
“Inducing” a Decision Tree

In order to learn a decision tree, our agent will need to
have some information to learn from:

a training set of examples 

each example is described by its values for the
problem’s attributes

each example is described by its output value,
from the possible values of the target attribute

In the restaurant example, our problem attributes are
“What is the estimated time?”, “What kind of food do
they serve?”, and the like.

The target attribute is “Will we wait?”  It is a boolean
attribute: its value is either yes or no.

Problems with boolean target attributes are called
classification problems.  The learning agent is learning
to recognize whether a situation is a positive example of
some concept or a negative example.



An Example

Our agent’s ideal goal is to find
the most efficient, correct decision tree.

Since most efficient is too hard, it will have to settle
for as efficient a tree as can be found in reasonable time.

input examples a training set
attributes a set of attributes
default the default goal predicate value

output a decision tree



The Induction Algorithm

if examples is empty,
then return default

if all examples have the same classification,
then return that classification

if attributes is empty,
then return the most common classification

 of the remaining examples

choose the attribute a that best discriminates among
the remaining examples

create a tree t with a as its root

for each possible value v of a
select the subset of examples ex having value(a) = v
let subtree sub be the result of recursively calling

the induction algorithm with ex, (attributes - a),
and the most common classification of ex

add a branch to t with label v and subtree sub

return t

[ Assume, for now that “best discriminates” means “creates subsets of
roughly equal size but with some subsets having members with a common
answer”.]



What Does “Best Discriminates” Mean?

+: x1, x3, x4, x6,  x8, x12
-: x2, x5, x7, x9, x10, x11

Patrons?

none some many

+: 
-: x7, x11

+: x1, x3, x6, x8
-: 

+: x4, x12
-: x2,  x5, x9, x10

+: x1, x3, x4, x6,  x8, x12
-: x2, x5, x7, x9, x10, x11

Type?

French Thai Burger

+: x1
-: x5

+: x6
-: x10

+: x4, x8
-: x2, x11

+: x3, x12
-: x7,  x9

Italian

Using information theory, we can compute a “right
answer” to what discriminates best.  Nilsson gives a
simple approximation rule in Section 17.5.



The Answer...



Evaluating a Learning Algorithm

A learning algorithm is good if it produces hypotheses
that do a good job predicting the values of unseen cases.

One technique for evaluating a learning algorithm:

• Partition the set of cases into two sets: a training
set and a test set.

• Run the algorithm on the training set to induce a
decision tree.

• Evaluate the decision tree’s performance when
applied to the test set.

Experimental questions

• How do we split the case set?  Size?  Make-up?

• How good is good enough?  Partial credit?



Evaluating the Induction Algorithm

Russell and Norvig ran an experiment on our table from
the restaurant domain.   They generated random sets of
cases using the problem and target attributes.  Then they
ran 20 trials each for training set sizes of 1-100, with each
training set chosen randomly from the set of all cases.
On each trial, any case not in the training set was placed
in the test set.

Here are the results:

This is called a happy graph.  There was a pattern, and
the algorithm found it.

Questions:

• What would an unhappy graph look like?

• Can a learning agent learn too much?



Exercise: Build a Decision Tree

A number of patients have shown up at the local hospital
emergency room complaining of certain symptoms.  Our
crack staff has identified the problem as an uncommon
allergic reaction to a certain food.  The patients all know
each other, but some of their other friends have not had
this reaction.

The doctors know how to treat the reaction, but they
would also like to be able to suggest some dining guide-
lines to this group of people so that they can avoid the
reaction if they choose.

Here is a set of case data on some members of the group
of friends.  Use our induction algorithm to build a
decision tree for dining options...

Case # Restaurant Meal Day Cost Reaction?

1 Sam’s breakfast Saturday cheap yes
2 Lobdell lunch Saturday expensive no
3 Sam’s lunch Sunday cheap yes
4 FooBarBaz breakfast Monday cheap no
5 Sam’s breakfast Sunday expensive no



Toward a Solution



Reinforcement Learning

Induction is much different than the sort of learning that
neural networks and genetic algorithms do.  A program
can do induction in batch from problem/solution pairs.
Neural nets and GAs rely on interleaving learning with
problem solving in order to get feedback.

Basic Statement:

An agent is given a sequence of trials for which it
knows:

•  the states it visited for each trial
•  the payoff it received at the end of the trial

The agent has no knowledge of:

•  the domain (full effects of actions)
•  the payoff system

The agent is to learn

•  the domain
•  the expected value of payoff for each action
•  a problem-solving policy



Types of Reinforcement Learning

Passive learning

The agent has no real control over its actions.  It
wants to learn the expected values of states.

Active learning

The agent can choose actions on its own.  It wants
to learn not only the expected values of states but
also an optimal policy.

Model-based learning

The agent learns the expected payoffs of each
action and then tries to learn an optimal policy.

“Q learning”

The agent tries to learn the optimal policy without
knowing the payoffs or probabilities directly.


