Attempt 1

(define (2nd-max lon)
(second (sort lon >)))

Short, sweet, and O0(n log n)

Attempt 2

1 Find the largest value 1n the list.
2 Remove that item from the list.
3 Find the largest value in what's left.

1 Find the largest value 1n the list.
2 Remove that item from the list.
3 Find the largest value in what's left.

(define (2nd-max lon)

(apply max ; step 3
(remove ; Step 2
(apply max lon) ; step 1

lon)))

A little longer, and only 0(n).
But 1t makes three passes...

Attempt 3
Our argument contains at least two numbers:
(<number> <number> . <list-of-numbers>)
with the usual definition for a Llist:
<list-of-numbers>

2= ()

| (<number> . <list-of-numbers>)

If we could write a loop, we might...

- Create two local variables,
largest and 2nd-largest.

- Initialize the variables
using the first two items in the Llist.

- Then look at each 1item in the rest
of the list to see if it is greater
than either of the two variables
and, 1f so, update the variables.

Create an interface procedure to initialize
the variables and start the processing:

(define (2nd-max lon)
(2nd—-max-tr
(max (first lon) (second 1lon))
(min (first lon) (second 1lon))

(rest (rest lon)))))

Now we have to write 2nd—-max-tr.

(612-394-1228124)

largest 6
2nd-largest 1
rest (2 . (-394 -128124))

(612 -394-1228124)

largest 6
2nd-largest 2
(

rest -3 . (94 -128124))

(612 -394-1228124)

largest 6
2nd-largest 2
rest (9 . (4-128124))

(612 -394-1228124)

largest 9
2nd-largest 6
rest (4 . (-1 28124))

We could write a 'cond' or an 'if' expression
to handle the three cases:

(define (2nd-max-tr largest 2nd-largest lon)
(cond ((null? lon) 2nd-largest)

((case #1) ...)
((case #2) ...)
((case #3) ...)))
The ...'s are ugly and repeat (rest lon)

three times.

Instead, let's use our interface procedure as
inspiration:

(define (2nd-max-tr largest 2nd-largest lon)
(if (null? lon)
2nd-largest
(2nd—-max-tr
new value of largest
new value of second
new value of lon))))

Handle (first lon) 1in first two arguments:

(define (2nd-max-tr largest 2nd-largest lon)
(if (null? lon)
2nd-largest
(2nd-max-tr
new value of largest
new value of second
new value of lon)))

Handle (rest lon) 1in the third argument:

(define (2nd-max-tr largest 2nd-largest lon)
(if (null? lon)
2nd-largest
(2nd-max-tr
new value of largest
new value of second
new value of lon)))

(define (2nd-max-tr largest 2nd-largest lon)
(if (null? lon)
2nd-largest
(2nd-max-tr
(max largest
(first 1lon))
(max 2nd-Tlargest
(min largest (first lon)))
(rest lon))))

This 1is order 0(n), makes only one pass,
and uses only one stack frame.

How might we compare these solutions?

e length of the code

e space used at run-time

e time used at run-time

e time to create the program

e complexity of the code

e familiarity

We have learned a new language 1in order to:

e learn a new way to think about languages

We have learned a new language 1in order to:

e learn a new way to think about languages
e learn a new style of programming

We have learned a new language 1in order to:

e learn a new way to think about languages
e learn a new style of programming
e learn patterns of recursive programs

We have learned a new language 1in order to:
e learn a new way to think about languages
e learn a new style of programming
e learn patterns of recursive programs

Now, we use all three to:

e learn how programming languages work

Static Properties of Variables

A property 1is static when its value can be
determined by looking at the text of a
program.

Static Properties of Variables

A property 1is static when its value can be
determined by looking at the text of a
program.

A property is dynamic when the program must
be executed in order to determine its value.

example: data type

int sumOfSquares(int m, int n)

{

return mxm + n*n;

def sum_of_squares(m, n):
return m*xm + n%*n

A Little Language

= <varref>
| (lambda (<var>) <exp>)
| (<exp> <exp>)

<exp>

free and bound variables

int sumOfSquares(int m, int n)

{

// m and n are bound
// to formal parameters

return mxm + n%*n;

A variable 1is bound or occurs bound in an
expression if 1t refers to the formal
parameter in the expression.

A variable 1is bound or occurs bound in an
expression if 1t refers to the formal
parameter in the expression.

A variable 1is bound or occurs bound in an
expression if 1t refers to the formal
parameter in the expression.

A variable 1s free or occurs free in an
expression if 1t i1s not bound.

= <varref>
| (lambda (<var>) <exp>)
| (<exp> <exp>)

<exp>

Free and bound variables in this language:

A function definition with no free variables
is called a combinator.

(lambda (f) ; combinator
(lambda (x)
(f (f x))))
(lambda (f) ; not a combinator

(lambda (x)
(f (g x))))

This 1s not a combinator:

(define sum-of-applications
(Llambda (f x vy)

(+ (f x) (f y))))

