
mutable data

define

versus

set!

.

An identifier
is a name used in the code.

A binding
is a connection to a value.

A variable
is an identifier + binding.

.

How do functions retain access to
objects that existed when the
function was created?

The interpreter creates a closure.

.

A closure is a data structure:

.

(define counter
 (let ((n 0))
 (lambda ()
 (set! n (add1 n))
 n)))

+--------------------------------------+
| |
| (lambda () +-------+ |
| (set! n (add1 n)) | n = 0 | |
| n) +-------+ |
| |
+--------------------------------------+
.

Now we can understand how the
region of a variable is *not* the
same as the scope of the variable.

.

"The American embassy in Paris occupies
a very nice building on the Place de la
Concorde. Certainly, the embassy is
physically within the boundaries of
France. But when you step inside the
embassy, what country are you in? You're
no longer in France. You're in the United
States, and US law applies."

.

 (define make-counter
 (lambda ()
 (let ((n 0))
 (lambda ()
 (set! n (add1 n))
 n)))

[demo in Dr. Racket]

(let ((n 42))
 (let ((clock-tick (make-counter)))
 ...
 (clock-tick)
 ...))
.

One approach is to use

message-passing style

Create a function that receives a symbol
as its argument and uses the symbol to
choose which procedure to run.

.

(case transaction
 ('withdraw ...)
 ('deposit ...))

is equivalent to

(cond ((eq? transaction 'withdraw) ...)
 ((eq? transaction 'deposit) ...))

.

