
Using Patterns
in the CS Curriculum

An NSF/SIGCSE-Sponsored Tutorial
at the

5th Northeastern Conference
of the

Consortium for Computing in Small Colleges

Eugene Wallingford
Department of Computer Science

University of Northern Iowa

April 29, 2000

Elementary Patterns
Community

Owen Astrachan (Duke University)
Joe Bergin (Pace University)
Robert Duvall (Duke University)
Ed Epp (Intel Corporation)
Rick Mercer (University of Arizona)

Alyce Brady (Kalamazoo College)
Doug Dechow (Oregon State Univ.)
Dwight Deugo (Carleton University)
Javier Galvé-Frances (University of Madrid)
Zung Nguyen (Rice University)
Viera Proulx (Northeastern Univ.)
Richard Rasala (Northeastern Univ.)
Stephen Wong (Oberlin College)

<your name here!>

Outline of the Presentation

What are patterns?

• history
• definitions
• examples

How can patterns help us teach CS?

The future of elementary patterns

Questions and answers

A Little Pre-History

The architect Christopher Alexander has
been exploring the nature of form in the
“built world” for over 40 years.

He adopted the term pattern to denote
the structural relationships that recur in
“good” houses and other “good” spaces.

We use “pattern” to mean three distinct
but related ideas:

• a thing
• a description of the thing
• a description of how to build the thing

Light on Two Sides
of Every Room

A thing ...

any configuration in a building in which a
room receives exterior light from at least
two sides

A description of the thing ...

a relationship among a room in a
building, other interior spaces, and the
exterior of the building

A description of how to build the thing ...

Place rooms in corners of the building.
Juxtapose small rooms with large ones.
Take care not to destroy the building’s
roof layout. Make the windows open on
something beautiful. ...

The Idea of Software Patterns

At a 1987 OOPSLA workshop, Beck and
Cunningham presented their initial effort
at applying Alexander’s ideas about
patterns to software.

Concurrently, many other folks were
working on the problem of how to codify
software design expertise. They gradually
came into contact with patterns, and the
idea struck a chord with many of them.
Thus was the software patterns
community born.

The popular birthday of software patterns
is probably the release of the book Design
Patterns by the “Gang of Four”.

The Composite Pattern
A thing ...

a panel in a Java program, or
the expression (3 + (4 * 5))

A description of the thing ...

an object in some program that behaves
like other objects but which contains a
collection of such objects and uses them
to perform its tasks

A description of how to build the thing ...

Create a class that implements the
desired interface. Give the class an
instance variable that is a collection of
objects of the interface type. Implement
its methods by delegating responsibility
to the objects in its collection. ...

What Patterns Are

A structural relationship between the
components of a system that brings into
equilibrium a set of demands on the
system.

“A solution to a problem in a context”

In order to understand why the pattern
recurs, one must understand the design
trade-offs that underlie it.

A description of these trade-offs is an
essential part of the pattern as description.

A Software Pattern (1)

Name

Mutual Recursion

Context

You are using Structural Recursion,
over a BNF description of the data.

Problem

What should you do when the data
element you are processing has a BNF
description that refers to the same
inductively-specified data type?

<list> ::= ()
 | (<symbol-expression> . <list>)

<symbol-expression> ::= <symbol>
 | <list>

A Software Pattern (2)

Forces

You want your code to be easy to read
and modify.

Creating a single procedure focuses
the reader’s attention on one piece of
code but may result in code with
complex case analysis.

Furthermore, a single procedure
obscures the fact that your data is
defined in separate expressions. This
makes adding or changing data
definitions difficult.

Writing multiple procedures compli-
cates the task of reading the code but
makes the relationship between the
data definitions explicit.

A Software Pattern (3)
Solution

Use Structural Recursion on both
data definitions.

Have each procedure invoke the other
at the corresponding point in the code.

Give the helper procedure a name that
indicates the data type it operates on.

Resulting Context

Use a Local Procedure to eliminate
name clashes or undesired clutter to
your set of procedure definitions.

Use Program Derivation to reduce
the cost of the extra procedure calls,
especially when operating on deeply-
nested lists.

Pattern Languages

The initial context and the resulting
context of a pattern generally refer to
other patterns.

• Mutual Recursion occurs when one is
doing Structural Recursion.

• When one does Mutual Recursion, one
often also needs to implement a Local
Procedure or a Program Derivation.

In complex systems, patterns contain
other patterns, are built out of them.

A pattern language is a collection of
patterns that, when implemented together,
generate a complete structure.

Roundabout

The patterns in the previous example are
part of Roundabout, a pattern language
for doing recursive programming in a
functional programming style.

Structural Recursion

Interface Procedure

Mutual Recursion

Program Derivation

Accumulator Variable

Local Procedure

Syntax Procedure

What Patterns Are Not

• Patterns ≠ “Gang of Four”
• Patterns ≠ OOP

• Patterns ≠ extra material
• Patterns ≠ new material

• Patterns ≠ programming templates
• Patterns ≠ tricks

• Pattern language ≠ a pattern catalog

Elementary Patterns
Elementary patterns have a long history:

• in the mid-1980s: Soloway, Clancey, ...

• in the mid-1990s: my CS1 courses

• at the same time: others were exploring
ways to increase their students’ pro-
gramming “literacy” through early
design, apprenticeship models, ...

Then patterns hit the scene.

Patterns are consistent with all these ideas,
and they add something more: a unifying
framework for documenting program
structure and the process that generates it.

So many of us began to: write patterns.
use patterns.

Outline of the Presentation

What are patterns?

How can patterns help us teach (CS)?

• what patterns offer teachers
• what patterns offer learners
• how to use patterns in a course

The future of elementary patterns

Questions and answers

Patterns are a laboratory for
studying design principles.

I use simple OO patterns like Decorator
and Composite to help my students learn
the basic principles of OOP:

• composition and delegation
• interfaces and inheritance
• dynamic polymorphism

Common
Interface

Concrete
Class holds a collection of

Interface objects o

...

Concrete
Class

Composite...

Patterns are tools
for reading programs.

Patterns provide a vocabulary for talking
about the basic structures students see in
programs.

The Java class libraries abound with
examples of common OO patterns:

• the Enumeration interface
• the MouseAdapter class
• the java.io package

Patterns are tools
for writing programs.

The same patterns that serve as a vocabu-
lary for reading programs can serve as a
vocabulary for writing programs.

This was my initial motivation for using
procedural programming patterns in CS1:

• selection patterns

• guarded action
• alternative action

• repetition patterns

• process-all-items
• counting and accumulation loops
• linear search

Patterns are benchmarks
for evaluating programs.

Grading programs is often too subjective.

A pattern language shows the context in
which each pattern appears. It guides the
student through the process of generating
a program from the “top” down.

When my class studies Roundabout, we
all share a common vocabulary and a
common understanding of when certain
structures should appear in a program.

Students can write any program they
want, but the burden of proof is on them
whenever they choose to deviate from the
pattern language!

Writing patterns will help
an instructor to understand

the material even better.

Writing patterns is a skill that takes time
and practice to develop. But the effort to
write patterns pays off many-fold in a
sharpened understanding of the kinds of
programs that we want our students to be
able to write.

• What is the problem being solved?

• What is the solution?

• Why is this solution better than the
alternatives?

• How do these pieces grow together to
make a good program?

Patterns help students
appreciate the beauty of

programs.

Patterns provide structure to a program in
a way to balances the concerns facing the
program (and the programmer!).

* An individual pattern like Decorator
gives birth to beauty by combining two
tools, composition and inheritance, in a
way that maximizes each’s benefits and
minimizes each’s costs.

* A pattern language like Roundabout
gives birth to beauty by showing how
small parts can work together to create a
whole that is greater than the sum of the
parts—a program that is better than we
would have generated otherwise.

Using Patterns
in the Classroom

Figure It Out
The Pattern Lecture

Pattern Mining

• Give the students an exercise to solve in
which the pattern is likely to appear.

• Give the students another such exercise,
with a somewhat different flavor.

• Examine candidate solutions to the two
exercises.

• Identify the pattern, and give it a name.
• Give the students another exercise to do;

tell them to use the pattern explicitly.
• Assign a programming assignment in which

the pattern plays a major role.

Using Patterns
in the Classroom

Guided Discovery

• Give the students an exercise to solve in
which the pattern is key to a good solution.

• Examine successively more satisfactory (and
less obvious?) solutions, exposing the forces.

• Identify the pattern, give it a name, and
discuss other applications of it.

Before and After

• Show a system designed or implemented ad
hoc, or at least without the aid of patterns.

• Show the same system after applying the
patterns.

• Discuss the pros and cons of each version.

Outline of the Presentation

What are patterns?

How can patterns help us teach (CS)?

The future of elementary patterns

• resources
• getting involved

Questions and answers

Resources

http://www.cs.uni.edu/
 ~wallingf/patterns/elementary/

The Elementary Patterns home page
provides links to:

• information on how to participate in
the elementary patterns community

• elementary patterns and pattern
languages

• ideas on how to use patterns in the
classroom

• conferences and workshops
• other patterns resources of interest
• other resources of interest

The web site is a community effort...

How To Get Involved

Participate in a SIGCSE workshop.

Participate in a BoF at OOPSLA.

Write a pattern and submit it to PloP .

Come to ChiliPloP to learn more about
patterns or to work with us elementary
patterns.

Join our mailing list. Don’t just lurk; ask
questions and pose problems and join in!

Surf the Elementary Patterns web page.

Outline of the Presentation

What are patterns?

How can patterns help us teach (CS)?

The future of elementary patterns

Questions and answers

