Add figures to open slots below.
Finish with an exercise adding ShrinkingBall as a Decorator.

Look at benefits of polymorphism by Decorator inheritance:
nested decorators!

Add a final slide (couple of minutes) on the polymorhism ideas
at work in this pattern and examples.

For each stopping point, show working code. SEE substitution!

Questions got to the idea of how clients create instances of the
decorator.

Modify place where | talk about benefits of inheritance +
composition. Inheritance is for interface and gives
substitutability of the new objects for the old. Composition
uses substitutability as a means for adding behavior to many
different classes at once!

An EXxercise

Suppose that we are writing a new program using objects from our Ball
hierarchy. In this program, some MovableBall s must decelerate. Every
time one of these decelerating balls moves, its speed decreases by 5%.

Add a DeceleratingBall class to the Ball hierarchy for this purpose.

public class Ball

{

private Rectangle location;
private Color color;

-

public class MovableBall extends Ball

private double dx;
private double dy;

-

public class BoundedBall extends MovableBall

{

private int maxHeight;
private int maxWidth;

import java.awt.*;

public class Ball

{

private Rectangle location;
private Color color;

public Ball (int x, inty, intr)

{
location = new Rectangle(x-r, y-r, 2*r, 2*r);
color = Color.blue;

}

public void setColor (Color newColor) { color = newColor; }
public Color getColor() { return color; }

public int radius () { return location.width / 2; }
public int x () {return location.x + radius(); }
public int y () {returnlocation.y + radius(); }
public Rectangle region () { return location; }

public void paint (Graphics g)
{
g.setColor (color);
g.fillOval (location.x, location.y, location.width, location.height);
}
}

import java.awt.*;

public class MovableBall extends Ball

{

private double dx;
private double dy;

public MovableBall (int x, inty, intr)

{
super(x, y, r);
dx =0;
dy =0;
}
public void setMotion (double ndx, double ndy)
{
dx = ndx;
dy = ndy;
}

public double xMotion () { return dx; }
public double yMotion () { return dy; }

public void moveTo (int x, int y)

{

region().setLocation(x, y);

}

public void move ()

{
region().translate ((int) dx, (int) dy);
}
}

import java.awt.*;

public class BoundedBall extends MovableBall

{

private Frame myWorld;

public BoundedBall (int x, inty, int r, Frame aWorld)
{

super(x, y, r);
myWorld = aWorld;
}

public BoundedBall()

{
super(0,0,0);
myWorld = null;
}

protected Frame world()

{

return myWorld;

}

public void move ()

{

super.move();

int maximumHeight = myWorld.getSize().height;
int maximumWidth = myWorld.getSize().width;

if ((x() <0)] (x() > maximumWidth))
setMotion (-xMation(), yMotion());

it ((y(<0) |l (y() > maximumHeight))
setMotion (xMotion(), -yMotion());

A Possible Solution

import java.awt.*;

public class DeceleratingBall extends MovableBall

{

public DeceleratingBall(int x, inty, intr)

super(x, Y, r);

public void move()

{

super.move();
setMotion(xMotion() * 0.95, yMotion() * 0.95);

}
}

Ball

MovableBall

N

BoundedBall DeceleratingBall

A Wrinkle in Our Solution

It turns out that we sometimes need to use BoundedBall s that also
decelerate. Can you fix the problem?

import java.awt.*;
public class DeceleratingBoundedBall extends BoundedBall

public DeceleratingBoundedBall(int x, inty, intr,
Frame f)
{

super(x, y, r, f);

public void move()
{
super.move();
setMotion(xMotion() * 0.95, yMotion() * 0.95);

}
}

Ball

MovableBall

N

BoundedBall DeceleratingBall

DeceleratingBoundedBall

How Good is Our Solution?

What are the strengths of our approach?

= Itissimple.

What are the weaknesses of our approach?

= |t repeats codes. The move() methods in DeceleratingBall and
DeceleratingBoundedBall are identical!

You may be asking yourself, “So what? It works.”

= What happens if we need to change the deceleration factor, say, from
95% to 80%?

We must remember to make the change in two different classes.

= What happens if we need to add deceleration behavior to other classes
that inherit from MovableBall ?
More subclasses!

= What happens if we need to add more behavior to our decelerating ball
classes?
Even more subclasses!

Solutions that make future extensions to the system unbearable are probably
not very good solutions at all...

Insert slide of “full”” ball hierarchy from Persuasion...

An Alternative Solution

All BoundedBall s respond to the same basic set of messages, inherited from
Ball and MovableBall . So they are substitutable for one another. Can we
use this to our advantage?

import java.awt.*;
public class DeceleratingBall extends MovableBall
{

private MovableBall workerBall;

public DeceleratingBall(MovableBall aBall)

{
super();
workerBall = aBall;
}
public void move()
{

workerBall.move();
workerBall.setMotion(workerBall.xMotion() * 0.95,
workerBall.yMotion() * 0.95);
}
Il ** MESSAGES DELEGATED TO THE INSTANCE VARIABLE

publicintradius() { return workerBall.radius(); }

public int x() { return workerBall.x(); }
public int y() { return workerBall.y(); }

public Rectangle region() { return workerBall.region(); }
public void setColor (Color newColor)

workerBall.setColor(newColor);

}

public Color getColor()
{

return workerBall.getColor();

}
public void paint(Graphics g)

workerBall.paint(g);

public void setMotion (double ndx, double ndy)

workerBall.setMotion(ndx, ndy);

}

public double xMotion ()
{

return workerBall.xMotion();

}

public double yMotion ()
{

return workerBall.yMotion();

}

public void moveTo (int x, inty)

{

workerBall.moveTo(X, Y);

}
}

How Good i1s Our New Solution?

What are the weaknesses of our new approach?

It is more complex.
It is a bit slower at run time.

What are the strengths of our new approach?

It “says it once and only once”. The move() method specific to
deceleration behavior occurs in one class. The deceleration factor lives
in exactly one class.

We can add deceleration behavior to any MovableBall with a single
class.

We can add deceleration behavior to any future subclass of
MovableBall —with no new code!!

The tedious task of writing the delegation methods can be done
automatically within many OO programming tools.

As is usually the case, we favor a somewhat more complex solution when it
offers extensibility and flexibility as benefits.

Insert slide of the new “full” ball hierarchy from Persuasion...

Do You Recognize a Pattern?

We added flexibility and extensibility to our system using the same ideas we
used in our previous two class sessions:

= substitution

= delegation
e recursion

The new twist in this solution is that DeceleratingBall uses substitution
on a class in its own class hierarchy!

This new twist is so common that it has its own name: decorator.

The Problem

We would like to add a behavior to a set of classes that share a
common interface.

A Tempting Solution that Fails

Use inheritance to create a new class of objects that has the behavior.
Use instances of this class when you need the behavior, and
use instances of the superclass otherwise.

This solution is impractical.
What if we would like to add the behavior to many different classes
in the hierarchy? We will need to create multiple subclasses and

replicate the behavior in each.

What if we would like to add more behavior to the extended object?
We have to make (many!) more subclasses!

The Decorator Pattern

Why Does This Problem Matter?
It occurs in many domains and in many applications:

We want to add features to individual balls in our ball games or to
individual card piles in our card games.

We want to add features to individual streams in the Java library,
such as buffering the input we read from a stream.

We want to add windowing features to individual objects in a word
processor or drawing program.

GoF figure bottom of page 175

The Decorator Pattern

The Solution

Create a decorator class. Encapsulate an instance of the base class
as an instance variable of the decorator.

Implement the new behavior in the decorator.

Delegate all other messages to the encapsulated object.

Use inheritance to extend the decorator class from the contained class.
This allows decorated object to be used in all the same places as the
encapsulated object!

This is a second example of using inheritance and composition together:

By using inheritance, we preserve substitutability.
By using composition, we improve extensibility and flexibility.

Examples of the Decorator Pattern

GoF figures middle page 176

A figure based on Budd top page 169

