The Context for Search

In order to plan ahead to find a solution, an intelligent
agent goes through three distinct phases:
1. Formulate the goal.
What is desired?
For elective goals, this is not trivial. And it is
something that our programs don’t often worry
about, because the goals are specified by the
programmer!
2. Formulate the problem.
What needs to be done?
At this step, the agent defines what a state is, what
the operators are, and what the goal test is.
3. Formulate the solution.

What is the answer?

Search through possible states for a path to a goal.

Formulating the Problem

Formulating a problem for search requires:
1. defining what states look like
What information about a situation in the world
must the agent keep track of in order to think about
the effects of its actions?

2. defining what operations are possible (relevant) and
how each affects the state of the world

3. defining how to tell when the search is done
How does the agent know when it is done?
The resulting problem definition consists of:
= the state space

e \What states will be considered?
< \What actions will be considered?

e \What is the initial state?
e the goal test

... may just be “Is this state the goal?”

Formulating the Solution

Formulating a solution for search involves applying one
of the search techniques we learned about last time.

Systematic search can favor...

e “old” states breadth-first
e “new” states depth-first

The other techniques that Ginsberg discusses in Chapter
3 are all variations of the same systematic search them
that we developed in our last session.

e beam search
e depth-limited search
= iterative deepening search

An Exercise; Word Search as Search

JVPI AZNYI FBUESSI PCVA
ALTIHQKBKBVSTEGGUNDX
WWARRI ORSKNETVXKOSED
SMEJAQCUKULCYEMNNRMG
PHHPGI NCCLPKVNKI CRUC
QWSKGSLLUBVEFTMCSDMO
XHYASI YBBDBJRYFKOTZZ
WHMKPEXGLAOPTSCSI RI B
OAYPGLFXLAHSXI|I OMHEJ G
GOEVZOHKECZSRXBNXHKB
FRLIQQJBLFAEREFPI KOO
SCI HECMBAYVARRI NI CNF
| TSZBBSFTAEWVSOLZPSZ
ZRCPZYGTMEOATTRI AWK X

Bucks Magi C
Cbl tics 'P'a'cer S
Laker s \Vdrriors

Work in groups of three or four to formulate the doing of a word search
puzzle as a search problem. Use the accompanying word search as a
concrete example, but don’t make your solution specific to this problem.

Be sure to define the following:

= What is the initial state of the problem?
= What operators can the agent use to change state?

= How can you recognize goal states?

Uninformed Search

BFS and DFS are uninformed search strategies.

Uninformed search algorithms explore the states of a
problem without knowing anything about the environ-
ment.

= BFS puts new states at the back of the line.
= DFS puts new states at the front of the line.

These algorithms work in the same way for every
problem, because they do not consider any features that
are specific to the problem being solved.

Not too surprisingly, BFS and DFS usually aren’t the
most intelligent ways for an agent to explore a state
space. If the agent knows something about its environ-
ment, then it can almost certainly do better.

Using Knowledge of the Problem
to Improve Search Performance

How can we use knowledge to improve search?

= To change the order in which we consider the states.
= To discard states from the list of states to consider.

One kind of knowledge useful in search is the cost of
applying an operator. If my goal is to be in Champaign,
Illinois, then there are costs associated with traveling to
Cedar Rapids and Waverly. As we apply operators in
seguence, we can compute the path cost associated
with the sequence.

Consider our simple map from last time:

Dubuque Chicago
90 150
Cedar
Falls 65 250 170
145
180

Quad Cities Champaign

Knowledge of operator cost is problem-specific, because
the operators are problem-specific. Any search
algorithm that uses such costs is called informed.

Using Path Cost
to Improve Search Performance

How can we use knowledge of path cost to improve
search?

In Uniform Cost Search (UCS), we use a strategy that
sorts the list in ascending order on path cost. The path
cost of a node n is usually called g(n).

Dubuque Chicago
90 150
Cedar
Falls 65 g0 | 170
145
180

Quad Cities Champaign

Uniform Cost Search

UCS implements the same idea behind BFS (explore
nodes close to the start state first to ensure complete-
ness), but it uses a more practical definition of “close”.

Newly-expanded states will usually enter the list of states
to consider near the back, with older nodes nearer the
front. But a path of low real cost, even if it requires more
steps, can leap-frog ahead of a path with fewer operators.
How does UCS stack up against our evaluation criteria?

completeness guaranteed to find a solution if one
exists

time generally expensive for the same reasons
as BFS, but often an improvement

space generally expensive for the same reasons
as BFS, but often an improvement

optimality only if the “cost” of each operator >0
The problem with UCS is that it is too much like BFS. We
aren’t using much domain knowledge, and its effect on

ordering the states is small.

Where to look next?

Other Ways to Use Path Cost

IHITIAL CURRENT p| GOAL
STATE STATE STATE
g(n) h{n)

It turns out that, if my goal is to be in Champaign, Illinois,
then there are two costs associated with traveling to
Cedar Rapids, and two costs associated with traveling to
Waverly. Cedar Rapids is farther away from Cedar Falls
than is Waverly, but its closer to Allerton Park.

UCS uses g(n) to guide its search. g(n) measures the
cost expended in getting from the initial state to the
current state, the sunk cost of taking the path.

What about looking at what seems to be a more
Important measure: what will it cost to get from the
current state to the goal?

Using Future Path Cost
to Improve Search Performance

Greedy search orders the unexplored states in
ascending order of their expected future path cost

Dubuque Chicago
90 150
Cedar
Falls 65 250 170
145
180

Quad Cities Champaign

