
A KBS Application:
Building a Wholesale Distributor

Suppose that you have been hired to build a decision-
support system (DSS) for a large corporation that does
business throughout the world. This corporation often
chooses new wholesaler distributors for its products in
other countries.

Sometimes the corporation would like to acquire an
existing distributor.

The decision is, “Do we buy distributor X?”

Sometimes it intends to initiate a joint venture with an
existing distributor

The decision is, “Do we work with distributor X?”

Why might the corporation need a DSS?

Reasons to Build a Program

The company employs a number of financial analysts
who make recommendations on these decisions. Why
write a program?

Financial analysts embody knowledge.

• The company would like to codify its policies so that
it can record, examine, and change them.

• The company would like to ensure that the decisions
are made consistently over time.

Financial analysts are a scarce commodity.

• The company would like to make decisions when
analysts are busy with other tasks.

• The company would like to make decisions when
analysts are not present.

Hence, the need for a decision-support system.

Problem Analysis

All wholesale distributor decisions depend on a number
of factors:

competence size of workforce
intensity complementary products
objectives compensation level
sales volume competitive products
strategy financial strength
geographic range

These are the parameters of the decision.

The system will examine the data of the target corpora-
tion and return an answer of ‘yes’, ‘no’, or maybe a less
certain answer such as ‘probably yes’, ‘probably no’, or
‘uncertain’.

These are the possible decisions.

Recognition Tasks

This is a recognition task. The system must determine
if a particular label applies to a given situation. People
have to make these decisions in all domains, in all sorts
of contexts.

We could implement a DSS for this problem as:

• a search agent
• a logical inference agent
• a learning agent
• a planner
• ... or using a slew of other AI techniques.

Each technique will introduce some thorny implementa-
tion decisions...

Builders of DSSs have to implement recognition pro-
grams in all sorts of domains and all sorts of contexts.

Do we want to build solutions from scratch each time, re-
learning the implementation lessons that other pro-
grammers have learned?

A Common Design for the System

Write a rule base that associates patterns of parameter
values with particular decisions:

I F competence = high and
size of workforce = (> 50,000) and
intensity = low and
complementary products = none and
...

THEN decision = yes (or no, or ...)

Each rule associates one pattern with one choice.

Making the decision involves finding the rule whose
pattern (best) matches the input data and returning its
choice.

Such a rule is called a simple matcher.
A system made of such rules does simple matching.

Simple Matching

Simple matching is a technique that is straightforward to
implement as a logical inference agent, as long as the
logic allows simple variables.

Many logical inference programs evolve into a set of
simple matchers.

But simple matchers also have a number of significant
drawbacks:

1. It is computationally intractable, even for relatively
small problems.

2. It has no way to represent intermediate abstractions
that may play a role in the decision.

3. A simple matcher is brittle in the face of uncertain
or missing data.

The Problem...

How do you organize a system that makes choices
from a small, discrete set of alternatives in a way
that is reasonably efficient and easily modified?

Any solution to this problem should find an equilibrium
among these competing forces :

• Making a decision should be computationally
tractable in the face of many parameters and
possible values.

• The system should be able to explain its decision
in terms of relevant factors, not just in terms of all
factors together.

• The system should be able to capture interactions
among parameters but not be brittle in the
boundary conditions.

...

... and The Solution

Any solution to this problem should find an equilibrium
among these competing forces :

...

• Systems evolve over time. The mechanism should
allow programmers to modify the patterns used to
make decisions, add new patterns, etc., easily.

• The representation of decision-making patterns

should not be so far from how humans make the
decision that acquiring knowledge from domain
experts becomes problematic.

Decompose the decision into a hierarchy of sub-
decisions. Group parameters according to the
sub-decisions that they affect. For each sub-
decision, construct a simple matcher that maps
the values of its inputs—either input data or the
decisions of other simple matchers—onto a value
for its decision. The result is a Structured Matcher.

Applying the Solution

Simple Matcher

Simple MatcherSimple Matcher Simple Matcher

parameterparameter ... parameterparameter ...

Simple Matcher

parameterparameter ...

Simple Matcher

parameterparameter ...

Figure 2. The Structure of a Structured Matcher

How can we apply this idea to the wholesale distributor
selector system?

1. Identify meaningful sub-decisions.
2. Implement each simple matcher.

• A decision tree.
• A linear combination rule.
• A set of pattern-matching rules.

A Example from the
Wholesale Distributor Case

/* Rule set three: Determining Size Factors */

rule-3-1:
 if (sales-volume = strong or
 sales-volume = average) and
 financial-strength = strong
 then size-factors = 15.

rule-3-2:
 if (sales-volume = strong or
 sales-volume = average) and
 (financial-strength = average or
 financial-strength = weak)
 then size-factors = 10.

rule-3-3:
 if sales-volume = weak and
 (financial-strength = strong or
 financial-strength = average)
 then size-factors = 5.

rule-3-4:
 if sales-volume = weak and
 financial-strength = weak
 then size-factors = 0.

A Nice Benefit: Data Abstraction

Some rules deal with observable data, while others deal
with values computed by other rules, such as “How big
should our wholesale distributor in Mexico be?”

We will have several rules, each of which provides a
particular answer. For example:

/* Rule set one: Final decision (recommendation) */
rule-1-1:
 if size-factors = A and
 sales-and-tech-personnel-factors = B and
 marketing-plan-factors = C and
 product-line-factors = D and
 market-coverage-factors = E and
 A+B+C+D+E >= 50
 then recommendation = accept.

rule-1-2:
 if size-factors = A and
 sales-and-tech-personnel-factors = B and
 marketing-plan-factors = C and
 product-line-factors = D and
 market-coverage-factors = E and
 32 <= A+B+C+D+E < 50
 then recommendation = consider.

rule-1-3:
 if size-factors = A and
 sales-and-tech-personnel-factors = B and
 marketing-plan-factors = C and
 product-line-factors = D and
 market-coverage-factors = E and
 A+B+C+D+E< 32
 then recommendation = reject.

A Nice Benefit: Organization

Making a decision such as “How big should our whole-
sale distributor in Mexico be?” will require several rules,
each of which provides a particular answer.

/* Rule set three: Determining Size Factors (size-factors) */

sales-volume financial-strength | answer

rule-3-1: >= average = strong | 15

rule-3-2: >= average <= average | 10

rule-3-3: = weak >= average | 5

rule-3-4: = weak = weak | 0

A Nice Benefit: Organization

Or:

/* Rule set one: Final decision (recommendation) */

Let total-score = size-factors +

 sales-and-tech-personnel-factors +

 marketing-plan-factors +

 product-line-factors +

 market-coverage-factors

 total-score | answer

rule-1-1: >= 50 | accept

rule-1-2: < 50 and >= 32 | consider

rule-1-3: < 32 | reject
...

The representation of the rules and their relationship
with one another is explicit. This moves the creation of
the rule base to a higher level (identifying and relating
problem features) and makes all of the programming
tasks easier to do.

A Requirement: Tractability

A simple matcher-based solution faces this computa-
tional task:

25 parameters
5 possible values for each

525 = 298,023,223,876,953,125 different rules

A structured matcher-based solution faces this computa-
tional task:

25 parameters
6 structured matchers:

1 at root and 5 intermediate decisions
5 possible values for each parameter and matcher

(5 *55) + 55 = 6 * 3125 = 18,750 different rules

This example demonstrates how quickly divide-and-
conquer approaches can improve the computational
costs of solving a given problem.

The Programming Process in SM

To build a structured matcher, you must:

1. Design a hierarchy of problem features, or sub-decisions.
2. Group parameters according to the sub-decisions that they

affect.
3. For each sub-decision, write a set of rules that determines

the value of the decision based on the relevant parameters.

This provides significantly more guidance than:

1. Write a set of rules that determines the value of the decision
based on the parameters.

But at what cost?

And what haven’t we considered yet?

• How does our system handle uncertainty?
• How does our system explain its answer?
• Do we really want to write 18,000+ rules?

So...

