Learning Checkers
as Finding a Function

What should a checker player learn?

At the base level, it needs to know:
< how to search a game tree

e how to evaluate states in the tree

At the meta level, it needs to know:
< how to extend its search at the right states

< how to manage its time

Representing Checkers Knowledge

The program must assign values to states, say:

- 100 = “l know I will win”
0 = “l expect to draw”
e —100 = *“lknow I will lose”

It might try to learn a function such as:

V(b) = w0 + wibp(b) + werp(b)
+ wabk(b) + wyrk(b)
+ wbt (b) + wgbt (b)

where:

« bp(b) is the number of black pieces on board b
= wp(b) is the number of white pieces on board b
= bk(b) is the number of black kings on board b
= wk(b) is the number of white kings on board b
e bt(b) is the number of black threats on board b
e rt(b) is the number of white threats on board b

and the wj’s are weights assigned to the features

Some Fundamental Assumptions
of Research on Machine Learning

Learning is about understanding the world.

Search and inference are about acting in the world. They
assume that the agent already has a reasonable model
of the world.

Learning is about finding patterns.

Search and inference are about choosing actions based
on known patterns.

An EXxercise

Consider the problem faced by an infant learning to
speak and understand language. Explain how this
process fits into our general model of learning, and
identify the form and content of each of the components
of the model for this task.

insert figure from Russell and Norvig

Don’t try to solve the problem. Just express it in the
terms of our model of a learning agent.

On the Exercise

The first step you face is to appreciate the variety of state
and behavior implicit in the task:

e recognize spoken words

generate spoken words

learn the vocabulary

learn idioms

learn the grammar of sentences

learn the semantics of sentences

learn the pragmatics of communication
learn disambiguation strategies for pronouns

These issues are still active areas of research into human
understanding of language. They raise questions of

e ‘“‘nature versus nurture”

= “meaning versus reference”

Not too surprisingly, implementing a program that can
do any of them is still quite difficult.

Inductive Learning

Basic Statement:

Given a set of data vectors

di =1[dj1, dj2, diz, ..., din, Vi]
learn that
f(di) = v

Because many potential functions f satisfy this definition, we will settle
for any function f’ that closely predicts the input vectors.

Assumptions:
= The process is done in “batch mode”, not incrementally.

= The input vectors are “perfect”—all values are present and correct.

Questions that must be answered:

= What kinds of values can be in an input vector?
= What kinds of functions are we willing to learn?

A Context for Induction:
Decision Trees

Input: an n-ary vector of problem attributes

Output: the value of the target attribute

Here is an example of a decision tree, for the task of
deciding whether or not to wait for a seat at a restaurant,
given the features of a visit:

Fatrons?

'x__Fu”
[ves| | WaitEstimate? J

Alternate?
e Y 85

Input: A Set of Feature Vectors

Here is a set of feature vectors, from which a learning
agent might try to build the “Will wait?” decision tree in
our restaurant example:

4 Har | Frr ' Flun Faf Price | Rvin | Res Tiyn Exr Wi W
X Vi N Yos Y LY Mo ¥ Erech ¥
iy Yer | Mo Yes | Full | § | Mo | No Thai il h
W Mo | Ves | W Mo | Sar % Mo | Mo | Burper)
X, Ves | Mo | ¥ Yer | F | % e | e Thad | 10-30
K Fee | Mo | N Full | 535 | Mo | Fes i W
X Wo | Kes | Ver | Some | 58 | Ves | Yer | fuliar [
X [| Fes | Mo | Mo me | 5 | Fes| Mo | Burper| 0 n
Xe || No| Mo | Ne| Fes| Some 55 Yes | T -
¥, e | Yer | Yer| Mo | B £ Mo | Burg A
X Ves | Yes | Yer| Vex | Fi 555 | ™ Yes | tmlian | H0-30
Y No | N [M 5 Thai | =IO
X1a Kes | Wes | Yex |)] Wa | 4

The features in our vector are;

Do we have an alternative restaurant?

Does this restaurant have a bar?

Is today a Friday or Saturday night?

Are we quite hungry?

How many patrons are at this restaurant?

What is the price range for meals at this restaurant?
Is it raining outside?

Do we have reservations?

= What type of food do they serve at this restaurant?
< What is the estimated wait before we will be seated?

Characteristics of Decision Trees

essentially propositional

work best when many combinations mean the same

cannot represent many functions efficiently

Example of when decision trees don’t work well:

Input: string of ones and zeros
Output: Have we seen more ones than zeros?

An EXxercise

Construct a decision tree that can decide whether or not
to drive forward at an intersection with a stoplight.

A Possible Solution

| FrontO#Queue? |

Ha 2

[CarAheadMoving? | [IntersectionBlocked? |
M

Yos

This problem is deceptively simple—unless we get
caught up in all of the possible exceptions that can occur.

Real-world situations can be full of exceptions. Decision
trees handle exceptions badly. They result in trees that
are unbalanced and very deep on the main branches.

You can imagine many more exceptions than this tree
handles, but would we want to include them all in the
tree?

This is (another) form of the qualification problem.

“Inducing” a Decision Tree

In order to learn a decision tree, our agent will need to
have some information to learn from:

a training set of examples

each example is described by its values for the
problem’s attributes

each example is described by its output value,
from the possible values of the target attribute

In the restaurant example, our problem attributes are
“What is the estimated time?”, “What kind of food do
they serve?”, and the like.

The target attribute is “Will we wait?” It is a boolean
attribute: its value is either yes or no.

Problems with boolean target attributes are called
classification problems. The learning agent is learning
to recognize whether a situation is a positive example of
some concept or a negative example.

Biases In Learning

Because there are, in general, an infinite number of
functions f; that satisfy the learner’s goal, we need to give

our agent a bias toward a particular class of functions.
Even if we think that we aren’t giving our agent a bias, it

will have one by default, by virtue of how we implement
the program.

In the absence of any domain knowledge that suggests a
good bias, we can give our agent a simple yet surprisingly
good domain-independent bias:
Occam’s Razor
The most likely solution is the simplest one that
Is consistent with all observations.

This principle biases our agent toward simplicity.

One good feature of simplicity: when the agent is wrong,
it is generally less wrong than it would be with a more
complex hypothesis.

(And it will be wrong.)

