Dynarmic Frogramming

Cln+1,n]<0
for d < 1 to n — 1 do //diagonal count
fori < 1tor ~ddo
Ji+d
minval « oo
fork «ito j do)
it C[i, k114 Clk + 1, j] < minval ‘ .
minval «— Cli, k = 1]+ Clk+ 1, jT; kmin <k

R[i, j] < kmin
su[m « P[i]; fors < i -+1to j do sum < sum + P[s]
Cli, j]+ minval -+ sum

return C[1, n], R

The algorithm’s space efficiency is clearly quadrz;‘;i]c; thel tir_ne heficsi;ilacgec:i Eﬁ

i i i i analysis sko

ion of the algorithm is cubic (why?) . Amore care: entri
Ei]sze Toot table are always nondecreasing along e_ach oW and cg%{umﬁ. ’Ix:ﬂ];;—:em;cos
values for R[i, jjto the range R[i, j - 1,..., R[; +1, j]and makesitp ,
reduce the running time of the algorithm to @(n%).

Exercises 8.3

1. Finish the computations started in the section’s example of constructing an
optimal binazy search tree. ‘

2. a. Why is the time efficiency of algorithm OptimalBST cubic? .
b. Why is the space efficiency of algorithm OptimalBST quadratic? L

3. Write a pseudocode for a linear-time algorithm that generates the optim
binary search tree from the root table. . . .

4. Devise a way o compute the sums Z;=i Pss whif:h are .used in thcehdginui;
programming algorithm for constructing an optimal binary sear N
constant time (per sumy). ‘

5. True or false: The root of an optimal binary search tres always contains the
key with the highest search probability? . o 2 st o Kegs &

i i search tree for a

® 310&3 12:;2 Z?: :czllllz.ltf; itkz;?yof: lkiai:;;l:;Zd -for? What Wﬂ']. be th?;c 3verage

number of comparisons in a succeéssful search in such a tree if n = 277

7. a. Show that the number of distinct binary s-earch trees b(n) that {:atzia.ose
constructed for a set of n orderable keys satisfies the recurrence rela

n-1
Bn) =Y bbin—1—-k forn>0, bO)=1
k=0

8.4 The Knapsack Probiem and Memory Functions 299

b. It is known that the solution to this Tecurrence is given by the Catalan
numbers. Verify this assertion for n = L2...,5
¢. Find the order of growth of b(s). What implication does the answer to
this question have for the exhaustive-search algorithm for constructing an
optimal binary search tree?
8. Design a ®(»?) algorithm for finding an optimal binary search tree.

9. Generalize the optimal binary search algorithm by taking into account unsuc-
cessful scarches,
0. Matrix chain multiplication Consider the problem of mizimizing the total
number of muitiplications made in computing the product of » matrices

Al‘Az'...'A

"

whose dimensicns are dj by ds, dibydy, ..., dy,_1byd, respectively. Assume

that all intermediate products of two matrices are computed by the brute-force

{definition-based) algorithm.

a. Give an example of three matrices for which the number of multiplications
in(4;-A4y) - Az and 4; . {4y - As) differ at least by a factor 1000.

b. How many different ways are there to compute the chained product of n
matrices?

¢. Design a dynamic programming algorithm for finding an optima! order of
multiplying » matrices.

The Knapsack Problem and Memory Functions

We start this section with designing the dynamic programming algorithm for
the knapsack problem: given » items of known weights wy, ..., w, and values
Y1 . .+, Uy and a knapsack of capacity W, find the most valuable subset of the items
that'fit into the knapsack. (This problem was introduced in Section 3.4, where we
discussed solving it by an exhaustive-search algorithm.) We assume here that all
the weights and the knapsack’s capacity are positive integers; the item values do
not have to be integers.

To design a dynamic pro gramming algorithm, we need to derive a recurrence
relation that expresses a solution to an instance of the knapsack problem in terms
of solutions to its smaller subinstances. Let us consider an instance defined by the
first { iterns, 1 < ¢ < n, with weights wy, ..., wy, values vy, . . ., v;, and knapsack
capacity j, 1< j < W. Let V[#, 71 be the value of an optimal solution to this
instance, i.e., the value of the most valuable subset of the first / items that fit into
the knapsack of capacity j. We can divide all the subsets of the first i items that fit
the knapsack of capacity ; into two categories: those that do not include the ith
itern and these that do. Note the following;

Dynarnic Programming

o I] w
010 ¢ 0
=10 VIi-1, f-wil Vi1, jl
Wi V; i 0 Vi f1
n |0 goal

FIGURE 8.12 Table for solving the knapsack problem by dynamic programming

1. Among the subsets that do not include the ith item, the value of an optimal
subset is, by definition, V[i — 1, j] ‘

2. Among the subsets that do include the ithitem (hence, j — w; = 0), an optimal
subset is made up of this item and an optimal subset of the firsti — 1 items that
fit into the knapsack of capacity j — w;. The value of such an optimal subset
sy +VE-1,7—wl :

Thus, the value of an optimal solution among all feasible subsets of the first i
items is the maxirnum of these two values. Of course, if the ith item does n'ot &t
into the knapsack, the value of an optimal subset selected from the first { items
is the same as the value of an optimal subset selected from the first { — 1 items.
These observations lead to the following recurrence:

Vi max{V[:w-l, j], U5+VEi—1,j—wi]} ifj—w;EO (8.1_2)
[1= Vii—1J] i j—w; <0.
Itis convenient to define the initial conditions as follows:
V[0, f]=0for j =0 and V[, 0] =0fori = 0. (8.13)

Qur goal is to find Vir, W], the maximal value of a subset of the n given items that
fit into the knapsack of capacity W, and an optimal subsst itself.

Figure 8.12 illustrates the values involved in equations (8.12) and (8.'13).. For
i, j =0, to compute the entry in the ith row and the jth column, Vi, jl we
compute the maximum of the entry in the previous row and the same column
and the sum of »; and the entry in the previous row and w; columns to the left.
The table can be filled either row by row or column by column.

EXAMPLE 1 Let us consider the instance given by the following data:

item weight value
1 2 $12
2 1 $10 capacity W =5
3 3 $20
4 2 $15

84 The Knapsack Problem and Memory Functions 301

capacity j
il0 1 2 3 4 &
0j0 0O v 0o 0 0
wi=2w=12 110 0 12 12 12 12
wp=1vw=10 2 {0 10 12 22 22 22
wy=3,vy=20 3|0 10 12 22 30 32
wy=2w=16 4|0 10 15 25 30 37

FIGURE 8.13 Example of solving an instance of the knapsack problem by the dynamic
pregramming algorithm

"The dynamic programming table, filled by applying formulas (8.12) and (8.13), is
shown in Figure 8.13.

Thus, the maximal value is V[4, 5] == $37. We can find the composition of an
optimal subset by tracing back the computations of this entry in the table. Since
V[4, 5]# V[3, 5], item 4 was included in an cptimal sofution along with an optimal
subset for filling 5 — 2 = 3 remaining units of the knapsack capacity. The latter is
represented by element V{3, 3]. Since V[3, 3] = V{2, 3], item 3 is not a part of an
optimal subset. Since V[2, 3] # V[1, 3], item 2 is a part of an optimal selection,
which leaves element V[1, 3 — 1] to specify its remaining composition, Similarly,
since V[1, 2] # V[0, 2], item 1 is the final part of the optimal solution jitem 1, iter
2, item 4}. |

The time efficiency and space efficiency of this algorithm are both in © (nW).
The time reeded to find the composition of an optimal solution is in O (n + W).
You are asked to prove these assertions in the exercises.

Memory Functions

As we discussed at the beginning of this chapter and fllustrated in subsequent
sections, dynamic programming deals with problems whose solutions satisfy a
recurrence relation with overlapping subproblems. The direct top-down approach
to finding a solution to such a recurrence leads to an algorithm that solves common
subproblems more than once and hence is very inefficient (typically, exponential
or worse). The classic dynamic programming approach, on the other hand, works
bottom-up: it fills a tabie with solutions to af smaller subproblems, but each of
them is solved only once. An unsatisfying aspect of this approach is that solutions
tosome of these smaller subproblems are often.not necessary for getting 2 solution

. tothe problern given. Since this drawback is not present in the top-down approach,

it is natural to try to combine the strengths of the top-down and bottom-up
approaches. The goal is to get a method that solves only subproblems which are
necessary and does it only once. Such a method exists; it is based on using memory
Junctions [Brad¢].

302

Dynamic Programming

This method solves a given problem in the top-down manner but, in addition,
maintains a table of the kind that would have been used by a bottom-up dynamic
programming algorithm. Initially, 21l the table’s entries are initialized with a spe-
cial “null” symbol to indicate that they have not yst been caleulated. Thereafter,
whenever a new value needs to be calculated, the methed checks the correspond-
ing entry in the table first: if this entry is not “null,” it is simply retrieved from the
table; otherwise, it is computed by the recursive call whose result is then resorded
in the table.

The following algorithm implements this idea for the knapsack problem. After
initializing the table, the recursive function needs to be called with { =n (the
number of items) and j = W (the capacity of the knapsack).

ALGORITHM MFEnapsack(i, j)

/Tmplements the memory function method for the knapsack problem
//Input: A nonnegative integer i indicating the number of the first
i jtems being considered and a nonnegative integer j indicating
I/ the knapsack’s capacity
/iOutput: The value of an optimal feasible subset of the first { items
/MNote: Uses as global variables input arrays Weights[l.n], Values[l.n],
Hand table V[0..n, 0., W] whose entries are initialized with —1’s except for
/irow 0 and column 0 initialized with s
V[, j1<0
if j < Weights[i]
value — MFKnapsack{i —1, j)
else
value «— max(MFKnapsack({i — 1, j),
Vahues|i]+ MFKnapsack (i — 1, j — Weights(i])
Vi,]« value
return V[i, j]

EXAMPLE 2 Let us apply the memory function method to the instance consid-
ered in Example 1. Figure 8.14 gives the results. Only 11 out of 20 nontrivial values
{ie., not those in row 0 or in column () have been computed. Just one nontrivial
entry, V11, 2], is retrieved rather than being recomputed. For larger instances, the
proportion of such entries can be significantly larger. |

In general, we cannot expect more than a constant-factor gain in using the
memory function method for the knapsack problem because iis time efficiency
class is the same as that of the bottom-up algorithm (why?). A more significant
improvemens can be expected for dynamic programming algorithms in which a
computation of one value takes more than constant time. You should also keep
in mind that a memeory function method may be less space-efficient than a space-
efficient version of a bottom-up algorithm,

8.4 The Knapsack Problem and Memory Functions 303

capacity |
itg 12 3 4 B
gfo o o 0 0 O
wy=2,w=12 110 0 12 12 12 12
wy=1,v,=10 2{0 - 12 22 - 22
weg=3,vy=20 3|0 - - 22 - 32
wa=2,%=18 4|0 - - - - 37

FIGURE 8.14 Example of solving an instance of the knapsack preblem by the memery
functicn algorithm

Exercises 8.4

1. a. Apply the bottom-up dynamic programming algorithm to the following
instance of the knapsack problem:

item weight valee
1 3 " §25
2 . 2 $20
3 1 $15 capacity W =$.
4 4 $40
5 5 $s0

b. How many Gifferent optimal subsets does the instance of part (a) have?

¢, In general, how can we use the table generated by the dynamic program-
ming algorithm to tell whether there is more than one optimal subset for
the knapsack problem’s instance?

2. a. Write a pseudocode of the bottom-up dynamic programming algorithm for
the knapsack problem.

b. Write & pseudocode of the algorithm that finds the composition of an
optimal subset from the table generated by the bottom-up dynamic pro-
gramming algorithm for the knapsack problem.

3, For the bottom-up dynamic programming algorithm for the knapsack prob-
lem, prove that

a, its time efficiency isin @ (W),

b. its space efficiency is in @ (nW).

¢. the time needed to find the composition of an optimal subset from a filled
dynamic programming table is in O(n + W).

4, a. True or false: A sequence of values in a row of the dynramic programming
table for an instance of the knapsack problem is always nondecreasing?

