Python:

X = 3
return x + (10 * x)

Racket:

(let ((x 3))
(+ x (* 10 x)))

X += 5 and x++
are

syntactic abstractions

of
X =y Tt z

convenient
but
not necessary

In Racket,

cond

IS a syntactic abstraction of

if

In Racket,

let

IS a syntactic abstraction of

applying a function

[list comprehensions in Python]

| Local variables bind a value to a name. |

The syntax of Racket's let expression:

<let-expression> ..

<binding-list> ::

<binding> ::

<body> ::

(let <binding-list> <body>)

Q)

(<binding> .
(<var> <exp>)

<exp>

<binding-1list>)

This:
(let ((Kvar_1> <exp_1>)
(<var_2> <exp_2>)

(<var_n> <exp_n>))
<body>)

IS equivalent to:
((lambda (<var_1> <var_ 2>...<var_n>)

<body>)
<exp 1> <exp_2>... <exp_n>)

(let ((op (first exp))

(argl (second exp))
(arg2 (third exp)))
(list argl op argl))

IS equivalent to:
((Llambda (op argl argl)

(list argl op argl))
(first exp) (second exp) (third exp))

(let ((op (first exp))

(argl (second exp))
(arg2 (third exp)))
(list argl op argl))

IS equivalent to:
((lambda (op argl arg2)

(list argl op argl))
(first exp) (second exp) (third exp))

(let ((op (first exp))
(argl (second exp))
(argZ2 (third exp)))

(list argl op argl))

IS equivalent to:
((Llambda (op argl argl)

(list argl op argl))
(first exp) (second exp) (third exp))

(let ((op (first exp))

(argl (second exp))
(arg2 (third exp)))
(list argl op argl))

IS equivalent to:
((Llambda (op argl argl)

(list argl op argl))
(first exp) (second exp) (third exp))

translational
semantics

[images showing compilation with and without preprocess |

