
Python:

 x = 3
 return x + (10 * x)

Racket:

 (let ((x 3))
 (+ x (* 10 x)))
.

x += 5 and x++
are

syntactic abstractions

of
x = y + z

.

convenient
but

not necessary

.

In Racket,

cond

is a syntactic abstraction of

if
.

In Racket,

let

is a syntactic abstraction of

applying a function
.

[list comprehensions in Python]

.

[Local variables bind a value to a name.]

.

The syntax of Racket's let expression:

<let-expression> ::= (let <binding-list> <body>)

 <binding-list> ::= ()
 | (<binding> . <binding-list>)

 <binding> ::= (<var> <exp>)

 <body> ::= <exp>

.

This:
 (let ((<var_1> <exp_1>)
 (<var_2> <exp_2>)
 .
 .
 .
 (<var_n> <exp_n>))
 <body>)

is equivalent to:

 ((lambda (<var_1> <var_2>...<var_n>)
 <body>)
 <exp_1> <exp_2>... <exp_n>)
.

(let ((op (first exp))
 (arg1 (second exp))
 (arg2 (third exp)))
 (list arg1 op arg2))

is equivalent to:

((lambda (op arg1 arg2)
 (list arg1 op arg2))
 (first exp) (second exp) (third exp))

.

(let ((op (first exp))
 (arg1 (second exp))
 (arg2 (third exp)))
 (list arg1 op arg2))

is equivalent to:

((lambda (op arg1 arg2)
 (list arg1 op arg2))
 (first exp) (second exp) (third exp))

.

(let ((op (first exp))
 (arg1 (second exp))
 (arg2 (third exp)))
 (list arg1 op arg2))

is equivalent to:

((lambda (op arg1 arg2)
 (list arg1 op arg2))
 (first exp) (second exp) (third exp))

.

(let ((op (first exp))
 (arg1 (second exp))
 (arg2 (third exp)))
 (list arg1 op arg2))

is equivalent to:

((lambda (op arg1 arg2)
 (list arg1 op arg2))
 (first exp) (second exp) (third exp))

.

translational
semantics

.

[images showing compilation with and without preprocess]

.

