contributed articles

DOI:10.1145/2699415

The Quipper language offers a unified
general-purpose programming framework
for quantum computation.

BY BENOIT VALIRON, NEIL J. ROSS, PETER SELINGER,
D. SCOTT ALEXANDER, AND JONATHAN M. SMITH

Programming
the Quantum
Future

THE EARLIEST COMPUTERS, like the ENIAC, were rare
and heroically difficult to program. That difficulty
stemmed from the requirement that algorithms be
expressed in a “vocabulary” suited to the particular
hardware available, ranging from function tables

for the ENIAC to more conventional arithmetic and
movement operations on later machines. Introduction
of symbolic programming languages, exemplified

by FORTRAN, solved a major difficulty for the

next generation of computing devices by enabling
specification of an algorithm in a form more suitable
for human understanding, then translating this
specification to a form executable by the machine. The
“programming language” used for such specification
bridged a semantic gap between the human and the
computing device. It provided two important features:
high-level abstractions, taking care of automated
bookkeeping, and modularity, making it easier to
reason about sub-parts of programs.

Quantum computation is a comput-
ing paradigm where data is encoded
in the state of objects governed by the
laws of quantum physics. Using quan-
tum techniques, it is possible to de-
sign algorithms that outperform their
best-known conventional, or classical,
counterparts.

While quantum computers were en-
visioned in the 20th century, it is likely
they will become real in the 21st cen-
tury, moving from laboratories to com-
mercial availability. This provides an
opportunity to apply the many lessons
learned from programming classical
computing devices to emerging quan-
tum computing capabilities.

Quantum Coprocessor Model
How would programmers interact with
a device capable of performing quan-
tum operations? Our purpose here is
not to provide engineering blueprints
for building an actual quantum com-
puter; see Meter and Horsman®® for a
discussion of that agenda. What we de-
scribe is a hypothetical quantum archi-
tecture in enough detail to cover how
one would go about programming it.
Viewed from the outside, quantum
computers perform a set of specialized
operations, somewhat analogous to
a floating-point unit or a graphics co-
processor. We therefore envision the
quantum computer as a kind of copro-
cessor that is controlled by a classical
computer, as shown schematically in
Figure 1. The classical computer per-

key insights

B Quantum computer science is a new
discipline dealing with the practical
integration of all aspects of quantum
computing, from an abstract algorithm
in a research paper all the way to
physical operations.

B The programs written in a quantum
programming language should be as
close as possible to informal high-level
descriptions, with output suitable for the
quantum coprocessor model.

B Other important aspects of the quantum
programming environment include
automated offline resource estimates
prior to deployment and facilities for
testing, specification, and verification.

TLLUSTRATION BY FUTUREDELUXE

http://dx.doi.org/10.1145/2699415

forms operations (such as compila-
tion, conventional bookkeeping, cor-
rectness checking, and preparation of
code and data) for the quantum unit.
The quantum coprocessor performs

only the quantum operations (such as
initializations, unitary operations, and
measurements). This model of quan-
tum computation is known as Knill’s
QRAM model™ and is believed to ulti-

Figure 1. Mixed computation in the quantum coprocessor model.

Program

Classical
Compilation

Classical
Executable

Classical
Run Time

Logical Elementary
Instructions

Classical
Feedback

Classical Unit

Classical Analysis

@

Quantum
Run Time

Physical
Computation

Quantum Unit

Figure 2. A quantum circuit.

Input Wires A

—1 B
f" Output Wires

Figure 3. A quantum circuit fragment.

]|

izt | Fa il

mately be the most likely realization of
quantum computers.'?

Certain hardware-intensive low-lev-
el control operations (such as quantum
error correction) may optionally be in-
tegrated directly into the quantum unit.
We envision the quantum unit contain-
ing a high-speed, specialized firmware
in charge of such a low-level “quantum
runtime.” The quantum firmware is
specific to each physical realization of
a quantum coprocessor, programmed
separately off site. Although tightly de-
pendent on the physical specifications
of the particular hardware, the quan-
tum firmware is independent of the al-
gorithms to be run.

The source code of any quantum
programs resides on the classical
unit. Through a conventional classi-
cal compilation, it produces execut-
able code to be run on the conven-
tional computer. We envision the
quantum coprocessor will commu-
nicate with its classical controller
through a message queue on which
the classical computer is able to send
elementary instructions (such as “al-
locate a new quantum bit,” “rotate
quantum bit x,” and “measure quan-
tum bit y”). After an operation is per-
formed, the classical computer can
read the results from the message
queue. In this model, the control flow
of an algorithm is classical; tests and
loops are performed on the classical
device. Both classical and quantum
data are first-class objects.

Via the message queue, the classi-
cal runtime receives feedback (such as
the results of measurements) from the
quantum unit. Depending on the algo-
rithm, this feedback may occur only at
the end of the quantum computation
(batch-mode operation) or interleaved
with the generation of elementary in-
structions (online operation). The
possibility of online operation raises
additional engineering challenges,
as it requires the classical controller
to be fast enough to interact with the
quantum runtime in real time. On the
other hand, many common quantum
algorithms require only batch-mode
operation. We assume a quantum pro-
gramming model flexible enough to
address either type of operation.

As with a conventional program-
ming environment, we separate the log-
ical data structures from their physical

representation on the hardware. In our
proposed paradigm, the algorithms
are implemented at the logical level,
but the quantum bits are physically en-
coded at the hardware level. The tasks
of mapping logical quantum bits and
operations to stable physical represen-
tations, and of applying suitable error
correction, are left to the compiler and
to the quantum firmware.

Describing Quantum Algorithms

To motivate the need for an expres-
sive quantum programming lan-
guage (QPL), we briefly consider
some of the ways quantum algo-
rithms are typically specified in the
literature. A quantum algorithm gen-
erally consists of a mix of classical
and quantum operations. The quan-
tum parts of an algorithm are usually
aggregated into quantum circuits,
in which quantum gates are repre-
sented by boxes and quantum bits
by wires, as in Figure 2. Some restric-
tions apply to circuits. For example,
they cannot contain loops, so wires

Figure 5. An initialize-run-measure loop.

must flow in only one direction. The
gates can have multiple inputs and
outputs. With the exception of gates
corresponding to the creation and
destruction (measurement) of quan-
tum bits, elementary operations are
always unitary transformations, im-
plying they must have the same num-
ber of inputs and outputs.

A typical description of a quantum
algorithm consists of one or more of
the following pieces, which may be

Figure 4. Inversion and repetition.

specified at various levels of formality:
Mathematical equations. These can
be used to describe state preparations,
unitary transformations, and measure-
ments. For example, Harrow et al.’
described a quantum algorithm for
solving linear systems of equations. A
certain subcircuit of the algorithm is
defined as follows:
T [t+1)(t|@ U,
+|t+TH+1)(tH+ T|@1
- (+|t+2T+1mod3T><t+2T®UJM,)

Initialize

Classical data _

quantum
memory

Run quantum
circuit

Measure
quantum
memory

Reset quantum
memory

Figure 6. A circuit with feedback from intermediate measurements.

Beginning of Circuit

Measurement and Classical
Feedback

Rest of circuit
depends on
the measurement

Figure 7. A procedural example.

mycirc :: Qubit

mycirc a b = do

hadamard a

hadamard b

<- controlled not a b
(a,b)

-> Qubit -> Circ

a <-
b <-
(a,b)
return

Invocation of known quantum subrou-
tines. Examples include the quantum
Fourier transform, phase estimation,
amplitude amplification, and random
walks. For example, the algorithm in
Harrrow et al.’ asks to “decompose |b)
in the eigenvector basis, using phase
estimation”;

Oracles. These are classical com-
putable functions that must be made
reversible and encoded as quantum
operations. They are often described at
a very high level; for example, Burham
et al.? defined an oracle as “the truth
value of the statement f(x) < f(3)";

Circuit fragments. For example, the
circuit in Figure 3 is from Childs et al.
Note, strictly speaking, the figure de-
scribes a family of quantum circuits,
parameterized by a rotation angle ¢ and
a size parameter 1, as indicated by el-
lipses “. . .” in the informal circuit. In
aformal implementation, this parame-
ter dependency must be made explicit;

High-level operations on circuits.
Examples include “inversion,” where
a circuit is reversed, and “iteration,”
where a circuit is repeated, as in Figure
4; and

Classical control. Many algorithms
involve interaction between the clas-
sical unit and the quantum unit. This
interaction can take the form of simple
iteration, running the same quantum

(Qubit,

Qubit)

circuit multiple times from scratch, as
in Figure 5, or of feedback, where the
quantum circuitis generated on the fly,
possibly based on the outcome of pre-
vious measurements, as in Figure 6.

Requirements for QPLs

Ideally, a quantum programming lan-
guage should permit programmers to
implement quantum algorithms at a
level of abstraction that is close to how
one naturally thinks about the algo-
rithm. If the algorithm is most natu-
rally described by a mathematical for-
mula, then the programming language
should support such a description
where possible. Similarly, if the algo-
rithm is most naturally described by
a sequence of low-level gates, the pro-
gramming language should support
this description as well.

The standard methods used to pres-
ent many algorithms in the literature
can therefore be taken as guidelines
in the design of a language. Knill'* laid
out requirements for quantum pro-
gramming, including:

Allocation and measurement. Make
it possible to allocate and measure
quantum registers and apply unitary
operations;

Reasoning about subroutines. Permit
reasoning about quantum subrou-
tines, reversing a subroutine, and con-

ditioning a subroutine over the state of
a quantum register; and

Building quantum oracles. Enable
the programmer to build a quantum
oracle from the description of a classi-
cal function.

Our experience implementing?
quantum algorithms suggests some
additional features that would be re-
quirements for a quantum program-
ming language:

Quantum data types. In classical lan-
guages, data types are used to permit
the programmer to think abstractly
about data instead of managing indi-
vidual bits or words. For example, in
most situations, a floating-point num-
ber is best viewed as a primitive data
type supporting certain arithmetic op-
erations, rather than an array of 64 bits
comprising an exponent, a mantissa,
and a sign. Likewise, many quantum
algorithms specify richer data types,
so the language should also provide
these abstractions. For example, the
Quantum Linear System Algorithm®
requires manipulation of quantum
integers and quantum real and com-
plex numbers that can be represented
through a floating-point or fixed-pre-
cision encoding. Another example is
Hallgren’s algorithm?® for computing
the class number of a real quadratic
number field. One type of data that oc-
curs in this algorithm, and that must
be put into quantum superposition, is
the type of ideals in an algebraic num-
ber field;

a By “implementing” an algorithm, we mean real-
izing it as a computer program; we do not mean
we have actually run the programs on a quantum
computer, although we have run parts of the
algorithms on quantum simulators.

Figure 8. A block structure example.

mycirc2 ::
mycirc2 a b ¢ = do

@ mycirc a b
with_controls c $ do
@ mycirc a b
mycirc b a

% mycirc a c

return (a,b,c)

Qubit -> Qubit -> Qubit -> Circ

(Qubit,

Qubit, Qubit)

Specification and verification. In Figure 9. A circuit operator example.

classical programming, there is a vari-
ety of techniques for ascertaining the

X X timestep :: Qubit -> Qubit -> Qubit -> Circ (Qubit, Qubit, Qubit)
correctness of programs, including timestep a b ¢ = do
compile-time type checking, runtime mycirc a b
type checking, formal verification, and QelE © SeemeseR el ()

. . . reverse_simple mycirc (a,b) poeoneoneones 9 pocsosssssso :
debugging. Among them, formal verifi- return (a,b, <) L N N
cation is arguably the most reliable but i : i el

. ey 1 1 1
also the most costly. The availability : : : —
of strong compile-time guarantees re- rg________: . il
quires very carefully designed program-

LV

ming languages. Debugging is cheap
and useful and therefore ubiquitous in
classical-program development.

In quantum computation, the cost
of debugging is likely to be quite high.
To begin with, observing a quantum
system can change its state. A debugger
for a quantum program would there-
fore necessarily give incomplete in-
formation about its state when run on
actual quantum hardware. The alterna-
tive is to use a quantum simulator for
debugging. But this is not practical due
to the exponential cost of simulating
quantum systems. Moreover, it can be
expected that the initial quantum com- . "

. R Binary decomposition
puters will be rare and expensive to run of the Toffoli gate
and therefore that the cost of runtime
errors in quantum code will initially be
much higher than in classical comput-
ing. This shifts the cost-benefit analy-

Figure 10. A circuit transformer example.

timestep2 :: Qubit -> Qubit -> Qubit -> Circ (Qubit, Qubit, Qubit)
timestep2 = decompose_generic Binary timestep

Figure 11. A functional-to-reversible translation example.

sis for quantum programming toward

strong compile-time correctness guar- build circuit inputs - still inputs

antees, as well as formal specification £ :: [Booll -> Bool T o

and verification. £ as = case as of o—o—b * garbage
[1 -> False 0|_$_$_

A quantum programming language (] -> h @
should have a sound, well-defined h:t -> h ‘bool _xor' f t
semantics permitting mathematical
specifications of program behavior
and program correctness proofs. It
is also beneficial for the language to

unpack template f :: [Qubit] -> Circ Qubit
output

Figure 12. The circuit from Figure 11 made reversible.

classical_to_reversible :: (Datable a, QCData b) => (a -> Circ b) -> (a,b) -> Circ (a,b)
classical_to_reversible (unpack template f)

inputs still inputs
Wire for storing Old value XOR
output with result

Computing f Copying result Uncomputing garbage

Figure 13. A procedural example.

import Quipper

\ (Qubit,Qubit) -> Circ (Qubit,Qubit)
w = named gate “W”
toffoli :: Qubit -> (Qubit,Qubit) -> Circ Qubit
toffoli 4 (x,y) =

gnot d ‘controlled' x .==. 1 .&&. y .==. 0
eiz_at :: Qubit -> Qubit -> Circ ()

eiz at d r =

named_gate_at “eiZ” d ‘controlled' r .==. 0

circ :: [(Qubit,Qubit)] -> Qubit -> Circ ()
circ ws r = do
label (unzip ws,r) ((“a”,”b”),”r")

with _ancilla $ \d -> do
mapM_ w ws

mapM_ (toffoli d) ws
eiz_at d r
mapM_ (toffoli d) (reverse ws)
mapM_ (reverse generic w) (reverse ws)
return ()
main = print generic EPS circ (replicate 3 (qubit,qubit)) qubit

Figure 14. The circuit generated by the code in Figure 13, with three qubit pairs.

have a strong static type system that
can guarantee the absence of most
runtime errors (such as violations of
the no-cloning property of quantum
information);® and

Resource sensitivity and resource es-
timation. At first, quantum computers
will probably not have many qubits.
The language should thus include
tools to estimate the resources re-
quired for running a particular piece of
code (such as number of qubits, num-
ber of elementary gates, or other rel-

b The absence of cloning is already guaranteed
by the physics, regardless of what the pro-
gramming language does. However, one could
similarly say the absence of an illegal memory
access is guaranteed by a classical processor’s
page-fault mechanism. It is nevertheless desir-
able to have a programming language that can
guarantee prior to running the program that the
compiled program will never attempt to access
an illegal memory location or, in the case of a
quantum programming language, will not at-
tempt to apply a controlled-not gate to qubits n
and m, where n=m.

0 Wil . . M|
P —
" Wl . . o]
T -

2 2

al2]

b[2]

FIE]

I

L

iy
eg

evant resources) prior to deployment.
One particular issue for language de-
signers is how to handle quantum er-
ror correction. As the field advances, a

Figure 16. The calcRweights function.

calcRweights y nx ny 1lx ly k theta phi =

decision must be made as to whether et (g 7)) = Clspiey ¥ &R &y i ,

. let xc = (xc’-1.0)*1x - ((fromIntegral nx)-1.0)*1x/2.0 in
error correction should be exposed to let yo = (ye/-1.0)%ly - ((fromIntegral ny)-1.0)*1ly/2.0 in
the programmer (potentially allowing let (xg,yg) = itoxy y nx ny in

if (xg == nx) then

for optimization by hand) or whether)
oy . . let 1 = (mkPolar ly (k*xc*(cos phi)))*(mkPolar 1.0 (k*yc*(sin phi)))*
it is more efficient to let the compiler ((sinc (k*ly* (sin phi)/2.0)) :+ 0.0) in

or some other tool apply error correc- let r = (cos(phi) :+ k¥lx)*((cos (theta - phi))/Ix :+ 0.0) in i * r
tion automatically. Due to the potential else if (xg==2*nx-1) then

for undesirable interactions between let i = (mkPolar ly (k*xc*cos(phi)))* (mkPolar 1.0 (k*yc*sin(phi)))*

. . ((sinc (k*ly*sin(phi)/2.0)) :+ 0.0) in

quantum error correction (which adds e 5 = (cerlione) o (= 1Rk ((Ees (Hrmem = oeh))/Abe e D) m o o
redundancy) and the optimization step else if ((yg==1) && (xg<nx)) then
of a Compiler (Wthh removes redun- let i = (mkPolar 1x (k*yc*sin(phi)))* (mkPolar 1.0 (k*xc*cos (phi)))*

. . ((sinc (k*1x* (cos phi)/2.0)) :+ 0.0) in
d.ancy), the d651gn and lmplemer%ta- let r = ((- sin phi) :+ k*ly)*((cos(theta - phi))/ly :+ 0.0) in i * r
tion of any quantum programming else if ((yg==ny) && (xg<nx)) then
language must be aware of the require- let i = (mkPolar 1x (k*yc*sin(phi)))* (mkPolar 1.0 (k*xc*cos(phi)))*
ments of quantum error correction. (estee) Tsibbliear) pue) /A 6)) 80 000 # o

let r = ((- sin phi) :+ (- k*ly))*((cos(theta - phi)/ly) :+ 0.0) in i * r
else 0.0 :+ 0.0

Prior Work on QPLs

Several quantum programming lan-
guages have been developed by re-
searchers around the world.> Some, in-
cluding van Tonder’s quantum lambda
calculus,”™ are primarily intended as
theoretical tools. The first quantum
programming language intended for
practical use was arguably Omer’s
QCL,* a C-style imperative language
supporting “structured quantum pro-
gramming.” QCL provides simple reg-
isters but no high-level quantum data
types. It could also benefit from greater
support for specification and verifica-

tion. Partly building on Omer’s work,
Bettelli et al.> proposed a language that
is an extension of C++. The guarded
command language qGCL of Sanders
and Zuliani*® hints at a language for
program specification.

The first quantum programming
language in the style of functional pro-
gramming was the quantum lambda
calculus of Selinger and Valiron,"
providing a unified framework for ma-
nipulating classical and quantum data.

The quantum lambda calculus has a
well-defined mathematical semantics
that guarantees the absence of runtime
errors in a well-typed program. The
language is easily extended with induc-
tive data types (such as lists) and recur-
sion. One shortcoming of the quantum
lambda calculus, however, is that it
does not separate circuit construction
from circuit evaluation. It thus lacks
the ability to manipulate quantum cir-
cuits as data, as well as the ability to au-

Figure 17. The calcRweights circuit.

|

8

i

tomatically construct unitary circuits
from a classical description. These
problems were partly addressed by the
Quantum 10 Monad of Green and Al-
tenkirch,” a functional language that is
a direct predecessor of Quipper.

The Quipper Language

Building on this previous work, we
introduce Quipper, a functional lan-
guage for quantum computation.
We chose to implement Quipper as a
deeply embedded domain-specific lan-
guage (EDSL) inside the host language
Haskell; see Gill® for an overview of ED-
SLs and their embedding in Haskell.
Quipper is intended to offer a unified
general-purpose programming frame-
work for quantum computation. Its
main features are:

Hardware independence. Quipper’s
paradigm is to view quantum compu-
tation at the level of logical circuits.
The addition of error-correcting codes
and mapping to hardware are left to
other components further down the
chain of compilation;

Extended circuit model. The initial-
ization and termination of qubits is
explicitly tracked for the purpose of an-
cilla management;

Hierarchical circuits. Quipper fea-
tures subroutines at the circuit level,
or “boxed subcircuits,” permitting a
compact representation of circuits in
memory;

Versatile circuit description language.
Quipper permits multiple program-
ming styles and can handle both pro-
cedural and functional paradigms of
computation. It also permits high-level
manipulations of circuits with pro-
grammable operators;

Two runtimes. A Quipper program
typically describes a family of circuits

that depends on some classical pa-
rameters. The first runtime is “circuit
generation,” and the second runtime
is “circuit execution.” In batch-mode
operation, as discussed earlier, these
two runtimes take place one after the
other, whereas in online operation,
they may be interleaved;

Parameter/input distinction. Quipper
has two notions of classical data: “pa-
rameters,” which must be known
at circuit-generation time, and “in-
puts,” which may be known only at
circuit-execution time. For example,
the type Bool is used for Boolean pa-
rameters, and the type Bit is used for
Boolean inputs;

Extensible data types. Quipper offers
an abstract, extensible view of quan-
tum data using Haskell’s powerful
type-class mechanism; and

Automatic generation of quantum
oracles. Many quantum algorithms re-
quire some nontrivial classical compu-
tation to be made reversible and then
lifted to quantum operation. Quipper
has facilities for turning an ordinary
Haskell program into a reversible cir-
cuit. This feature is implemented us-
ing a self-referential Haskell feature
known as “Template Haskell” that en-
ables a Haskell program to inspect and
manipulate its own source code.

Quipper Feature Highlights
We briefly highlight some of Quipper’s
features with code examples:
Procedural paradigm. In Quipper,
qubits are held in variables, and gates
are applied one at a time. The type of
a circuit-producing function is dis-
tinguished by the keyword Circ after
the arrow, as in Figure 7. The function
mycirc inputs a and b of type Qubit
and outputs a pair of qubits while gen-

A selection of quantum algorithms.

Algorithm Description

Binary Welded Tree*

Finds a labeled node in a graph by performing a quantum walk

Boolean Formula*

Evaluates an exponentially large Boolean formula using

quantum simulation; QCS version computes a winning
strategy for the game of Hex

Class Number®

Approximates the class group of a real quadratic number field

Ground State Estimation®®

Computes the ground state energy level of a molecule

Quantum Linear Systems®

Solves a very large but sparse system of linear equations

Unique Shortest Vector'®

Finds the shortest vector in an n-dimensional lattice

Triangle Finding™?

Finds the unique triangle inside a very large dense graph

erating a circuit;

Block structure. Functions generat-
ing circuits can be reused as subrou-
tines to generate larger circuits. Op-
erators (such as with _ control) can
take an entire block of code as an argu-
ment, as in Figure 8. Note “do” intro-
duces an indented block of code, and
“$” is an idiosyncrasy of Haskell syntax
that can be ignored by the reader here;

Circuit operators. Quipper can treat
circuits as data and provide high-level
operators for manipulating whole cir-
cuits. For example, the operator re-
verse _ simple reverses a circuit, as
in Figure 9;

Circuit transformers. Quipper pro-
vides user-programmable “circuit
transformers” as a mechanism for
modifying a circuit on a gate-by-gate
basis. For example, the timestep cir-
cuit in Figure 9 can be decomposed
into binary gates using the Binary
transformer, as in Figure 10; and

Automated functional-to-reversible
translation. Quipper provides a special
keyword build circuit for auto-
matically synthesizing a circuit from an
ordinary functional program, as in Figure
11. The resulting circuit can be made re-
versible with the operator classical
to reversible,asin Figure 12.

Experience with Quipper

We have used Quipper to implement
seven nontrivial quantum algorithms
from the literature, based on docu-
ments provided by the Quantum
Computer Science program of the
U.S. Intelligence Advanced Research
Projects Activity (IARPA)." All of these
algorithms can be run, in the sense
that we can print the corresponding
circuits for small parameters and
perform automated gate counts for
circuits of less tractable sizes. Each
of these algorithms (see the table
here) solves some problem believed
to be classically hard, and each algo-
rithm provides an asymptotic quan-
tum speedup, though not necessar-
ily an exponential one. These seven
algorithms cover a broad spectrum
of quantum techniques; for example,
the table includes several algorithms
that use the Quantum Fourier Trans-
form, phase estimation, Trotteriza-
tion, and amplitude amplification.
IARPA selected the algorithms for
being comparatively complex, which

is why some better-known but tech-
nically simpler algorithms (such as
Shor’s factorization algorithm) were
not included.

Using Quipper, we are able to per-
form semi- or completely automated
logical-gate-count estimations for each
of the algorithms, even for very large
problem sizes. For example, in the case
of the triangle-finding algorithm, the
command

./tf -f gatecount
-0 orthodox
-nl5-131-ré6

produces the gate count for the com-
plete algorithm on a graph of 2** verti-
ces using an oracle with 31-bit integers
and a Hamming graph of tuple size
25. This command runs to completion
in less than two minutes on a laptop
computer and produces a count of
30,189,977,982,990 gates and 4,676 qu-
bits for this instance of the algorithm.

Examples. As a further illustration,
here are two subroutines written in
Quipper:

Procedural example. First, we formal-
ize the circuit family in Figure 3. This
circuit implements the time step for
a quantum walk in the Binary Welded
Tree algorithm.* Itinputs a list of pairs of
qubits (a; by), and a single qubit . It first
generates an ancilla, or scratch-space,
qubitin state |0). It then applies the two-
qubit gate W to each of the pairs (a;, b)),
followed by a series of doubly controlled
NOT-gates acting on the ancilla. After a
middle gate e, it applies all the gates in
reverse order. The ancilla ends up in the
state |0) and is no longer needed. The
Quipper code is in Figure 13, yielding
the circuit in Figure 14. If one replaces
the “3” with a “30” in the main function,
one obtains a larger instance of this cir-
cuit family, as in Figure 15; and

A functional-to-reversible translation.
This example is from the Quantum
Linear Systems algorithm.” Among
other things, this algorithm contains
an oracle calculating a vector r of com-
plex numbers; Figure 16 shows the
core function of the oracle. Note it re-
lies heavily on algebraic and transcen-
dental operations on real and complex
numbers (such as sin, cos, sinc, and
mkPolar), as well as on subroutines
(such as edgetoxy and itoxy) not
shown in Figure 16. This function is

readily processed using Quipper’s au-
tomated circuit-generation facilities.
Algebraic and transcendental func-
tions are mapped automatically to
quantum versions provided by an exist-
ing Quipper library for fixed-point real
and complex arithmetic. The result is
the rather large circuit in Figure 17.

Conclusion
Practical quantum computation re-
quires a tool chain extending from ab-
stract algorithm descriptions down to
the level of physical particles. Quan-
tum programming languages are an
important aspect of this tool chain.
Ideally, such a language enables a
quantum algorithm to be expressed
at a high level of abstraction, similar
to what may be found in a research paper,
and translates it down to a logical circuit.
We view this logical circuit as an inter-
mediate representation that can then be
further processed by other tools, adding
quantum control and error correction,
and finally passed to a real-time sys-
tem controlling physical operations.
Quipper is an example of a lan-
guage suited to a quantum coproces-
sor model. We demonstrated Quip-
per’s feasibility by implementing
several large-scale algorithms. The
design of Quipper solved some major
programming-language challenges
associated with quantum computa-
tion, but there is still much to do, par-
ticularly in the design of type systems
for quantum computing. As an em-
bedded language, Quipper is confined
to using Haskell’s type system, pro-
viding many important safety guaran-
tees. However, due to Haskell’s lack of
support for linear types, some safety
properties (such as the absence of at-
tempts to clone quantum informa-
tion) are not adequately supported.
The design of ever better type systems
for quantum computing is the subject
of ongoing research.

References

1. Ambainis, A., Childs, AM., Reichardt, B.W., Spalek,
R.,and Zhang, S. Any AND-OR formula of size N can
be evaluated in time N¥2**® on a quantum computer.
SIAM Journal on Computing 39, 2 (2010), 2513-2530.

2. Bettelli, S, Calarco, T., and Serafini, L. Toward an
architecture for quantum programming. The European
Physical Journal D 25, 2 (2003), 181-200.

3. Burham, H., Durr, C., Heiligman, M., Hoyer, P., Magniez,
F., Santha, M., and de Wolf, R. Quantum algorithms
for element distinctness. In Proceedings of the
16* Annual IEEE Conference on Computational
Complexity (Chicago, June 18-21). IEEE Computer
Society Press, 2001, 131-137.

4. Childs, A.M,, Cleve, R, Deotto, E., Farhi, E., Gutmann,
S., and Spielman, D.A. Exponential algorithmic
speedup by a quantum walk. In Proceedings of the
35" Annual ACM Symposium on Theory of Computing
(San Diego, CA, June 9-11). ACM Press, New York,
2003, 59-68.

5. Gay, S.J. Quantum programming languages: Survey
and bibliography. Mathematical Structures in
Computer Science 16, 4 (2006), 581-600.

6. Gill, A. Domain-specific languages and code synthesis
using Haskell. Commun. ACM 57, 6 (June 2014), 42-49.

7. Green, A. and Altenkirch, T. The quantum IO monad.
In Semantic Techniques in Quantum Computation, S.
Gay and I. Mackie, Eds. Cambridge University Press,
Cambridge, U.K., 2008, 173-205.

8. Hallgren, S. Polynomial-time quantum algorithms
for Pell's equation and the principal ideal problem.
Journal of the ACM 54, 1 (Mar. 2007), 4:1-4:19.

9. Harrow, AW, Hassidim, A., and Lloyd, S. Quantum
algorithm for solving linear systems of equations.
Physical Review Letters 103, 15 (Oct. 2009), 150502-
1-150502-4.

10. IARPA Quantum Computer Science Program. Broad
Agency Announcement TARPA-BAA-10-02, Apr. 2010;
https://www.fbo.gov/notices/637e87ac1274d030ce2a
b69339ccf93c

11. Knill, E.H. Conventions for Quantum Pseudocode.
Technical Report LAUR-96-2724. Los Alamos National
Laboratory, Los Alamos, NM, 1996.

12. Magniez, F., Santha, M., and Szegedy, M. Quantum
algorithms for the triangle problem. STAM Journal on
Computing 37,2 (2007), 413-424.

13. Meter, R.V. and Horsman, C. A blueprint for building a
quantum computer. Commun. ACM 56, 10 (Oct. 2013),
84-93.

14. Omer, B. Quantum Programming in QCL. Master's
Thesis. Institute of Information Systems, Technical
University of Vienna, Vienna, Austria, 2000; tph.tuwien.
ac.at/~oemer/qcl.html

15. Regev, 0. Quantum computation and lattice problems.
SIAM Journal on Computing 33, 3 (2004), 738-760.

16. Sanders, J.W. and Zuliani, P. Quantum programming.
In Proceedings of the Fifth International Conference
on Mathematics of Program Construction, Vol. 1837
of Lecture Notes in Computer Science (Ponte de
Lima, Portugal, July 3-5). Springer-Verlag, Berlin
Heidelberg, 2000, 80-98.

17. Selinger, P. and Valiron, B. A lambda calculus
for quantum computation with classical control.
Mathematical Structures in Computer Science 16, 3
(2006), 527-552.

18. van Tonder, A. A lambda calculus for quantum
computation. STAM Journal of Computation 33, 5
(2004), 1109-1135.

19. Whitfield, J.D., Biamonte, J., and Aspuru-Guzik, A.
Simulation of electronic structure Hamiltonians using
quantum computers. Molecular Physics 109, 5 (Mar.
2011), 735-750.

Benoit Valiron (benoit.valiron@monoidal.net) is

an assistant professor in the engineering school
CentraleSupélec and a researcher in the Computer Science
Laboratory of the Université Paris Sud, Paris, France.

Neil J. Ross (neil.jr.ross@gmail.com) is a Ph.D. candidate
at Dalhousie University, Halifax, Nova Scotia, Canada.

Peter Selinger (selinger@mathstat.dal.ca) is a professor
of mathematics at Dalhousie University, Halifax, Nova
Scotia, Canada.

D. Scott Alexander (salexander@appcomsci.com) is a
chief scientist at Applied Communication Science, Basking
Ridge, NJ.

Jonathan M. Smith (jms@cis.upenn.edu) is the Olga and
Alberico Pompa Professor of Engineering and Applied
Science and a professor of computer and information
science at the University of Pennsylvania, Philadelphia, PA.

Copyright held by authors.
Publication rights licensed to ACM. $15.00

Watch the authors discuss
their work in this exclusive
Communications video.
http://cacm.acm.org/
videos/programming-
the-quantum-future

