
Attempt 1

     (define (2nd-max lon)
       (second (sort lon >)))

Short, sweet, and O(n log n)

.



Attempt 2

   1 Find the largest value in the list.
   2 Remove that item from the list.
   3 Find the largest value in what's left.

.



   1 Find the largest value in the list.
   2 Remove that item from the list.
   3 Find the largest value in what's left.

   (define (2nd-max lon)
     (apply max                   ; step 3
            (remove               ; step 2
                (apply max lon)   ; step 1
                lon)))

A little longer, and only O(n).
But it makes three passes...
.



Attempt 3

Our argument contains at least two numbers:

  (<number> <number> . <list-of-numbers>)

... with the usual definition for a list:

  <list-of-numbers>
    ::= ()
      | (<number> . <list-of-numbers>)

.



If we could write a loop, we might...

   - Create two local variables,
     largest and 2nd-largest.

   - Initialize the variables
     using the first two items in the list.

   - Then look at each item in the rest
     of the list to see if it is greater
     than either of the two variables
     and, if so, update the variables.

.



Create an interface procedure to initialize 
the variables and start the processing:

  (define (2nd-max lon)
    (2nd-max-tr
      (max (first lon) (second lon))
      (min (first lon) (second lon))
      (rest (rest lon)))))

Now we have to write 2nd-max-tr.

.



(6 1 2 -3 9 4 -1 2 8 1 2 4)

largest         6
2nd-largest     1
rest            (2 . (-3 9 4 -1 2 8 1 2 4))

.



(6 1 2 -3 9 4 -1 2 8 1 2 4)

largest         6
2nd-largest     2
rest            (-3 . (9 4 -1 2 8 1 2 4))

.



(6 1 2 -3 9 4 -1 2 8 1 2 4)

largest         6
2nd-largest     2
rest            (9 . (4 -1 2 8 1 2 4))

.



(6 1 2 -3 9 4 -1 2 8 1 2 4)

largest         9
2nd-largest     6
rest            (4 . (-1 2 8 1 2 4))

.



We could write a 'cond' or an 'if' expression 
to handle the three cases:

(define (2nd-max-tr largest 2nd-largest lon)
  (cond ((null? lon) 2nd-largest)
        (( case #1 ) ...)
        (( case #2 ) ...)
        (( case #3 ) ...) ))

The ...'s are ugly and repeat (rest lon)
three times.

.



Instead, let's use our interface procedure as 
inspiration:
 
(define (2nd-max-tr largest 2nd-largest lon)
  (if (null? lon)
      2nd-largest
      (2nd-max-tr
         new value of largest
         new value of second
         new value of lon    ) )))

.



Handle (first lon) in first two arguments:
 
(define (2nd-max-tr largest 2nd-largest lon)
  (if (null? lon)
      2nd-largest
      (2nd-max-tr
         new value of largest
         new value of second
         new value of lon      )))

.



Handle (rest lon) in the third argument:
 
(define (2nd-max-tr largest 2nd-largest lon)
  (if (null? lon)
      2nd-largest
      (2nd-max-tr
         new value of largest
         new value of second
         new value of lon      )))

.



(define (2nd-max-tr largest 2nd-largest lon)
  (if (null? lon)
      2nd-largest
      (2nd-max-tr
        (max largest
             (first lon))
        (max 2nd-largest
             (min largest (first lon)))
        (rest lon))))

This is order O(n), makes only one pass,
and uses only one stack frame.
.



How might we compare these solutions?

• length of the code
• space used at run-time
• time used at run-time
• time to create the program
• ...
• complexity of the code
• ...
• familiarity

.



We have learned a new language in order to:

  • learn a new way to think about languages

.



We have learned a new language in order to:

  • learn a new way to think about languages
  • learn a new style of programming

.



We have learned a new language in order to:

  • learn a new way to think about languages
  • learn a new style of programming
  • learn patterns of recursive programs

.



We have learned a new language in order to:

  • learn a new way to think about languages
  • learn a new style of programming
  • learn patterns of recursive programs

Now, we use all three to:

  • learn how programming languages work

.



Static Properties of Variables

A property is static when its value can be 
determined by looking at the text of a 
program.

.



Static Properties of Variables

A property is static when its value can be 
determined by looking at the text of a 
program.

A property is dynamic when the program must 
be executed in order to determine its value.

.



example: data type

    int sumOfSquares(int m, int n)
    {
        return m*m + n*n;
    }

    def sum_of_squares(m, n):
        return m*m + n*n

.



A Little Language

     <exp> ::= <varref>
             | (lambda (<var>) <exp>)
             | (<exp> <exp>)

.



free and bound variables

    int sumOfSquares( int m, int n )
    {
        // m and n are bound
        // to formal parameters

        return m*m + n*n;
    }

.



A variable is bound or occurs bound in an 
expression if it refers to the formal 
parameter in the expression.

.



A variable is bound or occurs bound in an 
expression if it refers to the formal 
parameter in the expression.

.



A variable is bound or occurs bound in an 
expression if it refers to the formal 
parameter in the expression.

A variable is free or occurs free in an 
expression if it is not bound.

.



     <exp> ::= <varref>
             | (lambda (<var>) <exp>)
             | (<exp> <exp>)

Free and bound variables in this language:

.



A function definition with no free variables 
is called a combinator.

(lambda (f)         ; combinator
  (lambda (x)
    (f (f x))))

(lambda (f)         ; not a combinator
  (lambda (x)
    (f (g x))))

.



This is not a combinator:

(define sum-of-applications
  (lambda (f x y)
    (+ (f x) (f y))))

.


