
 
 

 
 
 
Refactoring Software Using Design Patterns 

 

 

 

 

 

 

 
Masatomo Noborikawa 

 
Under the direction of Dr. Eugene Wallingford 

Research Project for Masters of Science in Computer Science 

University of Northern Iowa 

 
May 5, 2003 

 
 



 

Table of Contents 
 
 
 

1.   Introduction..............................................................................................................3 

2.   Overview of Tools ...................................................................................................5 

2.1  What are design patterns? ..................................................................................5 

2.1  What is Refactoring? ...........................................................................................7 

3.   Basic Facts ...............................................................................................................9 

4.   Initial Prototype .....................................................................................................11 

4.1  First Design Attempt........................................................................................11 

4.2  First Refactoring .............................................................................................16 

5.   Development Episode ............................................................................................25 

6.   Modified Prototype ................................................................................................27 

6.1  Modified Design Attempt .................................................................................27 

6.2 Systematic Refactoring ....................................................................................32 

6.2.1  Refactoring to clean up codes..............................................................................32 

6.2.2 Refactoring Creation of Quiz: refactoring to factory pattern ..........................................37 

6.2.3  Refactoring the Problem-Quiz-Portfolio hierarchy .....................................................42 

7.   Conclusion .............................................................................................................52 

References....................................................................................................................54 

 2



Chapter 1 

Introduction  
 

Designing a software system prior to implementation often results in designs 
that are incomplete or incorrect.  Creating a good design is difficult because designers 
do not always know everything they need to know about the solution before 
writing the program.  Often, the programmer must correct mistakes in the design as he 
comes to understand the problem and come up with better solution while writing the 
program. 

Even when the programmer comes to know that something is not right in the 
design, he might not often be able to come up with the correct solution right 
away.  The process of "refactoring" guides the programmer as he identifies 
weaknesses in the design and code and provides methods to improve them.  This 
research project investigated the use of design patterns and the application of various 
refactoring techniques as a means to trigger modifications to designs and programs 
that preserve the functionality of the system while improving the quality of the 
software.  This approach offers a powerful set of tools for programmers to use as they 
evolve their designs throughout the writing of a program. 

In this research project software called Basic Facts was developed from 
scratch. Varieties of refactoring techniques and design patterns were applied to 
enhance its functionality. The details of the sequences of these developments are 
illustrated throughout the paper which is sub-sectioned in the form of chapters. 

Chapter two provides an overview of what design patterns and refactoring are, 
and what are their advantages and disadvantages. They are essential tools for this 
development. Chapter three explains the fundamentals of Basic Facts and its very 
original software. Chapter four describes how the initial design was created and how 
design patterns were applied along with modification to the system. Refactoring in 
this chapter is used in a different context compared with the way of refactoring in 
chapter six: It is done in a more intuitive way. Chapter five talks about the different 
types of pattern usage and how they may affect the development of software. Chapter 
six shows step-by-step refactoring applied to the second design. Various refactoring 
techniques were implemented to enhance the usability of the design patterns that lead 
to the final design of the software. Chapter seven provides the conclusive thoughts of 
the research.  

 3



In this paper, italicized words are used to describe abstract classes, bold type 
represents normal classes, and words enclosed with <> signify interfaces. Methods (or 
message to which owning objects respond) are underlined. 

There is a note for code explanation to be mentioned. This paper uses codes 
extracted from source to explain refactoring in step-by-step basis. In code tables that 
the reader will see in chapter 6, ‘…’ refers to repetitive codes that are previously 
mentioned. In addition, codes in bold type highlight changes as compared with ones 
in the previous table. 

Italicized words followed by a number enclosed with parentheses (e.g. Extract 
Method (110)) mean that it is a name of refactoring techniques cataloged on the page 
of the given number in Fowler’s book (2000). 

 4



Chapter 2 

Overview of Tools 
 
 2.1  What are design patterns? 

 
Design patterns represent the best practices of experienced object-oriented 

software developers. Design patterns are recurring solutions to common software 
design problems. These solutions were discovered through trial and error by 
numerous software developers over a substantial period of time. Gamma, Erich, 
Helm, Johnson, and Vlissides (1995) catalog those best practices with 23 patterns. 
The authors describe each design pattern with a name and an intent, which defines 
what the pattern does and what design issues or problems it addresses.  Just as object-
oriented programming encourages code reuse, design patterns encourage design reuse. 
Design patterns help programmers capture the features of good programming solution 
and create more reusable and maintainable programs. 

 
The following lists are the advantages and disadvantages of design patterns. 
 
[Advantages] 

• Programmers do not need to reinvent solutions to known design problems.  

• Design patterns give novice developers access to the best practices proven by 
expert developers.  

• Design patterns allow developers to think about their designs at a higher level 
of abstraction. For example, instead of focusing on low-level details, such as 
how to use inheritance, a developer can approach complex systems through a 
collection of design patterns that already make the best use of inheritance. 

• Design patterns provide a common vocabulary for developers to discuss 
design. A design pattern vocabulary conveys a particular solution to a design 
problem more succinctly than explaining the solution with a lot of words. 

• Knowledge of design patterns often brings insight in designing flexible 
software. 

 5



[Disadvantages] 
• Design patterns are hard to understand. It takes a while for non-experienced 

developers to understand patterns and reach “Aha” moment. 

• Preoccupation with design patterns sometimes keeps developers from finding 
simpler solutions (Kerievsky, 2002). In some case, there is a simpler solution 
to a facing problem than one using a pattern. If a programmer believes a 
solution with patterns is an ultimate one, he or she may miss small, simple, 
and straightforward solution.  

 
Design patterns will benefit developing software and make it flexible, modular, 

and reusable. However, knowing design patterns does not always mean that they will 
be usable. Because of the nature of Object-Oriented development, the design tends to 
be changed and refined time to time. It is not rare that the designer finds it useful to 
apply some design patterns a while after the development starts. Yet compared with 
very early development stage, it is often harder to apply patterns in midst of the 
development. Design patterns do not fit right away. Program codes require some kind 
of cleaning up or transforming for the use of the patterns. Refactoring then comes into 
play. Refactoring cleans up codes and help a target design pattern fit in the program 
better. Refactoring is a powerful tool to increase the chances of using patterns and 
improving the quality of software. The following section will explain refactoring. 

 6



2.2  What is Refactoring? 
 

Refactoring is the art and science of improving existing code. Refactoring, 
according to Fowler (2000), is the activity of reorganizing the design or internal 
mechanism of software in order to make the software easier to understand and 
modify, without affecting its external behavior. Typically when application 
development begins, prototyping is used to see how things work. As program 
requirements grow, the same code is tailored, modified and extended to add a new 
functionality. With the growing need for change, the software turns out to be lump of 
spaghetti code that can become a nightmare to manage unless handled with great care. 
Refactoring helps programmers to maintain the functionality of the code developed 
during prototyping and improves its quality for the next iteration.  

 
During refactoring there are three disciplines that must be followed: 

 
1. Testing after each refactoring 

Testing is a precondition for refactoring. Since refactoring makes a change to 
the internal structures of the software, we need to have a way to check that the 
change does not alter its observable behavior. No mater how hard we try to 
avid introducing bugs, we are still human and we have always possibility to 
make mistakes during refactoring. Therefore, we need solid tests to detect 
such bugs. A set of solid tests are essential for refactoring. 

 
2. Self-check testing as much as possible 

Testing should be done by self-checking. Self-checking test means that it 
should say “Ok” if the expected output from a testing method is a string such 
as “AbCdd” instead of printing the output literary. If the automatic testing is 
not used, programmers end up spending time hand checking the output from 
the test against an expected output. It then slows down their development. A 
self-checking test is a powerful bug detector to save the time it takes to find 
bugs. 

   
3. Refactoring and adding functionality separately 

When refactoring, it is advisable not to add new functionality to a code. This 
sounds easy, but it can become difficult at times. While refactoring, the 
programmer will occasionally find a place where a new functionality is called 

 7



for. The addition of new functionality during refactoring may require several-
steps of backtracking because adding new functionality by itself entails a 
change in the behavior of the system and requires other sets of testing 
procedures. This is not at the best interest of the programmer who presumably 
tries to maintain the very behavior that might change as a result of the new 
functionality being inserted. The obvious consequence might waste many 
hours of developments.  
 

 
There are many benefits of refactoring as follows: 
 

• Refactoring improves the design of software. Refactoring often cleans up 
codes by deleting duplicates, divides a big chunk of codes into several 
methods, and makes the program more understandable.  

• Because refactoring makes a design cleaner, it helps the programmers 
understand codes better and see things that may have not been seen before.  

• Refactoring helps spot bugs since it makes the software more comprehensible.   

• Refactoring turns an adverse design into a good design, which in tern allow for 
rapid software development. 

 8



Chapter 3 

Basic Facts 

 
Basic Facts is a program that helps students learn fundamental math 

operations such as addition and subtraction. The software is intended to help teachers 
identify the type of mistakes students tend to make and combinations of numbers in 
an equation that slow down students’ calculations. All questions consist of two 
numbers and one operation. There are two types of users in this program. 

As a student user, the student first identifies himself by typing his name in a 
given textbox and kicks off the program. As the identification is done, the program 
makes his portfolio (a folder/directory) to store his work behind scenes. The user then 
selects a quiz to play from a menu. After his play, the result, such as how much time 
was taken to solve each question and which questions were missed, are stored in the 
user’s portfolio.  

A teacher user can select any of his student’s results and view it in a table 
format. Each result shows the number of seconds taken to solve each question, how 
many questions were missed, and timeouts if the student spent too much time 
attempting to answer a question (Figure 1). A decimal number in a grid represents 
seconds for the student to complete a particular question. For example, a 1.37 across 
from the 4 and under the 3 means that it took the student 1.37 seconds to complete the 
problem 4 + 3. By observing the outcome, the teacher may diagnose which problems 
the student needs more practice on. 
 

 
Figure 1 Student’s play result view 

 9



 
This program has a simple structure and easy-to-use interface. For student users, there 
are two operation menus to select from: Addition or Subtraction. Each menu has five 
subcategories that become more difficult as the level increases. In order to play, 
students select a sub category. They click the buttons on the screen or type the number 
keys on the keyboard to provide a solution to the question. After each question is 
answered, the program provides feedback and states whether the answer is right or 
wrong (Figure 2).  
 

 
Figure 2 Screen shot of Basic Facts 

 
Every time a student plays, his results are kept in files within the directories 

that are created when he build his portfolio. To switch to a teacher mode, the user 
selects “switch to teacher” from the file menu, or “teacher” when the program is run. 
The user must enter a password to gain access to the student’s portfolios. Selecting 
“Open File” from the file menu to view student’s work pops up a file dialog box. The 
teacher user searches for a desired file in the target student’s folder and clicks to open.    

This program was first written in C++ in a Mac OS environment. It has 
appealing features and many potential ways to extend its uses. The only stumbling 
problem existed was that its source code including its documentation did not exist 
limiting future enhancements to it. I then wrote an application in Java mainly because 
Java supports Object Oriented programming. My first mission for the development of 
this application was “to make a Basic Facts application that works as close to the 
original as possible.”    

 10



Chapter 4 

Initial Prototype 
 
4.1  First Design Attempt 
 

Basic Facts was my first attempt to write an object-oriented program without 
having an assigned specification. My lack of experience with OOP and Java 
programming made the assignment quite a struggle, yet one quote on a class note 
from my OOP class has always stayed in my mind: “Good design comes from 
experience. Experience comes from bad design.” Believing that quote, I assembled 
the first design of the Basic Facts program.  

 
Based on my observation of Basic Facts the following points are requirements the 

software needs to meet:  
a) Basic Facts has two types of users, student and teacher. 
b) The first time the application runs, the user can choose to be either a student or 

a teacher. 
c) A user can change to either player by selecting “switch to teacher” or “new 

user.” 
d) A password is required to become a teacher user. 
e) Both users have the same menus on the menu bar.  
f) When a user is a student, “open file” on the file menu is inactivated. 
g) When a user is a teacher, all math problems are inactivated.    
h) A student can play two kinds of math problems with many subcategories that 

have the same organization and display. 
i) Feedback is given after each answer is submitted.   
j) Only a teacher can display a student’s play result. 
k) A play result shows its file name, time taken to solve each question, average 

time to solve a question, number of timeouts, and number of correct and 
incorrect answers.     

 
Using these specifications, I designed and implemented Basic Facts in Java. This 

program ended up consisting of many classes and some interfaces. The class diagrams 
of BasicFacts are divided into three figures, Figure 3, 4 and 5. Note that all class 

 11



diagrams provided in this paper have been illustrated using Unified Modeling 
Language (UML). Some trivial classes used in this program have been omitted for 
convenience.  

 

 
Figure 3 The class diagram around User class 

 12



User class is an abstract class that holds behaviors common to both Student and 
Teacher (Fig. 3).  Both Student and Teacher are extended from User.  Each of them 
specialize User class. Because Teacher must know the password to gain access to 
student’s play results, the isValidPassword() method is implemented in Teacher 

(specification d). The setMenuBar() method is an abstract template method that defers 
the creation of menu objects to its subclasses. It was made to meet specifications e), 

f), and g). This class hierarchy models the structure described in specification a).   
All Menus: FileMenu, AdditionMenu, and SubtractionMenu are set to a 

java.awt.Frame instance variable in User when User responds to a setMenuBar() 
message. FileMenu class has menu items that are responsible for changing one user 
mode to another (the specification c)), showing/hiding a user’s identity (role or user 
name), opening a play result if the user is in teacher mode, and termination of the 
program. The AdditionMenu and SubtractionMenu classes have choices that allow the 
user to select different math programs (the specification h)). In the response to 
changeMode() method in these menu classes, some menu items are inactivated 
according to a boolean parameter to meet the specification f) and g).  

PasswordDialog is a java.awt.Dialog that asks for a password to create a 
Teacher object. UserNameDialog is also an extended java.awt.Dialog to get a unique 
user name to create Student object.  
 Basic Facts in Figure 4 is a class to kick off this program. It creates a 
SelectUser object that allows the user to select either the student or teacher modes, 
and create a corresponding User object to play. The Sheet class is derived from a 
java.awt.Container class that provides a graphical user interface (GUI) allowing the 
user to interact with the program or view its contents. In response to a 
makeGUIContainer message, Sheet creates GUI objects and returns itself with the 
objects to its client. The AnswerSheet class specializes its super class Sheet for a 
student user to complete math problems. 
 All protected methods (starting with “#”) in the AnswerSheet class are used 
for creating and aligning the GUI objects displayed in Figure 2. Three private 
methods (starting with “-“) are needed to control interactions between a <Question> 
object and the GUI components needed when a user causes an action event to occur 
while solving a math problem. The ResultSheet class contains StatisticTable, 
ResultChart, FileNameBox to display a student’s play result as shown in Figure 1. 
Both the AnswerSheet and ResultSheet classes use a <QuestionFactory> object to 
create <Question> objects.  

 13



 

 

Figure 4. The class diagram around Sheet class 

 14



  The structure of class relations between <Question> and <QuestionFactory> 
shows the factory pattern that a super class defers on instantiation to its subclasses 
(Figure 5). For instance, ResultFactory stores answers back to questions that have 
been solved and IntegerQuestionFactory produces not-yet-solved questions. The 
QuestionWriter class is used to create a file in the player’s directory and store the 
information of play results there. QuestionReader reads the information from the file 
and instantiates ResultFactory for the preparation of displaying the play result. 
   

 
 

 

Figure 5.  Question – Factory hierarchy with IO classes 

 15



4.2  First Refactoring 
 
 In my initial design of Basic Facts the program met the specifications outlined 
in the previous section and was able to perform its basic working functions. However 
when looking at the degree of reusability, this design needed better organization. I 
began to look for parts of the code that could be modified for improvement. 
 While looking through the class diagrams in Figure 3, it is noticed that 
AdditionMenu and SubtractionMenu consist of the same methods that behave in the 
same way to produce slightly different menus. How can their overlap be extracted and 
put into one class to gain generalization? The createMenu() and actionPerformed() 
methods in the class AdditionMenu are the key to that question.  

As it is obvious, each menu’s title is hard-coded in the instantiation of 
MenuItems in createMenu() and in the creation of AnswerSheets class  in 
actionPerformed() methods. Repeated code has a potential to cause problems and 
should be eliminated if possible. In the actionPerformed() method an AnswerSheet 
object is created by passing as a parameter an instance of QuestionFactory with 
slightly different arguments. Those arguments should be merged into one because 
they belong to the property of quizzes. 
 
 
 

 
Figure 6. Creation of menu items in AdditionMenu class 

 16



 
Figure 7. actionPerformed method in AdditionMenu class 

 
The instantiation of AnswerSheet objects with different quizzes is managed by 

a set of if-then-else statements producing a quiz type such as “A1.” Each of the if 
statement blocks look alike and are nearly identical. It is not good programming 
practice to have so many such if-then-else blocks in this way. Additionally, if the 
number of types of quizzes gets large, it will be difficult to maintain. Therefore we 
should look for a way to create specific quizzes using QuestionFactory without using 
if-then-else statements. How can all these problems be resolved? Through the use of 
Singleton pattern and strategy pattern these faults can be corrected. Singleton pattern 
ensures that a class has only one instance, and provides a global point of access to it. 
Strategy pattern encapsulates alternative strategies, or approaches, in separate classes 
so that each implements a common operation.  

Here the QuizProperty class has been made to encapsulate a quiz’s property. It 
holds the quiz type, title, and operator as well as the range of literals to compute. 
LookUp class is extended from the java.util.Hashtable class and uses the singleton 
pattern to ensure that one and only one instance of a class exists and provides a global 
point of access to that class. QuizProperty is used in several places in this program to 
reference a property of quiz, but only one instance is necessary. LookUp class 
registers instances of all QuizPropertys and becomes a global point to it.  

 17



 

 
Figure 8.  LookUp class modeling singleton pattern 

 18



         The new createMenu() is shown in Figure 9. The getInstance() method creates 
an instance of LookUp if it has not been instantiated and returns it. The 
getQuizTypes() method returns an Enumeration object that holds various quiz types in 
String. Going through the quiz types, SelectionStrategy is used to capture a specific 
quiz type for the creation of its menu. This version of createMenu() is more 
generalized to produce many different kinds of menus.  
 

 
Figure 9.   New createMenu method in QuizMenu class 

 
Next let’s compare the previous actionPerformed() method with a revised 

version shown in Figure 10.This new version is more concise and easier to 
understand. The instantiation of <Sheet> objects is done without the use of if 
statements. The creation of specific quizzes is delegated to MathQuizFactory that uses 
a quiz property extracted from a LookUp object.   
 

 
Figure 10.  New actionPerformed method in QuizMenu class 

 
 
 

 

 19



 
Figure 11. QuizMenu class diagram 

 
 
 

 
Figure 12. setMenuBar() method in User class before and after the modification 

 
 

These changes enable the AdditionMenu and SubtractionMenu classes to 
become a newly created class: QuizMenu (figure 11). Each instantiation of the 
QuizMenu class is specialized using a strategy pattern. Strategy patterns decouple 
algorithms from clients. As a result, Strategy patterns allow the algorithms to vary 
independently and make them interchangeable. An instance of <SelectionStrategy> 
passed in the QuizMenu constructor determines a quiz type. Each SelectionStrategy 
object is made by means of an anonymous class. Figure 12 shows the comparison of 
two setMenuBar() methods in the former and latter User class used to create and set 
menu objects. At a glace, the latter looks complex. Yet in terms of flexibility 
QuizMenu class is more reusable than AdditionMenu and SubtractionMenu for the 
creation of different kinds of quiz menus. Consider if a new type of quiz menu needed 
to be added. The QuizMenu class can provide a new menu simply by calling its 
corresponding <SelectionStrategy> instance. The former way requires another new 
menu class that may only be slightly different from the others. 

 20



 
FileMenu class code has problems similar to the old AdditiomMenu class. 

Here a command pattern is used to solve the problem. A Command pattern is an 
object behavioral pattern that allows complete decoupling between the user interface 
objects and the actions they initiate. Each subclass of <Command> in Figure 13 are 
extended from java.awt.MenuItem and implement the <Command> interface.  
 
 
 
 

 
Figure 13. Class diagram of Command with its subclasses 

 
Figure 14 shows settings for various menu items. As it can be seen, some 

menu commands have two parameters passed in their constructors. A “this” object is 
used in StudentMenuCommand, TeacherMenuCommand, to set an action listener. A 
currentUser is an instance of the User class whose services are needed for a specific 
task to be performed. The execute() method in each of the Command subclasses that 
is the interface of Command implemented to execute its own code when an action 
occurs on that object. The execute()  interface is used to reduce the burden of the 
actionPerformed method. Since all instances of menu items added in the createMenu() 
method of FileMenu are a Command, an actionPerformed method can get an instance 
of command through the e.getSource() method call and perform cmd.execute() 
without knowing whose excute() method is being performed. 

 
 

 21



 

Figure 14. createMenu() and actionPerformed() methods modified using Command pattern. 
 
 

The initial design utilized only one factory pattern. A Factory method defines 
the interface for creating an object while retaining control of which class to 
instantiate. After this first refactoring, the program now consists of a combination of 
two factory patterns used in this modified program. A new Quiz class that is 
introduced in Figure 15 is a composition of Question objects. QuizFactory class is a 
factory of Quiz objects, which makes use of QuestionFactory to construct a Quiz 
object. The interaction of objects to produce a Quiz object using two factory method 
patterns is shown in Figure 16. 

In response to a makeQuiz(2) method call from a client of the QuizFactory 
object, a QuestionFactory object instantiates a QuestionFactory object and sends a 
message makeQuestion() to it. Each time the QuestionFactory object responds to a 
message, it creates a Question and returns the question to the sender. When creation 
of all questions is complete, QuestionFactory creates a Quiz object with the questions 
and returns that object to the client.  

 22



 
 

 
Figure 15.  Class diagram of Quiz and Question with its factory 

 23



 
 
 

 
Figure 16. Interaction diagram demonstrating the creations of Quiz object 

 
 

Although many parts of the program have been redesigned and refactored 
using several design patterns, there are still more pieces to refine. Several classes 
dealing with the graphical user interface (GUI) need modification. The Sheet class 
hierarchy could be completely redesigned. For instance, in the AnswerSheet class, 
there are too many private and protected methods to create GUI components. This 
suggests that this entity needs to be decomposed and split into several classes.  

In the following 2 chapters, I will discuss the development stages from making 
a many designs as I could to the new addition to Basic Facts, which caused me to 
redesign the software. I will also show how the refactoring techniques will 
systematically improve the quality of software design and make the design clear 
allowing a design pattern to be applied more effectively.  
 

 24



Chapter 5 

Development Episode 
 

As Kerievsky (2002) mentioned in his draft, Refactoring To Patterns, there are 
two ways of using patterns: using them for up-front design and refactoring to patterns. 
Using the patterns for up-front design seems right choice, but all the hassle on the use 
of patterns may get wasted. 

Why may patterns for up-front design tend not to work as intended? Designing 
object-oriented (OO) software is hard and it is harder to make it reusable. Crafting 
good OO software often requires several times of modifications for defining right-
weighted classes and establishing key associations among them (Gamma, et al 1995). 
In another word, it takes a while for OO software design to mature. If the up-front 
design goes wrong, therefore, the design patterns used at early time has a risk of 
wasting development time. 

When I first learned design patterns, they sounded a lot promising. So I tried 
hard to make use of as many patterns as possible in the first design. It took a long time 
to find a place where a certain pattern fit in my code. However, many of them were 
not worth usable as much time as I spent to apply them. Often time it made my design 
complicated: I ended up doing over-engineering. 

I got confused with design patterns when this happened. I have learned design 
patterns because I wanted to be a good software engineer. While being frustrated with 
the result, I encountered Martin Fowler’s book, Refactoring: Improving the Design of 
Existing Code. As mentioned in chapter two, it documents a rich catalog of methods 
of refactoring, each of which explains a common use for an improvement and the 
steps for making that improvement. This book changed the way I do programming 
drastically. 

With following the catalog of different kinds of refactoring (merciless 
refactoring) and test-first programming, I refactored my code and then have started 
seeing things that I could not have found out before. As I refactored the code along 
with tests, my program got cleaner. The refined program started to show me another 
part of the code to refactor. And then the more refined program introduced the use of 
patterns naturally. The process of refactoring basically indicated to me the necessity 
of patterns in the right place at the right time: I started refactoring to patterns. “Instead 

 25



of thinking about a design that would work for every nuance of a system, test-first 
programming enabled me to make a primitive piece of behavior work correctly before 
evolving it to the next necessary level of sophistication.” Kerievsky (2002)  

In an attempt to show “feeling” the power of merciless, disciplined, or 
systematic refactoring, the next chapter deals in detail a step-by-step refactoring with 
several case study examples that I encountered during the second design of Basic 
Facts.  

 26



Chapter 6 

Modified Prototype 
 
6.1  Modified Design Attempt 

 
The first design of Basic Facts met the requirement found in the analysis 

phase. However, as mentioned before, it was not flexible enough to evolve and grow. 
In addition there were several problems with the first design.  

One problem of the first design is that it was difficult to add a new type of a 
quiz: specifically multiplication and division. The algorithm of quiz creation in the 
first version could not accommodate a set of quizzes with many restrictions. For 
instance, x/y where x and y are interchangeable and the answer of x/y must be 0,2,4,8. 
That turned out to be more complicated than predicted.  

In addition, many objects such as User and AnswerSheet had more 
responsibilities than they should have. They were implemented as a mixture of user 
interface code and the domain logics in one class. This complicated the entire system 
and made it harder to add new functionality. Therefore, the user interface code needed 
to be separated from the domain logic. These conflicts led me to redesign the system.  

I chose to recreate the project from scratch, using the first design rather then 
refactoring. I did this because I came up with the first design without knowing much 
about object-oriented programming. My old mind set, which is procedural 
programming, got in the way. The class diagram for the second Basic Facts design is 
shown in Figure 17. 

In the second design quizzes are created using a formatted file that contains 
quiz properties rather than using an algorithm to create a specific quiz. The format is 
shown in Table 1. In this manner it is much easier to create specific quizzes with more 
control. Although there is overhead requiring that all questions be created in the list, 
this approach simplifies the design drastically.  

This change made the construction of Quiz systematic: as long as the format is 
followed, QuizMenuProperty can remain unchanged. QuizPropertyReader reads in 
data stored in the formatted quiz file, and BasicProblemParser parses the extracted 
data and stores it in QuizProperty objects. With this quiz construction process, any 
type of quiz may be constructed so long as it follows the defined format. 

 27



 

 

Figure 17. Second design of basic facts 

 28



  
 

 
Each line contains specific information described below: 

 
1. An type of quiz (e.g. A1, M2 or S1) 
2. The level of the quiz. Let’s say, if it belongs to easy math, put 1, if it is hard math, put 2. 
3. The operator of the quiz. (e.g. +,-,*, and /) 
4. The name of the operator. (e.g. addition, subtraction, and so on) 
5. The title of the quiz. 
6. The description of the quiz. This is optional. If you do not want to enter a description, leave this 

line blank. 
7. A list of all of the problems where each them is separated by a semi-colon (;). Problems can be 

listed all on one line or multiple lines. Do not leave blanks between lines. Each line from line 7 
to below must have at least one problem. 

 
Example: 
 
==== A page starts here ===== 
A1 
1 
+ 
Addition 
Count on and zero generalization 
 
1+1;2+3; 
3+1;3+2;4+3; 
5+5; 
5+2;6+2; 
======= End of page ======  

 
Table 1. The format of a quiz property 

 
 

The names of many classes have remained the same as in version 1 of Basic 
facts, but their behaviors have been changed. Problem class is simplified version of 
the MathQuestion class implemented in the first design. An instance of Problem 
class holds the question of a problem and its answer as String. It also records the 
answer and the response time given by the student. My first goal of the second design 
was to simplify the design, so the interface <Question> is removed and the Problem 
class is introduced as a concrete class.  

Quiz class is a collection of Problem objects stored in an instance of Vector. 
It implements <Enumeration> to iterate through the collection. The problems method 
returns the Vector. The reset method is defined to reset an exhausted iteration back to 
the beginning, so a student can iterate through the collection again. QuizResult is a 
subclass of Quiz class. The takeStatistics method returns an instance of Statistics 
class that defines the computation of average correction rate and response time for all 
the Problem objects held in an instance of Quiz. 

 29



 
Portfolio class works as a folder that holds the history of quizzes solved by a 

user. It defines several methods for adding, removing, and displaying a QuizResult 
instance. In Portfolio class, the clear method delegates to a Hashtable instance 
variable which maps a quiz type to a Vector instance.This vector holds a collection of 
the portfolios QuizResult instances. The count method returns the number of specific 
types of QuizResult instances dependent upon the quiz type passed in as a parameter. 
The method countAll returns the total number of quizzes in a Portfolio object. The 
getResults method returns as a list a given type of QuizResults as List type. The 
removeAllResults method remove all instances a given type of QuizResult class, 
whereas removeResult method removes a given individual instance.  

This Portfolio class is defined to keep a record of quizzes taken, provide a 
method to gather a specific set of Problems solved and compute the corresponding 
statistics. Yet in order to solve the computation, Portfolio’s client needs access to 
several other classes for example, Statistics and QuizResult. In a subsequent section, 
a composite pattern will be introduced and applied to Problem-Quiz-Portfolio 
hierarchy to simplify the computation. 

User class defines a user that has a Portfolio instance and stores his name and 
password. The first design of the User class was implemented as a subclass of 
java.awt.Window. This version of User class is much simpler and represents only the 
logic of a user.  

UserIO is a utility class that reads an instance of User objects and writes to a 
file using the java.io.ObjectInputStream/ObjectOutputStream class. The first 
design of Basic Facts stored a student’s work in the file. This change was 
implemented to extend usability so a user object could be passed through the network 
to store in and retrieve from a server if needed in future use. 

BasicFacts class subclasses javax.swing.JFrame class and conducts all 
creations of objects such as JMenuBar delegating to FileMenuFactory and 
QuizMenuFactory instances.  

The BasicFactsMediator class coordinates the interactions of various visual 
components (buttons and text fields) and data models (Quiz, Problem, User). Even 
though, there are only a few visual objects, the interactions between the visual 
controls tends to be rather complex. This is because each visual object needs to know 
about other visual objects in order to update the related visual contents and data 
models dynamically. A Mediator pattern simplifies such a system by the creation of a 
mediator which is the only class that is aware of the other classes in the system.  

 30



This keeps the GUI components from referring to each other explicitly and isolates 
interactions into the only one instance of BasicFactsMediator.  

Each control component the Mediator communicates with is called a 
colleague. AnswerSheet is a set of colleagues (gui components and quizzes) that 
provides access to each colleague. AnswerSheet class is, in a sense, a Facade pattern. 
Its intent is to simplify the complexity of the sub system by providing a simplified 
interface to other subsystems. AnswerSheet eases the communication of the visual 
components by providing a number of simple methods.This helps simplify the 
implementation of BasicFactsMediator.   

The QuizPropertyLookup class holds instances of the QuizProperty class. 
Whenever the instance is created, the getInstance method returns only one instance of 
QuizPropertyLookup which keeps the global point of access to the object. This 
QuizPropertyLookup has changed very little since the last version of Basic facts.  
 

 31



6.2 Systematic Refactoring 
 

After completion of the second design, several refactoring techniques 
documented in Fowler’s book (2000) were applied to restructure the code. These 
refactoring techniques are well disciplined and easy to follow but indispensable in 
restructuring existing code. Unlike the refactoring in the first design, the refactoring 
applied to the second design of Basic Facts was performed in a strict manner. The 
following three sub sections will show how the process of refactorings enhanced the 
quality of the software. The first two sub sections will show changes to the codes step 
by step. The last will show the evolution of design through class diagram. 
 
public class BasicFacts extends JFrame { 
   public static Dimension defaultFullScreenSize = Toolkit.getDefaultToolkit().getScreenSize(); 
   public final static int width=defaultFullScreenSize.width*3/5; 
   public final static int height=defaultFullScreenSize.height*3/5; 
   public static Dimension defaultScreenSize = new Dimension(width,height); 
   public static Point centerPoint = new Point(defaultFullScreenSize.width/2-width/2, 
                                                                        defaultFullScreenSize.height/2-height/2); 
 
    
   public BasicFacts(){ 
     User currentUser                   = readUser(); 
     AnswerSheet ansSheet         = new AnswerSheet(defaultScreenSize); 
     BasicFactsMediator mediator = new BasicFactsMediator(this); 
     mediator.registerAnswerSheet(ansSheet); 
     mediator.registerUser(currentUser); 
     QuizMenuFactory qmFactory = new QuizMenuFactory(mediator); 
     FileMenuFactory fmFactory    = new FileMenuFactory(currentUser,this); 
     Enumeration menus = qmFactory.makeMenu(); 
     JMenuBar mb = new JMenuBar(); 
     mb.add(fmFactory.makeMenu()); 
     while(menus.hasMoreElements()){ 
         JMenu m = (JMenu) menus.nextElement(); 
         mb.add(m); 
     } 
      
     setJMenuBar(mb);        
     setLocation(centerPoint); 
     setSize(defaultScreenSize); 
     repaint(); 
     setVisible(true); 
   } 
        … 
} 

Table 2. BasicFacts class before Refactoring 
 
 
6.2.1 Refactoring to clean up codes 

Basic facts class shown in Table 2 contained too many public static fields such 
as defaultFullScreenSize. Most of them seemed to be used locally. To find out who had 

 32



access to the public static fields, their access modifiers were changed to private and 
then all collaborating programs are compiled starting from the root class, 
BasicFactsApp.java as shown in Table 3.  
 
$ javac BasicFactsApp.java 
.\BasicFactsMediator.java:117: defaultScreenSize has private access in BasicFact 
s 
      _board.setSize(BasicFacts.defaultScreenSize); 
                               ^ 
1 error 

Table 3. Step to find who has access to the public static fields in BasicFacts class 
 

The result indicated that the line 117 in BasicFactsMediator class attempted to 
access the private field defaultScreenSize as public (Table 3). As suspected, only one 
public static field, defaultScreenSize was accessed as intended, but the others were 
unnecessarily publicized. With this in my mind, the modifiers of the fields in basic 
facts class were changed back to public. Next I applied the replace temp with query 
(120) refactoring technique to the defaultScreenSize variable. In Replace temp with 
query (120), temp refers to a temporary local variable, which is assigned a simple 
expression. Sometimes this temp gets in the way of other refactoring.  

The problem with temps is that they are temporary and local. They can be seen 
only in the context of the method in which they are used; temps tend to encourage 
longer methods. Temps also opt to keep programmers from seeing duplicate codes. 
By replacing the temp with a query method, any method in the class can get to the 
information. This results in cleaner code for the class. Even with this issue, Replace 
Temp with Query (120) often is a vital step before using Extract Method (110) 
refactoring. Extract Method (110) is another refactoring technique that takes a clump 
of code and turns it into its own method. The use of local variables can make it 
difficult to extract the code, so it is better to replace as many local variables as 
possible with queries. 

After the changes were made (Table 4) I compiled and tested the code. I then 
replaced all the instance of defaultScreenSize variable in the BasicFacts class and the 
BasicFactsMediator class with getFrameSize() method. After compiling and testing I 
could now apply replace temp with query(120) to the centerPoint variable and refactor 
again. Eventually I was able to eliminate all public static fields as shown below in 
Table 5: 
 

 33



public class BasicFacts … 
   public static Dimension defaultFullScreenSize = Toolkit.getDefaultToolkit().getScreenSize(); 
   public final static int width=defaultFullScreenSize.width*3/5; 
   public final static int height=defaultFullScreenSize.height*3/5; 
   public static Dimension defaultScreenSize = getFrameSize(); 
   public static Point centerPoint = new Point(defaultFullScreenSize.width/2-width/2, 
                                                                        defaultFullScreenSize.height/2-height/2); 
    
   public BasicFacts(){ 
      … 
   } 
    
   public static Dimension getFrameSize(){ 
     Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize(); 
     screenSize.setSize(screenSize.width*3/5,screenSize.height*3/5); 
     return screenSize; 
   } 
      … 
 

Table 4. BasicFacts after replace temp with query performed on defaultScreenSize field 
 
Public class BasicFacts … 
   public BasicFacts(){ 
     User currentUser                        = readUser(); 
     AnswerSheet ansSheet            = new AnswerSheet(getFrameSize()); 
     BasicFactsMediator mediator    = new BasicFactsMediator(this); 
     mediator.registerAnswerSheet(ansSheet); 
     mediator.registerUser(currentUser); 
     QuizMenuFactory qmFactory = new QuizMenuFactory(mediator); 
     FileMenuFactory fmFactory = new FileMenuFactory(currentUser,this); 
     Enumeration menus = qmFactory.makeMenu(); 
     JMenuBar mb = new JMenuBar(); 
     mb.add(fmFactory.makeMenu()); 
     while(menus.hasMoreElements()){ 
         JMenu m = (JMenu) menus.nextElement(); 
         mb.add(m); 
     } 
      
     setJMenuBar(mb);        
     setLocation(getCenterPoint()); 
     setSize(getFrameSize()); 
     repaint(); 
     setVisible(true); 
   } 
 
   protected Point getCenterPoint(){ 
      Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize(); 
      return new Point((screenSize.width-getFrameSize().width)/2, 
                       (screenSize.height-getFrameSize().height)/2);   
   }       
   public static Dimension getFrameSize(){ 
      … 
   } 

… 
 

Table 5. BasicFacts after eliminating all public static fields 

 

 34



The end result is that each method reveals its intent without referring to actual 
code in it. Now the code was ready for Extract Method (110) refactoring. But, before 
taking that step, there were still three local variables in the constructor that needed to 
be dealt with. I turned the local variables: currentUser, ansSheet and mediator into 
fields as described on Table 6: 

 
public class BasicFacts … 
   private User currentUser; 
   private AnswerSheet ansSheet; 
   private BasicFactsMediator mediator;   
   public BasicFacts(){ 
     currentUser = readUser(); 
     ansSheet    = new AnswerSheet(getFrameSize()); 
     mediator    = new BasicFactsMediator(this); 
     mediator.registerAnswerSheet(ansSheet); 
     mediator.registerUser(currentUser); 
     QuizMenuFactory qmFactory = new QuizMenuFactory(mediator); 
     FileMenuFactory fmFactory = new FileMenuFactory(currentUser,this); 
     Enumeration menus = qmFactory.makeMenu(); 
      
     JMenuBar mb = new JMenuBar(); 
     mb.add(fmFactory.makeMenu()); 
     while(menus.hasMoreElements()){ 
         JMenu m = (JMenu) menus.nextElement(); 
         mb.add(m); 
     } 
      
     setJMenuBar(mb);        
     setLocation(getCenterPoint()); 
     setSize(getFrameSize()); 
     repaint(); 
     setVisible(true); 
   } 
… 

Table 6. BasicFacts after changing three local variables into fields 
 
 

Then after applying Extract Method (110), a sizeable chunk of the code turned 
into a method whose name clearly indicated its function: setupMenuBar(). There are 
several reasons to use extract method refactoring to refine your code: 

1) It generates well-named methods and well-named methods increase the 
chances of method reuseablity. 

2) It created finely grained methods. Thus making the code more programmer-
friendly. 

3) It allows the higher-level methods to read more like a series of comments.  
4) Overriding is easier when the methods are finely grained. 
This is achieved by first applying the Extract method (110) refactoring technique 
to the code of JMenuBar Construction as shown Table 7: 

 35



 
public class BasicFacts … 
 
   public BasicFacts(){ 
     currentUser = readUser(); 
     ansSheet    = new AnswerSheet(getFrameSize()); 
     mediator    = new BasicFactsMediator(this); 
     mediator.registerAnswerSheet(ansSheet); 
     mediator.registerUser(currentUser); 
     setupJMenuBar();    
     setLocation(getCenterPoint()); 
     setSize(getFrameSize()); 
     repaint(); 
     setVisible(true); 
   } 
 
   protected void setupJMenuBar(){ 
     QuizMenuFactory qmFactory = new QuizMenuFactory(mediator); 
     FileMenuFactory fmFactory = new FileMenuFactory(currentUser,this); 
     Enumeration menus = qmFactory.makeMenu(); 
      
     JMenuBar mb = new JMenuBar(); 
     mb.add(fmFactory.makeMenu()); 
     while(menus.hasMoreElements()){ 
         JMenu m = (JMenu) menus.nextElement(); 
         mb.add(m); 
     } 
      
     setJMenuBar(mb);              
   } 
… 

Table 7. BasicFacts after Extract Method applied 
 
 
Next in Table 8, Extract method (110) is applied to the method that set up the 
mediator code. 
  
public class BasicFacts … 
 
   public BasicFacts(){ 
     currentUser = readUser(); 
     ansSheet    = new AnswerSheet(getFrameSize()); 
     mediator    = new BasicFactsMediator(this); 
     setupMediator(); 
     setupJMenuBar();    
     setLocation(getCenterPoint()); 
     setSize(getFrameSize()); 
     repaint(); 
     setVisible(true); 
   } 
 
   protected void setupMediator(){ 
     mediator.registerAnswerSheet(ansSheet); 
     mediator.registerUser(currentUser); 
   }      
… 

Table 8. BasicFacts after another Extract Method applied 

 36



The resulting code is more descriptive and easier to understand. If at a later 
time there is a need to add a new functionality or modify the code, it will be much 
easier to pin point where a new feature should be added or how to modify the existing 
code to accommodate revision. For example, if there is a need for the creation of 
menus to be decoupled from BasicFacts class, then the setupJMenubar() method is the 
place to change.  

 
 

6.2.2 Refactoring Creation of Quiz: refactoring to factory pattern 
 

At this point, the QuizProperty class handles multiple responsibilities (Fig 18 
top). Along with maintaining the property of a quiz, it also has an extra feature that 
creates an instance of Quiz class: This means QuizProperty has taken over a factory 
job. When the class was first defined, it was thought that grouping related data and 
operations together would work well. Several weeks later I returned to this code, and 
realized that the class name did not represent its entire responsibility.  This problem 
could be solved by splitting this class into two pieces. By using the factory method 
pattern and then applying the Extract Class (149) refactoring technique, makeQuiz() 
method for the creation of Quiz instance is going to be taken out of QuizProperty 
and moved to QuizFactory class where it should belong. Table 9 shows 
QuizProperty class before any refactoring was started. 

 
 

 37



 

 
 
 
 
 

 

Figure 18.  The comparison of before and after refactoring to QuizProperty class. 

 38



  
public class QuizProperty{  
   private String _type; 
   private int    _level; 
   private String _operator; 
   private String _nameOfOperator; 
   private String _title; 
   private String _description; 
   private List   _problem; 
    
   public QuizProperty(String type, 
                       int level, 
                       String operator, 
                       String nameOfOperator, 
                       String title, 
                       String description,  
                       List   problem){ 
         _type     = type; 
         _level    = level; 
         _operator = operator; 
         _nameOfOperator = nameOfOperator; 
         _title    = title; 
         _description = description; 
         _problem  = problem; 
   } 
 
   public String getType(){return _type;} 
   public int    getLevel(){return _level;} 
   public String getTitle(){return _title;} 
   public String getOperator(){return _operator;} 
   public String getDescription(){return _description;} 
   public List   getAllProblems(){return _problem;} 
   public String getOperatorName(){return _nameOfOperator;} 
    
    
   public Quiz makeQuiz(int count) throws IllegalArgumentException{ 
      if (count > _problem.size()) 
         throw new IllegalArgumentException("The number of problems in quiz must be less than " 
                                                                       +_problem.size()); 
      Random rnd = new Random(); 
      Vector quizChosen = new Vector(); 
      Hashtable quizLooked = new Hashtable(); 
      BasicProblemParser parser = new BasicProblemParser(); 
      try{ 
         while (quizChosen.size() < count){ 
            int i = rnd.nextInt(_problem.size()); 
            String prob = (String)_problem.get(i); 
            if (!quizLooked.containsKey(prob)){ 
               quizLooked.put(prob,prob); 
               parser.parse(prob); 
               quizChosen.add( new Problem( prob,parser.calculate())); 
            } 
         } 
      }catch(IllegalArgumentException iae){ 
         throw new IllegalArgumentException("The quiz type "+_type+" has an illegal format. & "+iae);    
      } 
      return new Quiz(this.getType(), quizChosen); 
   } 
} 

Table 9. QuizProperty class before refactoring 
 

 39



As the first step of refactoring to factory pattern, there is a need to introduce a 
new class QuizFactory to express the split-off responsibilities. I then implemented 
QuizFactory as a stub class shown in Table 10 and then compiled. Note that there is 
a QuizProerty parameter added to makeQuiz() definition in QuizFactory class. The 
reason is that when all the creation of Quiz are moved from QuizProperty to 
QuizFactory, QuizFactory needs to know the type of quizzes it is constructing.  

 
 
public class QuizFactory{ 
 
   public Quiz makeQuiz(QuizProperty property, int count) throws IllegalArgumentException{ 
      return null; 
   } 
 
} 

Table 10.  Initial QuizFactory class 
 
 

Now using Self Encapsulate Field (171) refactoring, all of the problem field 
variables used in the makeQuiz() method of QuizProperty class were replaced with 
their equivalent getter method, getAllproblems() as shown in Table 11. 

 
 
…   
public Quiz makeQuiz(int count) throws IllegalArgumentException{ 
      if (count > this.getAllProblems().size()) 
         throw new IllegalArgumentException("The number of problems in quiz must be less than 
"+this.getAllProblems().size()); 
      Random rnd = new Random(); 
      Vector quizChosen = new Vector(); 
      Hashtable quizLooked = new Hashtable(); 
      BasicProblemParser parser = new BasicProblemParser(); 
      try{ 
         while (quizChosen.size() < count){ 
            int i = rnd.nextInt(this.getAllProblems().size()); 
            String prob = (String)this.getAllProblems().get(i); 
            if (!quizLooked.containsKey(prob)){ 
               quizLooked.put(prob,prob); 
               parser.parse(prob); 
               quizChosen.add( new Problem( prob,parser.calculate())); 
            } 
         } 
      }catch(IllegalArgumentException iae){ 
         throw new IllegalArgumentException("The quiz type "+this.getType “'s problem is in an illegal 
format. & "+iae);    
      } 
      return new Quiz(this.getType(), quizChosen); 
   } 

Table 11.  makeQuiz method in QuizProperty class after self encapsulate field refactoring 
 

 40



 
I added a ‘this’ reference to each of the getter method calls to make it easier to 

change later when Move Method (142) would be applied in the QuizMenu class. 
Finally, the code is moved in the makeQuiz() method in the QuizFactory class and the 
required parameter list is updated for makeQuiz. 

 
 
public class QuizFactory{ 
 
   public Quiz makeQuiz(QuizProperty property, int count) throws IllegalArgumentException{ 
      if (count > property.getAllProblems().size()) 
         throw new IllegalArgumentException("The number of problems in quiz must be less 
than "+property.getAllProblems().size()); 
      Random rnd = new Random(); 
      Vector quizChosen = new Vector(); 
      Hashtable quizLooked = new Hashtable(); 
      BasicProblemParser parser = new BasicProblemParser(); 
      try{ 
         while (quizChosen.size() < count){ 
            int i = rnd.nextInt(property.getAllProblems().size()); 
            String prob = (String)property.getAllProblems().get(i); 
            if (!quizLooked.containsKey(prob)){ 
               quizLooked.put(prob,prob); 
               parser.parse(prob); 
               quizChosen.add( new Problem( prob,parser.calculate())); 
            } 
         } 
      }catch(IllegalArgumentException iae){ 
         throw new IllegalArgumentException("The quiz type "+property.getType "'s problem is 
in an illegal format. & "+iae);    
      } 
      return new Quiz(property.getType(), quizChosen); 
   } 
 
} 

Table 12.  QuizFactory class after Move Method applied 
 
 

Next, construction of a Quiz in QuizProperty is updated to be delegated to an 
instance of QuizFactory as shown in Table 13: 
 
public class QuizProperty … 
   public Quiz makeQuiz(int count) throws IllegalArgumentException{ 
      return new QuizFactory().makeQuiz(this,count); 
   } 
… 

Table 13.  QuizProperty delegates the construction of Quiz to QuizFactory   
 
 

 41



Again, I compiled and tested the QuizProperty class.  Now, the makeQuiz 
method of QuizFactory class is ready to be used, instead of the makeQuiz method of 
QuizProperty class. This means that we need to change all the corresponding 
references in the code. For example, change a passing parameter in PrepareQuiz() 
method call in BasicFactsMediator class as illustrated in table 14. 

 
 
BasicFactsMediator class … 
… 
   protected void performMenuAction(JMenuItem item){ 
      String quizType = item.getActionCommand(); 
      QuizPropertyLookup lookup= QuizPropertyLookup.getInstance();       
      QuizProperty qp=(QuizProperty) lookup.get(quizType); 
      PrepareQuiz(qp, new QuizFactory().makeQuiz(qp,5)); 
      _board.getContentPane().removeAll(); 
      _board.getContentPane().add(_sheet); 
      _board.setSize(BasicFacts.getFrameSize()); 
      _board.setVisible(true);       
       
   } 
… 

Table 14. Change made to BasicFactsMediator class 
 

After the changes were made, the code was compiled and tested. Next, the 
makeQuiz() method in the QuizProperty class was removed. See the class diagram on 
the bottom in figure 18.  
 
 
6.2.3 Refactoring the Problem-Quiz-Portfolio hierarchy: refactoring 

triggers the use of composite pattern 
 

In the current design, QuizResult is not doing much work: there is a slight 
difference between QuizResult class and Quiz class. To compute a quiz result, 
(compute average response time or average number of correct response) QuizResult 
holds an instance of statistics class who actually performs the work. The statistics 
class’s responsibilities can be integrated into Quiz object. We can accommodate this 
integration by using another refactoring technique known as Inline class (154). Inline 
Class (154) is used to fold the QuizResult class into Quiz. Inline Cass (154) works 
the opposite of Extract Class (149). When a certain class does not have a reason for 
its existence, it needs to be folded into another class that can accommodate that 
responsibility. Figure 19 illustrates the association between the Portfolio, Statistics, 
QuizResult, Quiz, and Problem classes. 

 42



 

 
 

Figure 19.  Class diagram for Portfolio, S QuizResult, Quiz, and Problem classes. tatistics, 

 

 43



 
To prepare Quiz class to take on the responsibilities of QuizResult, 

getAverageCorrection() and getAverageResponseTime()  methods are defined in the 
QuizResult class by using Move Method(142)  refactoring as shown in Figure 20. 
Now QuizResult delegates to an instance of Statistics class for the computation of 
those values. Next I made sure that all calling objects sent a message to the Statistics 
object instead of calling the takeStatistics() method in QuizResult and receiving an 
instance of Statistics for the average response time and correction for a target Quiz 
object. Changing the access modifier of the takeStatistics() method to private ensures 
other objects are not using the method. Now the QuizResult class hides Statistics 
objects from Portfolio and other classes that may need the statistic information. Figure 
20 shows the result of the refactoring to this point. 

By applying Move Field (146) refactoring, the instance of Statistics is 
transferred from the QuizResult class to the Quiz class. Then move the 
takeStatistics() method to Quiz by again using Move Method(142), and make 
takeStatistics() public so that the QuizResult class can delegate the work of statistics 
to Quiz. After the changes are made the code is compiled and tested. Finally I moved 
the remaining two methods getAverageCorrection() and getAverageResponseTime() 
out of QuizResult to Quiz and changed all the parameters and variables that were 
specified from QuizResult type to Quiz. The code was compiled and tested. Then I 
could safely remove QuizResult. The class diagram in figure 21 reveals the new class 
relations with QuizResult removed. 
 

 44



 

 
m for Portfolio-Quiz-Statistics-QuizResult relatioFigure 20.  The class diagra nship after Move Method  

 45



 

 

Figure 21.  Class diagram after QuizResult class removed

 46



 
The end result clearly shows that the three classes Portfolio, Quiz and 

Problem reside in the same hierarchy: Portfolio has instances of quizzes which in 
turn hold Problem objects. This relationship naturally triggers the use of composite 
patterns. Composite pattern arranges objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat individual objects and compositions of 
objects uniformly. Actual tests or exams are considered to represent a composite 
relationship. One quiz may contain one or more quizzes. This is the perfect place to 
apply a composite pattern. 
  The first quiz composite structure was implemented as shown in figure 22. 
QuizComponent defines all methods needed for QuizLeaf and QuizComposite that 
in turn subclass the super class and specialize necessary behaviors.  
 
 

 

Figure 22. Quiz Composite class diagram 
 
 

In order to accommodate the quiz composite into the system, Adaptor pattern 
is applied. The intent of Adaptor pattern is to provide the interface a client expects, 
using the services of a class with a different interface (Gamma et al. 1995). Using 
Adaptor pattern, I made Problem a subclass of QuizLeaf as shown figure 23.  

 47



  

 
Figure 23.  After adaptor pattern applied to make Problem a subclass of QuizLeaf  

 

 
I replaced the getProblemDescription() method with getDescription. In order 

to control who calls getProblemDescription, I made it private and compiled as shown 
in Table 15 (of course, I deleted all class files before hand). 

 
 
> rm *.class 
> javac BasicFactsApp.java 
.\BasicFactsMediator.java:86: getProblemDescription() has private access in Problem 
            _sheet.setProblem(_currentProblem.getProblemDescription()); 
                                             ^ 
1 error 
> rm *.class 
> javac BasicFactsApp.java 
> 

Table 15. Compilation to check who accesses getProblemDescription()  in Problem class  
 
 

Only one getProblemDescription() method call had taken place. This method 
call was then replaced with getProblem(). I removed the definition of the 
getProblemDescription() method from the Problem class. Then I compiled and tested. 
Now all Problem types can be replaced with QuizLeaf if needed. There is no reason 
to change, so I decided to leave it as it is.  

In the same manner, I applied Adaptor pattern to Quiz class. The result is 
shown in Figure 24. 

 48



 

 
Figure 24. Quiz class with the composite after adapted 

 
 

Continuing on in the same manner, Portfolio is subclassed to QuizComposite 
and replaced the old Portfolio class. The end result is shown in Figure 25. 
 

 
Figure 25. Portfolio class is adapted to QuizComposite

 49



 

 
Figure 26. Class diagram for the second design of basic facts after all the refactoring 

 50



The new design, according to Fig 26, is very flexible and balanced. Since the 
hierarchy of quiz classes supports framework, with most of the classes remaining 
untouched, it is a simple matter to add a new quiz type. The new quiz type would not 
be required to be math related application since that behavior has been abstracted out 
of the quiz class. As long as the new application’s quiz follows the format described 
before, most of the classes will remain untouched and be easily reused, except for 
QuizFactory, BasicFactsMediator and AnswerSheet that are specific to each 
application. Compared to the first design of Basic Facts, this latest version is greatly 
reusable and easily accommodates new requirements. 
 

 51



Conclusion 

 
Through this research project, I learned design patterns and refactorings along 

with the development of Basic Facts. I applied several patterns and systematic 
refactoring techniques, which lead to several design attempts. I observed their benefits 
and drawbacks through out the evolution of the software. I discovered that applying 
design patterns blindly to the codes makes the design complicated. I came to the 
conclusion that it is better to focus on simple and concise design with well-disciplined 
refactoring rather than unnecessarily sophisticated design with design patterns. I also 
found that design patterns work greatly if they are applied after refactoring. The other 
discoveries and difficulties in my research are noted as follows. 
 
 
[From my experience] 
 

One of the biggest mistakes I made in designing Basic Facts was in struggling 
to accommodate a design pattern that did not fit the situation. I discovered that unless 
a design pattern absolutely makes tomorrow’s job easier, one should not bother 
struggling to apply patterns to one’s system just for the sake of flexibility. Instead, 
one should try to make a design simple. As the programming goes, the developer may 
refactor when his code starts smelling. Unnecessarily anticipating what may happen in 
the future will cause a lot of problems. My experience in this regard taught me that if 
a design pattern comes naturally, use it, otherwise let it go. I also learned not to 
obsessively think, “I have to use a design pattern to make my design more reusable.” 
Refactoring is always right there for you. 

I have found it is much easier to apply design patterns to a program after 
refactoring the code. The refactoring process helped me to see things that were not 
visible prior to refactoring. Refactoring often triggers modification to the system 
through the use of design patterns. Instead of thinking, “What pattern may be used 
here?” it is better to wait for an inspiration to occur during the refactoring process. In 
this way a suitable pattern appears more naturally and fits better with the code.  

New functionality should not be added during refactoring. Sometimes, even 
though we know this principal, we are tempted to add new functionality to the code 
during refactoring. Adding new functionality to code while refactoring is dangerous in 
that if errors occur it can take a long time and much effort to return to the position 

 52



where initial refactoring began. Though it can be hard to resist the temptation, rather 
than modifying the code, write down any ideas for new functions. In this way you do 
not have to lose your idea but also will not break the refactoring principle and 
complicate the refactoring process. 
  I realized that when using search and replace in my refactoring, I need do it 
with a great care. It is better to do such edits one by one instead of all at once. There 
always is a possibility that non-intended words can be replaced with a keyword, 
which is a possibility one with a different letter case (upper or lower case) or one that 
appears within a method or variable name. Replacing a wrong key word may not only 
slow down the refactoring process but also produce unnecessary bugs.  

I used the common sense principle that if I see duplicate code occur three or 
more times within a program, it is time to refactor the code. Sometimes a programmer 
may favor development speed over conciseness of code. Even though he knows that 
duplicate code is a bad practice, he may tend to cut and copy some code when under 
the stress of a dead line. If duplicate sets occur several times throughout the program, 
refactoring becomes frustrating. Most importantly, duplication complicates code and 
makes it harder to maintain.  

The refactoring techniques, Extract method and replace temp with query are 
simple to use but are the most effective tools in the refactoring process. One powerful 
effect of replace temp with query is that its use reduces temporary variables within the 
code and improves the readability of each method.   
 It is difficult to always come up with short and descriptive names for methods 
that explain what they are doing. Whenever I encountered that problem, I first named 
the function as best I could, then wait for an inspiration derived from refactoring. 
With the occurrence of changes to methods and with the growth of my understanding 
of the problem, naming methods becomes much simpler and obvious.  

And last but not least, thinking too far ahead may not work well. Throughout 
the development of this project, I found it more productive to solve a problem which I 
currently face unless a solution to the problem is visible that might occur in the near 
future. Otherwise, it is easy to loose focus and introduce unnecessary interfaces or 
classes to the software.   
 
 

 53



 54

 
 

References 
 
 
Fowler, Martin Refactoring: Improving The Design of Existing Code  Reading, Mass.: 
Addison-Wesley, 2000. 
 
Cooper, James W. Java Design Patterns: A Tutorial Reading, Mass.: Addison-Wesley, 
2000. 
 
Gamma, Erich, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of 
Reusable Object-Oriented Software. Reading, Mass.: Addison-Wesley, 1995. 
 
Kerievsky, Joshua.(2003) DRAFT of Refactoring To Patterns. [On-line resource]. 
Retrieved May 5, 2003, from the World Wide Web: < 
http://industriallogic.com/papers/rtp017.pdf > 
 
Metsker, Steven J. Design Patterns Java Workbook Reading, Mass.: Addison-Wesley, 
2002. 
 
 


	Masatomo Noborikawa
	May 5, 2003
	Table of Contents
	Introduction
	Overview of Tools
	2.1 What are design patterns?
	2.2 What is Refactoring?

	Basic Facts
	Initial Prototype
	4.1 First Design Attempt
	4.2 First Refactoring

	Development Episode
	Modified Prototype
	6.1 Modified Design Attempt
	6.2Systematic Refactoring
	Refactoring to clean up codes
	Refactoring Creation of Quiz: refactoring to factory pattern
	Refactoring the Problem-Quiz-Portfolio hierarchy: refactoring triggers the use of composite pattern


	Conclusion
	References

