A Problem in User-Interface Design

e data

llrl:l'.-\:ll:l.: *-L'%
| Red: 308 |
| Blug % |
| Greeny: (096 |

| Otherss 3%/
e s

— . -
’{D ﬂﬁn v :

pie chart has chan prarkarnemi spreadahor

Context
You are building an interactive application.
Problem

Programs that mix functionality with interface make it impossible to
change one without changing the other.

Forces
This problem is really many problems rolled into one:

= Interfaces change more frequently than data models.
= Users request customized features or new interfaces altogether.
= Different users may have radically different needs.

If the data model and the user interface are interdependent, all of
these problems become quite difficult to solve. A change to the inter-
face will affect the data model implementation. A change in the data
model will affect many or all of the interfaces.

A Problem in User-Interface Design

These are some of the forces at play:

= The same information is presented differently in different
windows.

= The displays and system behavior must reflect data manipulations
immediately.

= Changes to the user interface should be as simple as possible—
even at run-time.

= Supporting different “look and feel” standards should not affect
the core of the application (the data model).

= Porting the user interface to new platforms shouldn’t, either.
What we don’t want:

= To have to modify the application part of the program in order to
change the user interface.

= To allow the user interface to have direct, unecapsulated access to
the application data.

What we do want:

= To be able to change the application part of the program and
leave the user interface alone.

= To be able to change the user interface and leave the application
part of the program alone.

= To be able to have multiple interfaces on the same data—at the
same time—without the different interfaces needing to know
about each other.

A Common Solution to the Problem

Create a different kind of object for each role in the program:

= The model maintains the application’s data and encapsulates its
functionality. The model is independent of how the data is
displayed to the user and how the user provides input to the
system.

= The view displays data to the user. The view requests data from
the model. There can be any number of views open on the same
model at once.

= Each view has an associated controller that watches for input
from the user. A controller receives user input, determines what
the user is requesting, and then sends a request to the view.

If there are multiple views open on the same data model and the data
change in some way (say, through user input), then all of the views should
be updated immediately to reflect the change. In order for this to happen,
the model must notify all views whenever its data changes. The view
can then request any relevant data from the model and update its display.

The Change Mechanism

A view is created on a specific model.

/ \ I'm watching you.(

model [|™ t view

add

\

list of
dependents

N

Whenever the model changes one of its data values, it announces the
change to all of its dependents. If the view cares about the change, then it
asks for the data and and updates its display.

m\<8end me <x>. (

view
C
h
a
n
g | changed <x>.
Y
list of

dependents /
/
\—_/ g

