 10 a reference parameter into indirect
accesses, since the local “value” is actally the address eisewhere in the environment.

In Janguages like FORTRAN77, where only pass by reference is available, an
accommodation is usually offered for arguments that are values without addresses.
Rather than making a call like

P{2+3)

illegal in FORTRANT7, a compiler must instead “fvent” an address for the expression
243, compute the value imto this address, and then pass the address to the call,
Typically, this is done by creating a temporary location in the activation record of the
caller (in FORTRANTY, this will be static). An exarupie of this is in Example 7.1 {page
350), where the value 3 is passed as an argumment by creating a memory location for it
in the activation record of the main procedure.

One aspect of pass by reference is that it does not requir a copy to be made of the
passed value, unlike pass by value, This ¢an sometimes be significant whexn the value
to be copied is a large structure {or an array in a language other than C or Cre). In
that case, it may be ixgportant to be able to pass an argument by reference, but probibit
changes to be made to the argument’s value, thus achieving pass by value without the
overhead of copying the value, Such an option is provided by C++, in which one may
write a cail such as

void #(¢omst MuchDats & x)

where MuchData is a data type with a largs structure. This is still pass by reference,
bur the compiler must also perform a static check that x never appears on the left of an
assigniment or may otherwise be changed,'

153 Pass by Value-Result

This mechanism achieves 2 similar result to pass by reference, except that no actual
alias is established: the value of the argument is copied and used in the procedure, and
then the final value of the parameter is copied back out to the location of the argument
when the procedure exits. Thus, this method is sometimes known as <opy-in, copy-~
out-~or copy-restore. This is the mechanism of the Ada in cut parameter. (Ada also
has simply an out parameter, which has no initial value passed in; this could be cafied
pass by resuit.)

Pass by value-result is only distinguishable from pass by reference in the presence
of alissing. For instance, in the following code (in C syntax),

void plint %, int ¥)

{ sy
oy

14. This cznnot alwiys be done in o completely secure way.

1.5 Parameter Passing Mechanisms 385

mals()

{ int a = 1;
wia,a);
raturn 0;

X

& has valve 3 after p is called if pass by reference is used, while a has the value 3 if
pass by value-result is used.

Tssues left unspecified by this mechanism, and possibly differing in different lan-
guages or implementations, are the order in which results are copied back to the argu-
ments and whether the locations of the arguments ar¢ caleulated only on entry and
stored or whether they are recalculated on exit,

Ada has a further quirk: its definition states that in out parameters may actually
be implemented as pass by reference, and any computation that would be different
under the two mechanisms (thus involving an alias) fs an emor,

From the point of view of the compiler writer, pass by value-resalt requires several
modifications to the basic structure of the runtime stack and the calling sequence. First,
the activation record cannot be freed by the callee, since the (local) values to be copied
out must be still available to the caller. Second, the caller must either push the addresses
of the arguments as temporaries onto the stack before beginning the ¢construction of the
new activation record, or it must recompute these addresses on retrn from the eafled
procedure.

154 Pass by Name

This is the most eomplex of the parameter passing mechanisms. It is also called
delayed evaluation, since the idea of pass by name is that the argument is not evalg-
ated until its actual use {as a parameter) in the called program, Thus, the name of the
argument, or it textual representation at the point of call, replaces the name of the pa-
rameter it corresponds to. As an example, in the code

void plint x) '
{ wm;)

if acall such as p(a[i]) is made, the effect is of evaluating ++{a[i]). Thus, if &
were to change before the use of x inside . the result would be different from either
pass by reference or pass by vaiuve-resuit. For instance, in the code (in C syntax),

int i;
int aflo]l;

void plint x)
{ 4+i;
e

|
% 386 CHAPTER 7 / RUNTIME ENVIRONMENTS 76 A Runtime Enviranment for the TINY fanguage
|

387
il
} main_() top of memoty
{iw=1;
. a[l] = 1; sompl
al2] = 2; ' temp2
plalil);

seturn 07 —— 10p of tomp stack

}

the result of the call to p is that a [2] is set 10 3 and a [1] is left unchanged.

The interpretation of pass by name is as follows. The text of an argament at the
point of call is viewed as 4 function in its own right, whick is evaluated every time the
correspending parameser name is reached in the code of the calied procedure. However,

hd a
the argument will always be evaluated in the environment of the cailer, while the Pro- = s
cedure will be executed in its defining environment. ol
Pass by name was offered as 2 parameter passing mechanism (along with pass by fe ol
value} in the language Algol60, but became unpopular for several reasons, First, it can x 0
give surprising and counterintuitive results in the presence of side effects (as the previ- . bottom of mermory
ous exarnple shows). Second, it is difficult to implement, since each argument must be e

turaed into what is essentially a procedure (sometimes called 2 suspension or thunk)
that must be called whenever the argument is evaluated, Third, it is inefficient, since
aot only does it turn a simple argument ¢valuation into a procedure call, but it may also
cause multipie evaluations to occur, A variation on this mechanism ealled lazy evalo-
ation has recently become popular in purely functional languages, where reevaluation

Depending on the architecture, we may need to set some bookkeeping registers to point
to the bottom and/or top of memory, and then use the “absolute™ addresses of the vari-
ables as offsets from. the bottom pointer, and either use the top of memoery pointer ag

: : _ the “top of temp stack™ pointer or compute offsets for the temporaries from a fixed to
is prevented by memoizing the suspension with the computed value the first time jt pointer. It would, of course, also be possible to use the processor stack as the tcmpo?
called. Lazy evaluation can actually result in 2 more efficient implementation, since an : tary stack, if it is available,

argument that is never used is also never evaluated. Languages that offer lazy evalua- To implement this runtime environment, the symbol table in the TINY compiler
tion as a parameter passing mechanism are Miranda and Haskell. We refer the reader) must, as described in the last chapter, maintain the addresses of the varizbles in mem-
to the Notes and References section for additional information.

ory. It does this by providing a location parameter in the st_insexrt functicn and the

inelusion of a st_Lookup function that retrieves the location of a variable (Appendix
B, lines 1166 and 1171):
76 A RUNTIME ENVIRONMENT FOR THE

: void st_ingsert{ char * name, int lineno, int loc);
TINY LANGUAGE L int gt_looimp | char » ‘vama) ; -

In this final section. of the chapter, we describe the structure of a runtime environment _' The semantic analyzer must, in its turn, assign addresses to variables as they are
for the TINY language, our running example of 2 small, simple language for compila- : encountered th first time. Tt dees this by meintaining a static memory location coumter
tion. We do.this in 2 machine-independent way hers and refer the reader to the next : that is initialized 1o the first address (Appendix B, line 1413):

chapter for an example of an implermentation on a specific machine.

The envirenment needed by TINY is significantly simpler than any of the environ- static int locatien = 0
ments disenssed in this chapter. Indeed, TINY has no procedures, and all of its variables ; . .
are global, so that there is no need for a stack of activation records, and the only : m?n' w.henever a vgnable s encountered (in a read statement, assignment statement,
dynamic storage necessary is that for temporaries doring expressicn evaluation (even - or identifier expressior), the semantic analyzer executes the code (Appendix B, line
this could be mads static as in FORTRANT7=—see the exercises). ' 1454y
One simple scheme for a TINY environment is to place the variables in absclute A
addresses at the bottom end of program mernory, and allocate the temporary stack at . 1 {st_lockep(t->attr.name) m= -1)
the top end. Thus, given a program that used, say, four variables x. ¥, z. and w, these st_insert (t-rattr.name, t->linens, locations+) ;
variables wouid get the absolute addresses ¢ throngh 3 at the bottom of memory, and at alse .
a point during execution where three temporaries are being stored, the runtime envi- b St.ingext (t-rattr.name, t->linens, 0) ;

roument would look as follows:

When st _lockup returns — 1, the variable is not yet in the table. In that case, a new

388

CHAPTER 7 / RUNTIME ENVIROKMENTS

location is recorded, and the location counter is incremented. Otherwise, the variable is
already in the table, in which case the symbol table ignores the location parameter (and
we write 0 a5 a dummy location).

This handles the allocation of the named variables in a TINY prograny; the alloca-
tion of the temporary variables at the top of memory, and the operations needed to
maintain this allocation, will be the responsibility of the code generator, discussed in
the next chapter.

EXERCISES

7.1 Draw a possible organization for the rntime environment of the fellowing FORTRANT?
program, similar to that of Figure 7.2 (page 352). Be sure 1o include the memory pointers
as they wonld exist during the call to AVE,

REAL A(SIZE),AVE
TNTEGER N,I
10 READ *, N
IF (N.LE.0.O0R.N.GT.SIZE) GOTO 9%
READ *, (A{Z),T=1,N)
PRINT *, ‘AVE = ',AVE(A,N)
‘ote 10
53 CONTINGE
XD
REAL FUNCTION AVE(B,N)
INTEGER I.N
REAL B(N),STM
SUM = 0.0
DO 20 L=, N
20 SUM=ST+B{I}
AVE = SUM/N
END

7.2 Draw a possible organization for the runtime environment of the following C program,
similar to that of Figure 7.4 (page 354).
a. After entry into block A in function £,
b. After entry into block B in fanction g.

int af103;
char * g = "hello":

dot £{int 4, int B{1)
{ int j=4;
Az { i=ze 1=3,
char ¢ = bHIil;

roturm 0

Exercises 389

void g{chaxr ¥ g}
{ chax ¢ = 5[0];
B:{ dnt als51;

mwain()

{ int wmi;
x = £(x,alz
gi8);
raturn {7

73 Draw 2 possible organization for the rurtime environment of the C program of
Figure 4.1 (page 148) after the second call to facter, given the input string (2),
7.4 Draw the stack of activation records for the following Pascal program, showing the con-

trol and ccess links, after the second call to procedure <. Deseribe how the variable x is
accessed from within <,

Program anv;

Procedurs a;
Rr oaxk: dnteger;

procedure br
procedure o
begin
® = 27
by
and;
begin (* b *}
L
end;

begin (* o ¥)
bs
end;

bagin {* maia *)
a;
end.

7.5 Draw the stack of zctivation records for the following Paseal program
a. After the czll to & in the first call of p,

CHAPTER 7 / RUNTIME EMVIROKMENTS

b. After the call to & in the second call of p.
¢ What does the program print and why?

program clopvrelx(cutput);
var x: integer;

procedure one;

begin
writelnix);
end;
» a b-1¢ d a):
hogin
a:
end;

procedura {7
var wx:;iztegex;
procedure two;
begin
writeln{x) s
eandr
boagin
x 1= 2;
Dione);
Ditwe);
and: (* ¢ *)

bagin {* main *)
® 3w 1;
q?

end.

7.6 Consider the following Paseal program. Assuming a user input consisting of the three

numbers 1, 2, 0, draw the stack of activation records when the number 1 is printed the
first time. Include all control and access finks, as well as all parameters and global vari-
ables, and assume all procedures are stored in the environment as closures,

»ROg v (input, output) ;

procedure dolist (precedure print);
wvar x: integer;
proceduse ewpoint;
bagin
print;
writeln{x);
end;

Exercises 391

7.7

7.8

7.9

begdn (* doliast *)
weadln (x) ;
if x = 0 than begin
prdnt;
priat;
and
elae dolist (newprine):
end; (* dolist ¥}

procodure melly
begin
and;

begin (* main *)
dolist(aull);
and.,

To perform completely static allocation, 2 FORTRAN77 compiler needs to form an esti
mate of the maximum oamber of temporaries required for any expression computation in
& program, Devise a method for estimating the number of temporaries required to com-
pute 2n sxpression by performing o traversal of the expression tree. Assume that expres-
sions are evaluated from left to right and that every left subexpression mast be saved in a
temporary.

In languages that permit variable numbers of arguments in procedure calls, one way 10

find the first argument is to compute the arguments in reverse order, as described in

Section 7.3.1, page 361.

A One alternative to computing the arguments in reverse would be 1o reorganize the
activation record to make the first argument availabie even in the presence of vad-
able arguments. Describe such an activation record organization and the calling
sequence it would need.

b. Another altgrnative to computing the arguments in reverse is to use a third pointer
(besides the sp and fp), which is usnally called the ap (argument peinter), Deseribe
a activation record stracture that uses an ap to find the first argument and the calling
sequenge it would need.

The text describes how to deal with variable-length parameters {such as open arays) that

are passed by value (see Example 7.6, page 362) and states that a similar solution works

for variable length local variables. However, a problem exists when borh variable-length
parameters and local variables are present. Descrite the problem and a solation, using the
following Ada procedure as an example:

type IntAr is Arzay{Integer range <>) of Integer;
procedure £{x: Inthr; n:xnunﬁux) is

¥: Arzay(l..n) of Integer;

i: Integer;

begin

and £

392 CHAPTER 7 / RUNTIME ERVIRONMERTS

7.10 An aliemative to access chaining in 2 Jenguage with local procedures is to keep access
links in an array outside the stack, indexed by nesting level, This array is called the dis-
play. For example, the runtime stack of Figure 7.12 (page 369) would look as follows
with a display

Actlvation record of o diaplay[1]
main program
dlsplay (2]

Activation racord of
calltop

Activatlon recoerd of
calltog

Activation recard of
cailto =

ED g

ALY rer—oms

froe space

while the runtime stack of Figure 7.13 (page 370) would look as follows:

Activation record of aioplay[1]
malr: program

display (2]
Activation recore of
calltiop

Activation record of
calltog

Activation record of
callto =

Activation recerd of
calltop

Actlvation record of
’ clltog

Activation racord of
callto x

£ e

B e

_ 7 free space -

Desctibe how 2 display can improve the efficiency of nonlecal references from
deeply nested procedures,

. Redo Exercise 7.4 using a display,

Describe the calling sequence necessary to implement a display.

. A problem exists in using a display in a language with procedure parameters,
Describe the problem using Exercise 7.5.

P

& p oo

Exercises 393

711 Consider the following procedure in € Syntax:

vaold £ char ¢, chaz ={10], double =)
{ int * x;
dat ¥[51;

¥

a. Using the standard C parameter Passing conventions, and assurming the data sizes
integer = 2 bytes, char = | byte, double = § bytes, address = 4 bytes, determine the
affsets from the fp of the following, using the activation record structure deseribed in
this chapter: (1) €, () 5177, vzl

b. Repeat (2) assuming all parameters are passed by value (including arrays),

¢ Repeat {a) assuming all porameters are passed by reference,

7.12 Execute the following C program and explaiz its output in terms of the runtime environ-
ment:
#ioclude <ptdio kx>

void g{void)
{ {int x;
prints (redi\ne,x) ;
x = 33}
T{dnt v
PrIintE (“Nd\n",y) s}

Int* £({void)

{ Iint w;
printf (vwd\n~,x};
return facy

void main() !
{ int *p;

o= £0;

poa 1

20

-3¢
}

7.13 Draw the memory layout of objects of the following C++ classes, together with the vir-
tual function tbles as deseribed in Section 7.4.2:
<lans A
{ public:
dot aj
virteal vold £();
virtual vold g();

394

CHAPTER 7 / RUNTIME ENVIRONMENTS

¢lage B : publie A
{ public:
int by
wirtual void £(};
void h{);
3;
clags C : public B
{ public:
Lot ¢y
wirtual void g(};

7.14 A virtual function table in 2 object-orieared langnage saves trgversing the inheritance

graph searching for a method, but at a cost. Explain what the cost is.

7.15 Give the output of the following program (writter in C syntax) using the four parameter

passing methods discussed in Seetion 7.5:

#incluv@s <stdlo.b>
int 1=0;

vold plint =, int ¥)
{xe=1;

L 4m 1;

¥ 4= 1y

waln ()

¢ dnt alzl={4,1}; ‘
pialil,aldl);
print£{"d %a\nv,al0],ald])};
ratuxn 0;

7.16 Give the output of the following program (in C syntax) using the four parameter passing

methods of Section 7.5;

#include <stdio.h>
int iwg;

void swap(int x, int v)
{xax+y;
¥y =X o~ yr
X =K.y

Programming Exercises

395

madn(}

{ int a[31 = {1,2.0%;
swap{d,ati]);
princd(ad %d %3 Ao, 4, al0),al1],a021);
Taturs 07

}

7.07 Suppose that the FORTRAN77 subroutine » is declared as follows

SUBRCUTINT P{A)

and is called from the main program as follows:
CALYL B(1)

In some FORTRANTT systems, this will canse 4 runtime error. [n others, no runtime

error occurs, but if the subroutine is called again with 1 as its argument, it may print the

vaiue 2. Explain bow both behaviors might occur in terins of the runtime environment,

A variation on pass by name is pass by text, in which the argurcents are evaluated in

delayed fashion, just as in pass by name, but each argument is evalusted in the environ-

ment of the called procedure rather than in the calling environment.

2. Show that pass by text can have different results than pass by name,

b. Describe a runtime environment organization and calling sequence that eould be used
to implement pass by text,

PROGRAMOING 7.1
FXERCISES

720

7.2

As described in Section 7.5, pass by pame, or delayed evaluation, can be viewed as pack-

aging an argument in 2 function body (or suspension), which is called every time the

parameter appears In the code, Rewrite the C code of Exercise 7.16 to implement the
parameters of the gwap fimetion in this fashion, and verify that the result is indeed
equivalent to pass by name.

A As described in Section 7.5.4, an efficiency improvement in pass by name con e
achieved by memoizing the value of an argunent the first tme it is evaluated,
Rewrite your code of the previous exercise to implement such memoization, and
compare the results to those of that exercise,

b. Memoization can cause different results from pass by name. Explain how this can
happen,

Compaetion (Section 7.4.4) can be made into a separate step from garbage collection and

can be performed by malloe if a memeory request fails because of the lack of a suffi-

ciently large block,

2. Rewrite the melloc procedure of Section 7.4.3 to include 2 compaction step,

396

CHAPTER 7 / RUNTIME ENVIRONHENTS

b. Compaction requires that the location of previously ailocated space change, and this
means that a program must find out about the change. Describe how to use a table of
pointers to memery blocks to solve this problem, and rewrite your cods of part {a) to
Inchude it

NOTES AXD
REFERENCES

The fully static environment of FORTRAN77 (and eatlizr FORTRAN versions) Tepre-
sents a natral and straightforward appreach to environment design and is similar to
assembler environments. Stack-based environments became popular with the inclusion
of recursion in langnages such as Algel60 (Naur [1963]). Randeil and Russell [1964]
describe an early Algol60 stack-based environment fn detail. The activation record
organization and calling sequence for some C compilers is described in Johnson and
Ritchie [1981]. The use of a display instead of access chains (Exercise 7.10) is
described in detail in Fischer and LeBlanc [1951], including the problems with using it
in 2 language with procedure parameters,

Dynamiz memory management is discussed in many books on data structares, such
as Ahe, Hoperoft, and Ullman [1983]. A useful recent overview is given in Drozdek
and Simon [1995]. Code for implementations of malloe and £ree that is similar to,
but slightly less sophisticated than the code given in Section 7.4.3, appears in
Kemighan and Ritchie [1988]. The design of a heap structure for use in compilation is
discussed in Fraser and Hanson [1995).

An overview of garbage collection can be found in Wilson [1992} or Cohen [1981].
A generational garbage collector and runtime environment for the functional language
ML is described in-Appet [1992]. The Gofer functional language compiler (fones
{1984]) contains both a mark and sweep and a two-space garbage collector,

Budd [1987] describes a fully dynamic environment for a small Smalltalic system,
including the use of the inheritance graph, and = garbage collector with reference
counts. The use of a virtual function table in C++ is described in Ellis and Stroustrup
[19503, together with extensions to handle multiple inheritance,

More examples of parameter passing techniques may be found in Louden [1993],
where a description of lazy evaluation can also be found. Implementation techniques
for lazy evaluation can be found in Peyton Jones [1587].

