
TECHNIQUES DEPARTMENT 
Dear Bob: 

This letter is being sent to you both as Techniques Editor of the Communications and as an interested 
party. I found the POL-UNCOL-ML report in the August issue very interesting since we have arrived 
at just about  the same conclusions. Furthermore I have developed an UNCOL, a version of which we 
will use when we put the R U N C I B L E  success(?r on the Univac. The enclosed paper describes the language 
in the jargon of the August report. 

The similarity of the language with Polish notation has led us to begin a rigorous characterization of 
it. I t  seems that one might fruitfully define transformations on strings in the language to optimize a 
space-time functional for a given machine (e.g., the "653 function" which will tolerate a few more in- 
structions here and there if the result is less execution time through greater use of the core storage). 

I submit the paper for publication and for your comments. 
Sincerely, 
Mel 

P R O P O S A L  F O R  A N  U N C O L  

MELVIN E. CONWAY, Case Institute of Technology 

This discussion contains a proposal for a universal computer-oriented hmguage (UNCOL) to be used 
as a common path between the problem-oriented language (POL) and the machine language (ML) in 
compatible automatic programming systems. (See Ref. 1.) 

The totality of desired characteristics of a useful UNCOL cannot be completely known because of the 
possible emergence Of a machine whose programming method is basically different from those currently 
used, but at the present time at least, a computer-oriented language is one which describes a computation 
in terms of a sequence of operations, each of which operates on information stored in machine registers 
or alters the sequence of operations. 

The language described herein has been motivated by practical considerationsl in the programming 
of R U N C I B L E  ~, an existing IT-to-650 compiler, for the Univac 1. The memory size of the Univac 1, 
on which the compilation will take place, demands that there be at least one intermediate language which 
can be stored on tape during the compilation process. Experimentation with several intermediate lan- 
guages has indicated that the one which provides the greatest opportunities for subsequent economization 
of machine code resembles the code of a single-address computer, and the simpler this computer (i.e., 
the fewer the registers and instructions available) the greater are the opportunities to translate this 
intermediate code into tight machine code. This happy fact implies that  universality of the intermediate 
language (in the sense that it is not biased toward any computer) goes hand-in-hand with efficiency of 
the resultant machine code. Therefore the proper design of an UNCOL will not only aid intercommunica- 
tion among machines but  will result in the production of better programs. 

The technique of programming in this UNCOL, which I shall call SML (simple machine language), 
is to reduce a computation to a sequence of minimal arithmetic or logical operations, to transfer the 
arguments of each operation to standard storage positions, and to express each operation as a subroutine 
linkage ("execute"). There are only two instructions in SML, a memory-to-memory transfer and an 
execute instruction. 

Programs refer to four types of memory: general (G-) storage, temporary (T-) storage, argument 
(A-) storage, and result (R-) storage. These are distinguished by the roles they play in the computation. 

Variables which appear in the POL and constants are held in G-storage. Hence the operation 
Y ~ - - ( B * C )  + D  finds B, C, and D in G-storage and stores the result Y there. 

Intermediate results in a given calculation which have not been given a name in the POL are stored 
in T-storage. For example, if the sequence of Y~----(B*C) + (D'E)  is 
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1. Execute B*C 
2. Store the result 
3. Execute D*E 
4. Execute the addition 
5. Store the result in Y, 

then the store operation of step 2 will be into T-storage. 
A-storage holds the operands (arguments) of all operations. Hence "execute B*C" assumes that  B 

and C have been put  into A-storage. 
The result of every manipulative operation (as distinguished from a comparison operation which has 

no "result") is found in R-storage. Although existing POLs do not demand it the possibility of multiple 
output  operations is included in the language. 

Each operation is preceded by the memory-to-memory transfers necessary to load A-storage and 
succeeded by the memory-to-memory transfers necessary to empty R-storage. The storage registers 
(except for G-storage) are denoted by the Roman letters T, A, or R subscripted by a non-negative integer. 
In SML a memory-to-memory transfer is represented by a pair of memory locations. For example, 
(To, A1) means "read out of To into Ai" or "To . . . . .  ~Ai" and is conventionally coded as "load To, store Ai". 

Addresses in G-storage are given any name desired except, of course, for names like To and A1. If 
appropriate, these names will be taken from the POI,-coding. In addition there is a class of G-addresses 
denoted by a star (*) whose name indicates the contents of the memory location. For example, ('1.0, A,) 
means "read a floating-point 1 into Ai". Starred G-addresses may appear as the left member only of a 
transfer pair. 

An operation is denoted by the letter "X" (execute) followed by parentheses enclosing the name of 
the operation: X((A0)*(A0----~R0, floating point). In order to reduce the number of possible operations 
there are conventions on the use of A- and R-storage. The n arguments of an n-ary operator will be 
placed into the set (A0, . . ,  A~,_I) and the correspondence is specified by the usual order in which the 
arguments of the operator are written. The results are similarly lined up in R-storage. For example 
the numerator of a divide goes into A0 and the denominator goes into A~. With these conventions the 
above example is equivalent to X(floating point *). 

Some readers may have been disturbed by the fact that  the allocation of G- vs. T-storage depends 
on the POL. The simplification rule stated below removes part  of the objectionableness of this practice, 
in that  superfluous temporary storage not mentioned in the POL will not appear in the UNCOL. The 
other half of the problem is more difficult and indeed arises whenever one tries to describe a given compu- 
tation equivalently in two different languages: since many POLs may specify too much temporary stor- 
age (e.g., any three-address system, or even a Fortran-type language with too-finely-divided statements) 
how can this inefficiency be kept from getting into the UNCOL? The answers to this question are to 
be found partially in the design of the POL and partly in the algorithms of the POL-to-UNCOL generator, 
which should perform the currently avoided task of scanning a program as a whole for redundancies. 

Certain seemingly obvious simplifications of SML must be avoided, whereas others are acceptable. 
The criterion for acceptability of a simplification rule rests on the way it will complicate the algorithms 
for conversion of SML into ML. For example, if Y ~ - - - ( B * C ) + D  is scanned from the right the corre- 
sponding SML program is 

(D, To) 
(C, A1) 
(B, A0) 
X(*) 
(R0, A0) 
(To, A1) 
X ( + )  
(R0,Y). 

One acceptable simplification rule eliminates all transfers of the form (G-address, Tk) by replacing the 
subsequent (Tk, A,,) by (G-address, A~). In our example the SML program resulting from such a sim- 
plification is 



(C, A,) 
{ B, Ao) 
X (*) 

(D, Ai) 
X(+') 
(R0, Y) 

The following example illustrates that using the 
would be an unaeceptabte simplification: 

> ......... ie, i + i <  shouH gen ,r  te 

The sequenee 

above rule for R-address (rather than G-address) 

(C, A,,) 
X (magnitude) 
(R0, Ti/) 
(B, At,) 
X (magnitude) 
(R0, A~,) 
(%, A~) 
X (+)  
(Ro, Y). 

(C, A~,) 
X (magnitude) 
(R0, A~) 
(B, Ao) 
X (magnitude) 
(RID, Ai,) 
X(+) 
(R0, Y) is ineorreet for two reasons: 

1. on a given objeet maehine A~ may be a register whieh is destroyed by the magnitude operation, and 
2. the algorithms for' translation from SML to ML are greatly simplified by the assumption that pre- 
ceding each n-ary operation there will be precisely n transfers of the form ( - ,  Ak); (k =:0 . . . . .  n - l ) .  
Sueh mistakes ean be avoided by adopting the rule that A- and R-storage are not usable aeross an opera- 
tion. 

So far' we have discussed only replacement statements (equations). SML must contain several other 
types of information. Somewhere (probably at the beginning to simplify the job of the SML-ML trans- 
lator) there should be a list of storage requirements for arrays. Certain points in the SML program 
should be tagged (just as statements have their numbers) and the tag should c a n t  information as to 
whether or :not it will be used as an entranee point into the instruction sequence. Einally, there are 
certain operations of the " jump" type: "jump to the point in the program whose tag is in At, (if A, = A,e)". 
The quantity in A0 may be the result of a ealeulation or it may be a name whieh was carried over from 
the POL. In the latter ease there may be good reason not to earry around the statement names in the 
ML program: the SML-ML translator will have to make sueh decisions. There are other operations 
all of whose arguments may not appear explicitly in the ML program; "get the doubly-subseripted 
variable whose name is in A0, whose matrix width is in At, and whose subscripts are in A~ and Aa, sudl 
that the subseripts of the upper-left-hand element are in A4 and A/ ' ;  "get the next item in the serial 
input file whose name is in Ao". The latter implies the existenee of some file designs at the beginning 
of the program. When a name is put into A-storage it eomes via a transfer from starred G-storage: 
(*input file 3, A,,). Thus the translator can go baek in the instruetion list and find out the name. 

The methods used to turn the POL into SML of eourse depend on the input, but this much ean be said: 
because of the regularity of SML the job will be simpler than that of turning our symbolie eoding for an 
existing maehine. 



More can be said about the SML-ML translator. The way we are programming R U N C I B L E  for 
the Univac, the translator will consist of two parts: 1) SML to inefficient ML; 2) inefficient ML to good 
ML. (ML here means symbolic ML, UNISAP".) The "inefficient ML" will work but  will be wasteful 
of space. The chief job of part 1 is to decide what operations can be done by  the hardware and do not 
require a reference to the library, and to translate, for each operation, A- and R-storage into appropriate 
machine registers. Par t  2 keeps a table of the contents of the machine equivalents of A-, R-, and T- 
storage and weeds out  about as much coding as a human programmer could, subject to the restriction 
that he may not permute operations. 

I have tried to describe in rough terms an UNCOL, whose suitability for describing arithmetic com- 
putation will be ascertained in our current flow-charting of a compiler which uses it. The suitability 
of SML for all computation is open to question, but  assuming some kind of communication (regarding 
what are legitimate operations) between the POL-SML phase and the SML-ML phase, the complete 
generality of SML is very plausible. 

Notes 
1. Share Ad-Hoc Committee on Universal Languages, The Problem of Programming Communication 
With Changing Machines, Communications of the ACM, Vol. 1, No. 8, August 1958. 
2. Computing Center Staff, RUNCIBLE 1, Computing Center No. 1008, Case Institute of Technology, 
August 1.958. 
3. Conway, M. E., UNISAP, Computing Center No. 1009, Case Institute of Technology, August 1958. 

O N  T H E  E Q U I V A L E N C E  A N D  T R A N S F O R M A T I O N  O F  P R O G R A M  S C H E M E S  

IU. I. IANOV 
Doklady, AN USSR, vol. 118, No. 1, 1957, pp. 89-42 

Translated by MORRIS D. FRIEDMAN, Lincoln Laboratory 

Editor's Note: This is a translation of the first of two related Russian articles. The second article 
will be published in a later issue of the COMMUNICATIONS.  

When programming for universal automatic computers, (logical) program schemes (PS) are used [1]. 
Inasmuch as a PS is not determined uniquely by an algorithm, questions of the equivalence and also of 
the identical transformation of the PS arise. In this note, the PS are considered as specific listings 
of the order of completion of the operators and of the logical conditions depending on the values of the 
logical (binary) variables.* Hence, the operators are considered as elementary objects to which a specific 
capacity to alter the values of the logical variables is attributed. 

D E F I N I T I O N  1. The symbols I _ ,  _ I  with the natural subscripts i, j will be called the left and 
i j 

right strokes, respectively. We will call the ordered set of the logic-algebra function a and the left 
stroke l__ the logical condition al___ • We will call the operators A~, A 2 . . .  and the logical conditions, 

i i 
elementary expressions (EE) . 

D E F I N I T I O N  2. The finite line composed of operator symbols As, A2, . . . , logical conditions 
~l . . . .  fll . . . . . . .  and right strokes __] . . . .  [, . . . such that one and only one right stroke _ I  with the 

i j i j i 
same subscript i is found in this line for each left stroke [ ...... with the subscript i which enters into 

i 
this line and, conversely, one and only one left stroke with the same subscript is found for each right 
stroke _.! , is called a program scheme. 

i 
We will consider that  each entry of the operator into the PS is independent. 

• Assuming the values 0 and 1,  where let 0 correspond to "false" and 1 to " t rue".  
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