
Recap: Achieving Goals by Search

Intelligent agents sometimes act by reflex, and
sometimes they act by looking up the right answer. But
these behaviors work only in limited environments.

How can an agent choose an action in a complex
environment, trying to achieve a goal that it knows little
about? One approach is to search for an answer. An
agent can consider what effect each possible action
would have on the world and which action—or sequence
of actions—leads to the goal.

We might expect an intelligent agent to consider its
options in a systematic way, in a way that makes some
sense, either logically or based on its knowledge of the
world.

For now, let's consider agents that act logically, but with
relatively little knowledge about the the goal it is trying to
achieve.

An Algorithm for Systematic Search

INPUT: the starting situation (the start state)
a goal to achieve
a search strategy

OUTPUT: a sequence of actions (called operators)
that transforms the problem’s initial state
into a goal state OR an announcement that
no such sequence can be found

STEPS

1. Initialize the set of states to be considered to include
the start state.

2. Repeat the following:

a. If the set of unconsidered states is empty, then
announce failure.

b. Choose a state to consider, based on the search
strategy.

c. If the state chosen is the goal state, then return
the sequence of actions that leads to this state.

d. Add to the set of unconsidered states all of the
states that can be reached from the current state
by doing one action.

Doing Systematic Search

In order to apply this algorithm, we must define the
problem in the vocabulary of search.

Consider the task I face next week, when I go to my
conference. I must travel from Cedar Falls to the
Champaign, Illinois, area. I have decided to drive, so I
have to negotiate this simplified map:

Cedar
Falls

Chicago

Quad Cities

Dubuque

Champaign

What route should I follow?

In terms of search...

• What is the initial state? Cedar Falls
• What is the goal state? Champaign
• What is the set of operators?

The set of roads available to me:
{ Cedar Falls-Dubuque, Dubuque-Cedar Falls, ... }

Random Systematic Search

INPUT: the start state OUTPUT: a sequence of operators that transforms the
a goal to achieve problem’s initial state into a goal state OR
a search strategy an announcement that no such sequence can be found

STEPS
1. Initialize the set of states to be considered to include the start state.
2. Repeat the following:

a . If the set of unconsidered states is empty, then announce failure.
b. Choose a state to consider, based on the search strategy.
c. If the state chosen is a goal state, then return the sequence of actions that leads to it.
d. Add to the set of states to explore all states that can be reached from the current one.

.

Cedar
Falls

Chicago

Quad Cities

Dubuque

Champaign

Systematic Search
that Favors Old States

INPUT: the start state OUTPUT: a sequence of operators that transforms the
a goal to achieve problem’s initial state into a goal state OR
a search strategy an announcement that no such sequence can be found

STEPS
1. Initialize the set of states to be considered to include the start state.
2. Repeat the following:

a . If the set of unconsidered states is empty, then announce failure.
b. Choose a state to consider, based on the search strategy.
c. If the state chosen is a goal state, then return the sequence of actions that leads to it.
d. Add to the set of states to explore all states that can be reached from the current one.

.

Cedar
Falls

Chicago

Quad Cities

Dubuque

Champaign

Systematic Search
that Favors New States

INPUT: the start state OUTPUT: a sequence of operators that transforms the
a goal to achieve problem’s initial state into a goal state OR
a search strategy an announcement that no such sequence can be found

STEPS
1. Initialize the set of states to be considered to include the start state.
2. Repeat the following:

a . If the set of unconsidered states is empty, then announce failure.
b. Choose a state to consider, based on the search strategy.
c. If the state chosen is a goal state, then return the sequence of actions that leads to it.
d. Add to the set of states to explore all states that can be reached from the current one.

.

Cedar
Falls

Chicago

Quad Cities

Dubuque

Champaign

Evaluating Search Strategies

With multiple search strategies available to us, we have
to be able to determine what their strengths and
weaknesses are objectively. That way, when faced with a
particular problem, we—or our program!—will be able to
make a good choice of search strategy to use.

We can evaluate a search strategy using several criteria:

• completeness

Does it guarantee to find a solution if one exists?

• time

How long does it take?

• space

How much memory is required?

• optimality

Does it find the “best” solution, if there are many?

Evaluating Search Strategies

A strategy with a bias toward old states is called
breadth-first. How does breadth-first search (BFS)
measure up?

• complete? yes
• time? generally expensive
• space? generally expensive
• optimal? only if all operators “cost” the same

The expensiveness of BFS is a product of the problem’s
branching factor. If there aren’t many operators
available in a given state, then the cost of BFS can be low.
But...

A strategy with a bias toward old states is called depth-
first. How does depth-first search (DFS) measure up?

• complete? only if the search space is finite
• time? modest
• space? modest
• optimal? no!

The low cost of space in DFS is a result of only needing to
store the path leading to a state, plus immediate siblings
of each state on the path. What about time?

Search in Context

Let’s step back for a second from the details of search to
remind ourselves of what we’ve done. In order to plan
ahead to find a solution, an intelligent agent goes
through three distinct phases:

1. Formulate the goal.

What is desired?

For elective goals, this is not trivial. And it is
something that our programs don’t often worry
about, because the goals are specified by the
programmer!

2. Formulate the problem.

What needs to be done?

If an agent plans to search for a path to its goal, then
this is the step where it must define the problem in
the vocabulary of search: how to represent a state,
what the initial state is, what the operators are, and
what the goal test is.

Search in Context

The result of “problem formulation” is a concrete
definition of the problem:

• the state space
• What states will be considered?
• What actions will be considered?
• What is the initial state?

• the goal test
How does the agent know when it is done?

• (later) a path cost function
How will we compare potential solutions?

Finally...

3. Formulate the solution.

What is the answer?

If an agent plans to search for a path to its goal, then
this is the step where it applies its search algorithm
to search through (potentially, all possible) states for
a path to a goal state. At this step, it must choose a
search bias.

Formulating the Problem

Formulating a problem for search requires:

1. defining what states look like

2. defining what operations are possible and relevant,
and how each affects the state of the world

3. defining how to tell when the search is done

This often isn’t as easy as it seems...

1. In some environments, the agent can determine
which state it is in, and it knows exactly the effect of
each action. These are the easy problems.

2. In some environments, the agent either cannot tell
which state it is in or does not know exactly the effect
of each action. These are harder!

3. In some environments, the agent is ignorant both of
its initial state and of the effects of its actions. These
are hardest!!

Exploring the World

The last sort of problem is called exploration.

The agent must sense during execution and try to learn
the effects of its actions and a way to characterize the
state of the world.

The reasoning component of the agent cannot think
ahead with enough precision to map out one sequence of
actions to solve the problem.

In such situations, an agent tends to interleave its
thinking and its acting. It needs to begin acting before it
finishes reasoning, in order to use the information
gained during the acting step.

Formulating a Solution

This last step is where the agent actually searches for
something.

Search involves using an algorithm like the one we’ve
been considering to explore the set of possible states, in
search of a sequence of operations that leads from the
initial state to a goal state.

Because search employs an algorithm, formulating a
solution is objective: the algorithm defines the exact
order in which states will be explored.

This is different from problem formulation, which is
subjective: there are multiple formulations for any
problem that satisfy the definitions of our terms.

Uninformed Search

Random, breadth-first, and depth-first search strategies
are considered uninformed because they do not use
any knowledge about the problem being solved. The
algorithm we’ve been considering works as well for
finding a route between two cities as it does for solving a
crossword puzzle, as well for scheduling experiments on
the Hubble Space Telescope as it does for proving that a
logical statement is true.

This generality is both a source of strength and of
weakness:

An intelligent agent should be able to solve problems
that it hasn’t seen before, by using a general intelligence
about how to solve problems. So uninformed search is
an essential tool for an intelligent agent.

But algorithms that work everywhere don’t tend to work
very well anywhere, which means that they will be sub-
optimal in some important way for almost every
problem.

How can an agent use knowledge of the world to do a
better job solving problems?

