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Bayesian Learning Email Cleansing. 

 In its original meaning, “spam” was associated with a canned meat from 

Hormel.  In recent years its meaning has changed.  Now, an obscure word has become 

synonymous with unsolicited, unwanted email.  It is possible that an unsolicited email is 

welcome by the recipient. In that case, it is still spam, but spam that hit its mark and was 

desired.  

 Spam causes problems for many people, and it costs a lot of money.  

Interestingly enough, it costs money for almost everyone except the person generating 

spam.  If you wanted to send a thousand full-color glossy fliers via postal service, it 

would cost you for the paper, printing, and postage.  To send a thousand spam email 

messages filled with whatever message you desire doesn't cost anything except for a few 

minutes of your time.  In fact, you could send out a million copies of your spam message 

for the same cost as a thousand.  So, if it is free to send spam, who does it cost and how?  

Spam costs you and me, regular users of email, money.  It costs bandwidth between 

computers and networks.  It costs CPU time to route, process, and pass it along.  It also 

costs disk space. A typical spam message may be 100 kilobytes and may contain a picture 

or two.  I personally get over two hundred spam email messages every day. 

 

Why we receive spam 

 You may wonder, why do I get spam?  How does the spammer get my email 

address?  Well, there are many ways in which a spammer can get “a hold of you”.  

 One way is by scanning the World Wide Web for occurrences of strings that 

look like email addresses.  This probably isn’t very efficient, but if you can collect a 
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million email addresses this way, you can easily spam them all, simply because it is free.  

There are many email harvester programs that will search the web for email addresses., 

which makes the inefficiency unimportant to spammers. Another way to get addresses is 

by reading posts to Usenet. It is a certainty that if you post on Usenet with your real email 

address it will be harvested by spammers.   

 Then there are programs that are frequently called “spyware”. These programs 

install themselves on your local computer, usually without your knowledge, and relay 

information about you back to a central database.  Spyware programs are not limited to 

email addresses. They spy on all your activities, and generally have access to everything 

on your computer.   

 Some shareware download sites require you to enter a valid email, and then 

they use that email to send you the correct link to download the program you wanted.  

The primary reason to do this is to verify that you gave them a real email address, which 

in turn becomes a valuable commodity for them to sell.  A validated list of real email 

addresses sells for much more than a list of unverified ones.  A similar trick, commonly 

used to verify an email address, is a link that is opened automatically in the preview panel 

which in turn will notify the spammer that this is in fact a good email address.   

 You can rest assured that almost any time your email address goes out across 

your internet connection, someone somewhere is going to catch it and try to profit from it 

by selling it to spammers or spamming you themselves. 

 In the following paper I discuss classification of spam, most spam can be easily 

detected and organized into one or two groups.  I talk about common methods for 

decreasing the number of spam email messages as well as a brief survey of other spam 
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filtering techniques.  I then advocate and explain a Bayesian technique for detecting 

spam.  Finally, I discuss variations on the original Bayesian technique.  

 

Classifying Spam 

 Spam classification helps us understand the problem of how to eliminate it.  If 

we divide spam into meaningful groups, we can talk about automated approaches for 

sorting out each type.  There are as many ways to divide spam as there are spammers, but 

most spam can be classified.  One simple classification is pornographic spam or non-

pornographic spam.  Since the Internet has become widely available, the porn industry 

has taken hold and embraced the technology.  On Google as of 4/6/2003, a search on the 

word "porn" returns over 67 million results.  With this much competition on the net, 

spammers try countless ways to get their message out, to try to get you to come to their 

site.  Once they have you there, with endless promises of free products they will attempt 

to get you to enter your credit card number “for verification purposes only”.  

 Out of the two hundred spam email messages I get every day, 50% are for a 

pornographic service of some sort.  Traditionally, these spam email messages will contain 

a selection of colorful words about some particular fetish or sexual adventure.  These 

emails usually contain embedded pictures, normally of an X-rated nature. They also 

contain short flash animation movies and may contain embedded sound.  If you have 

your email client set to preview your messages (a common feature, in modern email 

clients), as soon as you open such an email, it will display the text, words, photos, 

animations and sounds. This can cause problems in a work environment and may turn out 

to be quite embarrassing.  As it turns out, these pornographic types of spam are easy to 
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filter with mail-server based tools. I will go into much more in-depth discussion about 

those tools later on.   

 So, pornographic spam accounts for a substantial percentage of the spam in a 

person's inbox.  What about the rest, you ask? Well, the other spam I receive is sales not 

related to pornography.  The items sold vary from home mortgages to miracle vitamins to 

insurance.   These sales pitches all contain similar vocabulary and tone, and these 

qualities can be readily detected by filtering techniques. 

 Another possible classification of spam that is sometimes used consists of 

checking the email headers for correctness.   If you research the “From” fields of spam 

you will find that in almost every case this field is invalid.  This is a useful classification 

for a couple of reasons.  Firstly, there is legislation currently pending that makes it illegal 

to send spam without proper return routing information.  The other reason this can be 

useful it is easy to throw out email messages that don’t have proper return routing info as 

spam, because legitimate email never comes this way. 

 

Decreasing the number of spam email messages 

 There are many automated methods for determining and blocking spam. One of 

these is the use of white and black lists.  This method is probably the simplest to 

implement, and it’s fairly effective. First, you create a list of people allowed to send you 

email. Anything from them should be delivered to your inbox.  Another list of people, 

who are known to send spam, is kept.  You blacklist those, sending their emails to the 

trashcan or to a spam folder.  This list is often ineffectual because spammers almost 

always use an invalid email address and never send two spam email messages from the 
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same address.  Lastly, you put all of the mail, not covered by the white or black list into a 

holding folder, where you can make a determination on which list this email belongs to 

and update the lists accordingly.  

  After a short time most anyone who sends you legitimate email will be in your 

white list.  Your spam list will be huge, but mostly unused.  Your holding folder is where 

most all your spam will go. The problem is that some good email will also be sent here. 

These emails are known as “false positives.”  False positives in spam detection and 

filtering cause you to lose information that you might have been expecting. From this 

point on I talk about ways to improve our filters, to decrease the number of spam email 

messages without increasing the number of false positives.  

 One method of decreasing the number of spam email messages you see is to 

analyze more parts of the email than just the “To” and “From” header fields.  You can 

make white lists based on “To”, “CC”, “BCC”, or subject fields. Another method is to 

block entire domains from known spammers. This has an undesired side effect of 

blocking possibly legitimate email from that domain.   

 We can generalize this technique to scan not only the headers but also the body 

of an email. You find words that frequently appear in spam and rarely in legitimate email.  

Then create a black list of these words. For example, you might block every email that 

contains the word “mortgage” because you never want to receive information about home 

mortgages.   A worthwhile refinement to this method would be to look for two-word 

phrases, thus making your filtering rules more efficient and less prone to false positives.   
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Implementing a Bayesian Filter 

 After reading Paul Graham’s “A Plan for Spam” (August 2002), 1I thought his 

approach would work.   Also I could think of some improvements to his version that may 

well increase the effectiveness of the tool.   I needed to look at a new email as essentially 

neutral, scan through it, pick out important words, and then use these words to assign a 

probability that the email is spam.  This method works well when combined with 

Bayesian artificial intelligence learning algorithms. A Bayesian algorithm is one in which 

we look at a set of known data.  This data has already been classified manually. Using 

this data we then build rules which can in turn answer questions about future or unknown 

data.  

 Procedurally, for the end user, such a system is easy to operate. All that is 

required is changing the way email is deleted. The end user needs to make two folders for 

deleted email and one folder for spam.  I chose folder names of __Kill, __Read and 

__Spam.  Once these folders are set up, email can be read as before.  When deleting or 

archiving email, the user needs to evaluate it. If an email was something that the user 

wanted to see, it needs to be moved or copied to the __Read folder. If not - copied into 

the __Kill folder.   That is all there is to it from the end users’ perspective.  

 

The Program   

 On the mail server I set up three programs and three databases to handle the 

back-end work.   Each of these items can be adjusted to affect performance. 

 
                                                 
1 http://www.paulgraham.com/spam.html 



 7

 

Program 1:  Tokenizer 

 The tokenizer scans email files and breaks them up into “tokens”.  Each token 

can be a single word, a pair of words, or a phrase.  Then the tokenizer records the number 

of times a particular token is seen into a database.  The tokenizer program is executed 

from a cron process once an hour for each folder __Kill and __Read.  I found that, in 

early runs, single words worked as well as tokens.  Each group of non-white space 

characters was considered a word.  I allowed HTML tags to be considered as words. This 

turned out to be a very good indicator for me, since most people that send me non-spam 

emails don't send HTML-based messages.  Some HTML tags like the <STRONG> tag, 

<FONT> tag and the color red are all excellent indicators that a given email is, in fact, 

spam.  I throw out all tokens that are longer than 60 characters.  This had the effect of 

ignoring mime-encoded attachments.  After two months of working with the system, I 

changed tokens to be two words each, instead of one.  This has the effect of finding 

word-phrases and allowed me to predict spam more accurately than with single word 

tokens.  The drawback of double word tokens is that your database grows slower 

(because tokens are combined).  For example, the sentence: the dog ran fast, would be 

tokenized into 3 tokens instead of four (thedog dogran ranfast) vs. (the dog ran fast).  The 

net result is that you will need larger training sets to come up with the same accuracy as 

with single word tokens.   

 Another adjustment to the tokenizer is what to count as white space.  I 

experimented with changing white space characters to include everything from only true 



 8

white space to everything non-alphanumeric and a myriad of things in between.  These 

turned out to have almost no effect on the system’s ability to predict spam. 

Program 2: Hash compute 

This program looks at the two databases created by the tokenizer and computes the 

probability that a particular token occurs in spam and the probability that it occurs in non-

spam.  It keeps track of how many email messages it has seen, how many times a 

particular token appeared in spam, and how many times a particular token appeared in 

non-spam. Using a Bayesian algorithm hash-compute assigns probabilities to each token. 

 

Program 3: Scanner 

Before an email gets into the end user’s inbox, the scanner runs on each new email that is 

seen by the system. The first thing the scanner does is tokenize the email message.  Then 

it reads the databases created by the two preceding programs, and picks out the 15 most 

interesting tokens in the message.  Interesting tokens are tokens that have probability that 

is farthest from 50%.  Tokens with probability close to zero are a strong indication of 

non-spam. Tokens with a probability close to one are a strong indication of spam.  I have 

found that after a relatively small number of emails (somewhere around 3000), most of 

the tokens considered interesting by the system have probabilities greater than 98% or 

less than 1%.  This polarizing effect gave me a clear picture of what the system thinks 

spam is and what it thinks isn't.  This shows that the technique is always conclusive. It 

either classifies an email as spam or as not, never in the middle.   

 After the scanner has run, it comes up with its list of tokens. It computes an 

average of the percentages of the interesting tokens.   This percentage is the probability 
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that the email is spam.  In my implementation I classify everything with a percentage 

over 95% as spam, everything else non spam.  This 95% was picked essentially at 

random. I varied it throughout the testing period, to try to find an optimal percentage.  

The changing of this cut-off percentage had almost no effect on what is classified as 

spam because the results are so bi-polar, meaning either very close to one or very close to 

zero. 

Example  

The following examples should help to clarify exactly how the system works.  These 

examples are small but clearly illustrate the effectiveness of the filters.  For this example 

we will ignore all words in the sample data set except for the word “mortgage.” 

Word: Mortgage 
Database Value Variable 

Name 
Description 

WordCountNoSpam 10 G Number of times the word mortgage 
occurred in non spam emails. 

WordCountSpam 1000 B Number of times the word mortgage 
occurred in spam emails. 

Goodcount 500 GC Count of number of non spam emails 
processed so far. 

Control 

Badcount 1000 BC Count of number of spam emails 
processed so far. 

 

From the above table we can calculate the probability a future email that contains the 

word “mortgage” is in fact spam. We perform the calculation in the following way: 

))2()((
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÷
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The doubling of the G value is to bias the system against false positives. It gives positive 

occurrences a higher weight than they have “earned”. 
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We calculate probabilities in this fashion for each token we see and then record them in 

the probability database.   

 

Variations 

 Some interesting variations on the above system were tried.  

 Variation 1: I allowed for three-word tokens. This had no noticeable effect on 

outcomes and no benefits over two-word tokens.  I found that with one-word tokens the 

filter could accurately predict 98% of spam emails correctly with training sets 50% 

smaller than training set size for two-word tokens.  The actual training set cardinalities 

for one-word tokens were 450 and for two-word tokens were 889.   

 Variation 2:  Instead of having just two classifications, spam and non-spam, 

the system could sort the emails into any number of folders based on the content.  For 

example you could have the system set up with four folders: __Spam, __Baseball, 

__Work, and __Personal.  The scanner, tokenizer, and hash-compute functions will have 

to be modified, so they would check each of these folders and then could sort the email 

based on multiple criteria.   

 There are some problems that must be overcome by the system in order for this 

to work.  When sorting spam from non-spam, you can safely assume that if something 

isn't spam, then it is non-spam.  When using this technique to filter emails into multiple 

folders, you must keep track of percentages for each possible classification. I 

implemented a prototype of this system and found that it has some difficulty 
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distinguishing between the various types of legitimate email.  I think the cause of this was 

that spam is all basically the same thing, a sales pitch of some form or another.  The 

legitimate emails contain various messages that are very close to each other.  To my 

system, conversations about baseball and basketball appear to be very similar, and the 

differences are difficult to detect. This occurs because these two conversations contain 

similar vocabularies (score, ball player, team, and so forth).  I abandoned this approach 

because of simpler viable alternatives such as filtering email based on keywords found in 

the “Subject”, “From”, and “To” header fields. 

 

Conclusion 

 I have come to the conclusion that to most effectively deal with spam email 

messages, a combination of the above techniques works the best.  First I filter all my 

email from mailing lists, automated systems emails, and other personal email with known 

header properties (whitelisting).  With the remaining email I use the Bayesian technique 

described above with two-word tokens, to determine if something is spam or not.   If it is 

determined to be spam, I file it as such, otherwise I deliver it to my inbox.  This method 

works very well with one exception.  I don't ever receive any false positives (not one in 

the past 3 months). However, sometimes I receive emails in my inbox that would have 

ideally been blocked – that is, false negatives.   The one characteristic they all have is that 

they are short, one-line emails, usually containing only a link.  The Bayesian filter will in 

time learn to properly classify these. 

 As long as we allow for trusted email (accepting email from anyone), there will 

be people who send spam.  The Bayesian filter approach is dynamic, easily implemented 
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on a variety of systems, and learns as time goes on, making it an ideal solution. By taking 

Paul Graham’s work and improving on the tokenizer, adding two-word tokens and 

experimenting with other tokens, I have been able to make a very effective text filter that 

catches spam almost 100%.  There are still improvements to be made in the field of spam 

email detection; I plan to continue my research. 


