
TOWARD A FIRST COURSE BASED ON OBJECT-ORIENTED PATTERNS

Eugene Wallingford
Department of Computer Science

University of Northern Iowa
Cedar Falls, Iowa 50614-0507

wallingf@cs.uni.edu

1 INTRODUCTION
Many different approaches to teaching introductory

courses in computer science have been explored in the last
few years. Of these, most aim to resolve the conundrum of
how to teach abstraction skills in the face of student
difficulties with learning to write programs. CS1 courses
often carry the added burden of trying to present a more
accurate account of what computer science is like. To this
end, special emphasis is now placed on topics such as code
reuse. Even more new problems arise when an object-
oriented approach is adopted for use in introductory classes.
What are the appropriate abstractions to teach? What are
the best vehicles for teaching them?

This paper advocates an approach to teaching
object-oriented (OO) introductory computer science courses
that is based on programming patterns. Section 2 examines
the problem of abstraction versus detail in introductory
courses and motivates the use of patterns. In Section 3, the
pattern approach is described. That section outlines the
approach as it has evolved over three years of procedural
programming instruction and begins to develop the idea of
patterns for teaching OO-based courses. Section 4 relates
this approach to other work on teaching introductory
courses. Finally, Section 5 presents future plans for deve-
loping and refining the approach.

2 THE PROBLEM OF ABSTRACTION
The goals for most first courses in computing are

difficult to achieve. Traditionally, CS1 aimed to teach the
programming skills necessary to complete a program in
computer science. Increasingly, this course is also being
used to introduce students to other topics such as:

• “breadth” issues of computing as a discipline
• software engineering issues such as reuse

In most cases, these new goals create a demand for teaching
at a higher level of abstraction in CS1. This demand is
significant in its own right, but it is made even more
problematic by the desire to still have students develop a
reasonable level of programming skill.

The conflict between abstractions and the details of
programming are present even in courses that focus only on
teaching programming skills. Such courses have typically
presented a top-down approach to program development.
Yet Rist [15] found that students still tended to reason back-
ward from the program goal through program code to a
solution plan. This tendency arose because they lacked
appropriate high-level schema for solving the problem.
However, when students did have relevant schema available,
Rist found that students could and did reason forward from
plan to code. One of his conclusions was that novice pro-
grammers were not capable of applying general plans in the
development of code but rather needed access to problem-
specific plans.

One way around this obstacle is to teach suitable
plans as abstractions. Yet students in CS1 usually have a
great deal of difficulty just learning to use a programming
language. The details of the language are foreign enough
that learning to express a solution to a computational
problem in it consumes an inordinate amount of their
attention. Even when using a language with a simple
syntax, such as Scheme or Smalltalk, novice programmers
often do not have sufficient background for translating high-
level actions into programming language statements.
Requiring that students also learn abstract programming
plans and other high-level abstractions makes their task
even more burdensome. CS1 instructors face the dilemma
of forging a middle ground between these seemingly
incompatible desires.

In an effort to teach abstractions more directly, a
growing number of computer science departments have
begun to adopt an object-oriented approach in CS1. This
trend seeks to realize many of the same benefits in com-
puter science education that the OO paradigm brings to soft-
ware engineering. The benefits of different OO approaches

in CS1 have been recounted in recent years by several
educators [8,14]. Among these are that OO programming:

• encourages well-structured programs
• encourages reuse of code and design
• allows early use of complex objects

In CS1, these features also provide the advantage of
supporting a better introduction to computer science,
through more realistic modeling experiences with larger and
more interesting tasks.

Despite these potential benefits, computer
scientists know relatively little about how to teach this
paradigm in introductory courses. What we do know
indicates the need for care in instruction. Detienne [4] has
shown that students have difficulties switching from
another paradigm to an OO approach. This situation may
result from students’ inability to overcome a centralized
mindset when designing code, as reported by Guzdial [7].
Additionally, popular OO programming languages are not
always appropriate for teaching novices [8]. These factors
conspire to make learning problematic. Student attention is
focused on an discomfiting language syntax, which distracts
them from the already difficult task of learning a new
problem-solving paradigm.

If students are to reason in a top-down fashion,
then they must either be provided with relevant schema for
solving problems or given plenty of time to develop their
own through practice. Traditionally, CS1 students have
been left to construct their own schema implicitly, through
variety in programming exercises and lecture examples.
The results of this technique are not always satisfactory, due
to the wide range of possible schema that can be learned.
Students often end up creating schema that are too narrow,
stylistically displeasing, or just faulty. Remediating these
inappropriate schema takes time that might otherwise be
used for teaching other abstraction and programming skills.
Rist’s research inspires a possible solution: Teach
programming schema that are known to produce good
programs.

3 PATTERNS
With this motivation, I have been refining an

approach to introductory courses that is based on
programming patterns. Patterns have long been viewed as
an important part of how we understand and shape the world
around us. In the context of design, patterns [2,9] are
recurring solutions to the problems that confront designers.
Each pattern encapsulates a well-defined problem and a
standard solution. This solution consists of both a design
and a description of how to implement it. By thus inter-
twining the problem, the solution, and the implementation,
patterns allow the designer to refine them concurrently
during system development. The use of patterns provides a
new level of abstraction at which analysis, design, and
implementation can be done.

In the context of software development, patterns
embody abstractions that are used to write and understand
software. A pattern approach offers the novice programmer
a new kind of tool. Rather than viewing programming
language statements as the building blocks out of which to
construct programs, students can be taught to use patterns
as the basic unit of analysis, design, and programming.
These patterns provide a mapping from a type of problem
to an effective algorithm and an effective implementation in
code. In this way, small piecework that the students would
otherwise have to continually redo is standardized into a
larger unit that can be reused in various contexts.

3.1 Patterns in Procedural Programming
I have used patterns to teach procedural pro-

gramming for the last three years. Figure 1 lists the pro-
cedural patterns used in these courses. This set provides a
framework sufficient for teaching all of the material covered
in an introductory programming course.

Input-Process-Output

Guarded Action
Alternative Selection

Process All Items in a Collection
Counting
Accumulating
Finding Maximum/Minimum

Linear Search through a Collection
Interactive Data Validation

Figure 1: Procedural Patterns for Novices

Figure 2 gives an example of a pattern used in our
old Pascal-based CS1 course. The counting pattern is the
simplest repetition pattern that I cover and serves as an in-
troduction to repetition structures. Three elements com-
prise each pattern description: a statement of the general
problem, an algorithm for solving the problem, and a code
pattern that solves the problem. In this approach, students
analyze a problem by first trying to identify general
problem features that match one of the patterns in their
“catalog.” They then stylize the code pattern to match the
details of the problem. The commented steps of the code
always need to be accounted for with problem-specific code,
but the rest of the pattern can also be modified if necessary.

For example, if a problem asked for the number of
words read from standard input, the student would simply
replace the comments with code to read values from standard
input. If a problem asked for a count of the number of
words beginning with the letter ‘h’, the student would also
modify the incrementing of count to only be done under the

proper condition (using a guarded action, a selection pattern
that they have already learned). If the problem asked for
similar counts on a collection stored in an array, the get and
loop steps would be modified to use a for statement over
the array’s range of indices. A central element of the course
is exploring when and how to modify code patterns for
specific applications.

The course is organized around a number of
prototypical patterns and a broad selection of different kinds
of problems. These problems allow the student to gain
experience recognizing the presence of a pattern, applying a
pattern with minimal modifications, and applying patterns
in contexts that call for more significant modification.
Once a number of patterns have been introduced, we cover
more complex data types, such as arrays and files, and exa-
mine the kinds of modifications that each typically requires.
Students begin to see patterns in the modifications
themselves, which reinforces their understanding of the data
type.

Pattern: Counting
Problem: Need to count the number of items

in a collection of values

Algorithm: Initialize counter to 0
While there are more items,

Process the item
Increment the counter

Code: count := 0;
/* get the first value */
while (value <> STOPPER)
{
 /* process the value */
 count := count + 1;
 /* get the next value */
}

Figure 2: The Counting Pattern

3.2 Evaluation of the Experience
The pattern approach has evolved through seven

semesters of use in introductory courses, both in CS1 and
in standard procedural programming courses. In addition to
Pascal, it has been used in courses teaching BASIC and
C++. I have done no formal analysis of the effects of the
approach on student performance and learning, but I can
offer several comments on my perception of its effects.

First, many students do seem to benefit from the
use of patterns as the basic units for writing programs.
Weaker students now rarely face the daunting task of
creating programs on an empty editor screen, one line at a
time. By recognizing an appropriate pattern in a problem,
they can immediately begin working with a “chunk” of

meaningful code. This effect has been most noticeable on
exams, where students are under time constraints. Second,
the approach has encouraged reuse of code and algorithms
from problem to problem. Students have commented that
they can view the patterns as tools, so that by the end of
the course they are well-equipped to handle nearly any
problem that they encounter.

However, concerns about the approach have arisen.
Some students feel that the use of patterns limits their
ability to create unique solutions of their own. Not all are
persuaded by claims that patterns channel their creativity
toward the most interesting elements of a solution. In the
same vein, though, I have been concerned that the use of
patterns might inhibit the better students’ development of
their own problem-solving schema. By exposing students
to a wide enough range of problems, this difficulty may be
avoided. The more that they have to modify and combine
patterns, the more that they will have an opportunity to
develop their own. Still, monitoring student progress in
future courses may provide a more concrete answer.

The results of the pattern approach have been
encouraging enough that a group of faculty in our
department is now working on a project, funded by the
National Science Foundation [5], to develop a full set of
curricular materials based on the approach. These materials
will include a suggested set of patterns for use in a first
course in programming. The project will also evaluate the
approach further by using it in courses teaching C and
COBOL.

3.3 Patterns in OO Programming
Since the fall of 1994, our department has used an

object-oriented approach in CS1 and CS2. As a result, I
have begun to consider how I might apply the pattern
approach to an OO first course. An object-oriented pattern
is typically a small set of classes, usually two or three in
number, that is frequently useful in program development.
The key to an OO pattern is the relationships between the
objects that comprise it. As with procedural patterns, OO
patterns provide a vocabulary for building systems, one that
is more helpful than individual classes.

A great deal of the research on patterns originated
and still resides in the OO community. However, not all of
that work is directly relevant to my goals. First, that work
targets primarily more advanced software practitioners.
Second, it tends to emphasize design issues [6,9], whereas a
first course must provide a significant amount of support
for novice programmers. Thus the patterns that we use in
such a course will tend to be more concrete and low-level
compared to the ones in the literature on patterns.

I have begun to identify a small set of OO pat-
terns for use in our new CS1 course. For teaching pur-
poses, the selected patterns must be concrete enough to pro-
vide meaningful support for writing implementation code.
As noted above, the concerns of novices generally focus on

the generation of working code. This means that some
patterns will involve single objects, providing students
with concrete support for coding objects that play particular
roles. Also, while our goal in CS1 is not primarily to
develop design skills, the patterns introduced there should
be general enough to find application in the student’s later
experience. Figure 3 gives brief descriptions of the patterns
I have chosen so far.

Figure 4 offers an abbreviated characterization of
the view pattern in C++. One of the simpler OO patterns,
views will serve as an introduction to the composition of
objects. Three elements comprise each pattern write-up: a
statement of the general problem, a description of the
objects that solve the problem and their relationships, and a
code skeleton that implements the description. As with
procedural patterns, the programmer must furnish problem-
specific code for the commented steps of the pattern. This
task will be supported by single-object patterns covered
earlier in the course.

State Maintain a body of data and provide
suitable access to it by other objects and human users.

View Decouple an object’s state from its
presentation to other objects and human users.

Decorator Attach additional functionality to an
object without modifying the class.

Figure 3: Possible OO Patterns for Novices

OO patterns differ from procedural patterns in that
they emphasize object roles and relationships rather than
relationships among actions. But the process for using OO
patterns in teaching will remain much the same. The
student will examine existing code in order to recognize
patterns in existing code. They will analyze new problems
by first identifying problem features that match one of the
patterns in their “catalog” and then stylizing the code
pattern to match the details of the problem. And much
emphasis will be placed on adapting the features of patterns
to the details of specific types of problem.

My plan is to develop approximately six patterns
that will serve to introduce OO analysis, design, and pro-
gramming to novices. One of the key goals in this effort
to help students overcome the centralized mindset that they
bring to problem solving. As Guzdial [7] has reported,
students tend to centralize control of processing in a single
function or object, except when they are very familiar with
the system of objects involved. OO patterns provide a
mechanism for seeing solutions to problems in terms of
distributed objects with distributed control. By providing
students with numerous examples of good problem decom-
position and with numerous opportunities to apply pat-

terns, I hope to help students overcome the tendency toward
centralized programs.

Pattern: View
Problem: Need to display an object in a way

that is not intrinsic to the object

Objects: Model, which maintains state data
View, which contains the model

Code: class model
{
 public:
 /* constructors */
 /* access functions */
 private:
 /* state data */
};

class view
{
 public:
 /* constructors */
 /* function to access model */
 /* display functions */
 private:
 model my_instance;
};

Figure 4: The View Pattern

4 RELATED WORK
The idea of using patterns to teach procedural

programming is not new. Both Soloway’s plans [16] and
Linn and Clancey’s templates [10] capture similar “chunks”
of programming knowledge. Soloway proposed a number
of useful plans and a method for decomposing problems
that use them. Linn and Clancey expanded upon the idea of
a plan to offer much more complete templates of pro-
gramming practice. Yet their approach emphasizes case
studies, not templates, as the basis for pedagogy. The
pattern approach, however, differs from both approaches by
making patterns the central focus of the course. It proposes
(a) a methodology for teaching an entire first course and (b)
a complete set of patterns for this purpose.

Recently, several educators have begun to explore
the use of apprenticeship [1] approaches in introductory
computer science instruction. In this model, students learn
to program by first reading and modifying programs that
have been written by experts [11,13]. Only after they have
experience of this type do they write new code on their
own. Such approaches can be used to teach either pro-
cedural or object-oriented programming. The use of
patterns is quite compatible with an apprenticeship model.

Patterns provide a high-level vocabulary for studying and
understanding expert code. Later, they provide a skeletal
structure from which to write new code.

An exciting application of this idea specifically to
OO programming involves the use of “frameworks” [3,12].
A framework is a body of reusable code, usually expressed
as a set of classes. These classes are used as the basis for
developing applications of a particular kind, such as a
graphics programs or database programs. Students learn to
program by extending the framework with problem-specific
classes of their own, using inheritance. Well-designed
frameworks provide the novice with objects that are
powerful enough to be interesting yet simple enough to be
understood. Thus students are able to learn programming in
the context of a real application guided by expert code.

Again, the use of patterns is quite compatible with
a framework approach. A framework provides examples of
good design and programming, but it does not provide spe-
cific tools for understanding the classes in the framework or
the relationships among them. How does one study a
framework? Or extend it? Why is the code in the frame-
work considered “good”? Patterns offer a vocabulary for
answering these questions. By using patterns, an instructor
can teach the fundamental concepts of OO programming
through the content of specific problem-solving schema.
One way to explore the relationship between frameworks
and patterns would be to construct a framework specifically
intended for use with a specific set of OO patterns, or to
select a set of patterns to teach based on the relationships
inherent in an existing framework.

5 FUTURE PLANS
Teaching introductory computer science courses is

difficult partly because of the problem of abstraction:
Students have a hard time operating at a high level of ab-
straction while learning the low-level skills of program-
ming. The approach described here offers a way to temper
this problem by teaching programming in terms of pat-
terns. Patterns provide high-level building blocks that
guide the student’s use of language constructs. They also
encourage the reuse of software components. This approach
has been applied informally to teach procedural program-
ming for three years, with some success. However, the
trend toward teaching introductory courses using object-
oriented techniques creates a need to develop a first course
based on object-oriented patterns of design and program-
ming.

This paper describes the rudiments of such a
course, but much work remains. First, a full set of object
patterns must be identified. Second, a course based on these
patterns must be designed. The challenge of this task lies
in discovering useful patterns that are:

• relevant to the student’s future experiences
• simple enough for novices to understand
• provide sufficient programming support

Such a course must teach the desired object-oriented con-
cepts while also preparing students to implement methods
using simple procedural code. This may involve use of
procedural patterns in some form. My goal is to be able to
present experience in such an object-oriented first course
based on patterns by March of 1996.

6 REFERENCES

1. Astrachan, Owen, and David Reed (1995). “AAA
and CS1: An Applied Apprenticehip Approach to CS1,”
SIGCSE Bulletin 27(1):1-5.

2. Coad, Peter (1992). “Object-Oriented Patterns,”
Communications of the ACM 35(9):152-159.

3. Conner, D. Brookshire, David Niguidula, and
Andries van Dam (1994). “Object-Oriented Programming:
Getting Right at the Start,” OOPSLA ’94 Education
Symposium.

4. Detienne, F. (1990). “Difficulties in Designing
with an Object-Oriented Programming Language,”
INTERACT ’90, Cambridge, England.

5. Pattern-Based Programming Instruction (1995).
NSF Grant DUE-9455736.

6. Gamma, Erich, Richard Helm, Ralph Johnson, and
John Vlissides (1995). Design Patterns. Addison-Wesley.

7. Guzdial, Mark (1995). “Centralized Mindset: A
Student Problem with Object-Oriented Programming,”
SIGCSE Bulletin 27(1):182-185.

8. Kolling, Michael, Bett Koch, and John Rosenberg
(1995). “Requirements for a First Year Object-Oriented
Teaching Language,” SIGCSE Bulletin 27(1):173-177.

9. Lea, Doug (1994). “Christopher Alexander: An
Introduction for Object-Oriented Designers,” ACM Software
Engineering Notes, January 1994.

10. Linn, Marcia C., and Michael J. Clancy (1992).
“The Case for Case Studies of Programming Problems,”
Communications of the ACM 35(3):121-132.

11. Pattis, Richard E. (1993). “The ‘Procedures Early’
Approach in CS1: A Heresy,” SIGCSE Bulletin 25(1):122-
126.

12. Pattis, Richard E. (1995). “Teaching OOP in
C++ to Novices by using an Artificial-Life Framework.”
Submitted to 1996 SIGCSE Technical Symposium.

13. Reek, Margaret M. (1995). “A Top-Down
Approach to Teaching Programming,” SIGCSE Bulletin
27(1):6-9.

14. Reid, Richard J. (1993). “The Object-Oriented
Paradigm in CS1,” SIGCSE Bulletin 25(1):265-269.

15. Rist, Robert S. (1989). “Schema Creation in Pro-
gramming,” Cognitive Science 13:389-414.

16. Soloway, Elliot (1986). “Learning to Program =
Learning to Construct Mechanisms and Explanations,”
Communications of the ACM 29(9):850-858.

