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During cell division, the pair of recently synthesized 
DNA molecules, now called sister chromatids, remain in 
close proximity until the precise moment of segregation 
during the metaphase/anaphase transition. Sister chro-
matid cohesion is regulated by cohesin, a multiprotein 
complex, which was characterized in  Saccharomyces  and 
 Xenopus  [Guacci et al., 1997; Michaelis et al., 1997; Losa-
da et al., 1998]. This complex is essentially composed of 4 
core subunits: 2 evolutionarily very conserved proteins 
that belong to the structural maintenance of chromo-
somes family of proteins (SMC1 and SMC3), 1 kleisin  �  
(from the Greek for closure) subunit SCC1/RAD21 and 
stromalin SCC3/SA/STAG ( fig.  1 A). Vertebrates have 2 
mitotic SCC3/SA/STAG members, SA1/STAG1 and SA2/
STAG2 [Carramolino et al., 1997], which do not coexist 
and are present in different cohesin complexes in  Xeno-
pus  [Losada et al., 1998] and human [Sumara et al., 2000]. 
In germ cells, distinct meiosis-specific subunits have 

 Key Words 
 Aneuploidy  �  Chromosome segregation  �  Cohesin  �  
Cohesinopathies  �  Cohesin-regulators  �  Sister chromatid 
cohesion 

 Abstract 
 Apart from a personal tragedy, could Down syndrome, can-
cer and infertility possibly have something in common? Are 
there links between a syndrome with physical and mental 
problems, a tumor growing out of control and the incapabil-
ity to reproduce? These questions can be answered if we 
look at the biological functions of a protein complex, named 
cohesin, which is the main protagonist in the regulation of 
sister chromatid cohesion during chromosome segregation 
in cell division. The establishment, maintenance and remov-
al of sister chromatid cohesion is one of the most fascinating 
and dangerous processes in the life of a cell. Errors in the 
control of sister chromatid cohesion frequently lead to cell 
death or aneuploidy. Recent results showed that cohesins 
also have important functions in non-dividing cells, reveal-
ing new, unexplored roles for these proteins in human syn-
dromes, currently known as cohesinopathies. In the last 10 
years, we have improved our understanding of the molecu-
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been characterized in various organisms. In mammals, 
the meiotic paralogues of SMC1, SCC1/RAD21 and SA/
STAG1/2 are thus SMC1 �  [Revenkova et al., 2001], REC8 
[Parisi et al., 1999; Watanabe and Nurse, 1999] and 
STAG3 [Pezzi et al., 2000; Prieto et al., 2001], respectively. 
Based on the electronic microscopy results and structur-
al characteristics of SMCs, it was proposed that these 
complexes form a ring-like structure ( fig. 1 A) and medi-
ate cohesion by embracing chromatin fibers from the 2 
sister chromatids (embraced model in  fig. 1 B) [Gruber et 
al., 2003] and/or by the 2-ring handcuff model, in which 
each sister chromatid is encircled by 1 cohesin ring and 
the 2 cohesin rings associate by SCC3/STAG-dependent 
interactions ( fig.  1 B) [Zhang N et al., 2008b]. These 2 
models are not mutually exclusive.

  On the other hand, now we know that most aneuploi-
dies derive from errors in maternal meiosis and that ma-
ternal age is a risk factor for human trisomies [Hassold 
and Hunt, 2001]. Meiosis is characterized by a single 
round of DNA replication, followed by 2 rounds of chro-
mosome segregation, to yield haploid gametes from dip-
loid germ cells. Control of sister chromatid cohesion 
presents important differences between mitotic and mei-
otic cell cycles, which will be discussed in this present 
review.

  In addition to their canonical role as ‘chromosome 
glue’ during cell division, cohesins are involved in addi-
tional cellular mechanisms including centromeric het-
erochromatin formation, post-replicative double-strand 
break repair, centrosome dynamic, and transcription 
control. This review illustrates the general features and 
more relevant molecules involved in the regulation of sis-
ter chromatid cohesion during chromosome segregation 
and the relationships with aneuploidy and other cohesin-
opathies.

  Regulation of Loading, Establishment,
Maintenance and Removal of Cohesin
Complexes during Chromosome Segregation 

 Failures in chromosome segregation during mitosis 
lead to aneuploidy, which is a frequent feature of tumor 
development. The control of chromosome segregation is 
managed by a complex network of events, which guaran-
tees that each daughter cell receives the right chromo-
some number. One of the best regulated processes in this 
network is the association/dissociation of sister chroma-
tids. In  Saccharomyces cerevisiae  mitosis, the cohesin 
complexes are loaded near G1 to S phase, but, in most or-
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  Fig. 1.  Structural model of cohesin com-
plexes.  A  Cohesin subunits and ring-like 
structure for cohesin complexes. A het-
erodimer shaped by the interactions of the 
hinge regions from SMC1 and SMC3 form 
the ring arrangement. The N- and C-ter-
mini regions of SCC1/RAD21 kleisin sub-
unit interact with the head domains from 
SMC3 and SMC1, respectively, closing the 
ring. The SCC3/SA/STAG subunit inter-
acts with kleisin, maintaining the ring-like 
structure.  B  Two proposed models, by 
which cohesin complex mediates  sister  
chromatid cohesion. In the ring-embraced 
model, a single cohesin ring hugs 2 sister 
chromatids. The handcuff model presup-
poses that the cohesin ring may encircle a 
single chromatid and interacts with a sec-
ond ring that embraces the other sister 
chromatid. The interaction between these 
2 cohesin rings is mediated by a single 
SCC3 molecule. 
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ganisms studied, cohesins bind to chromatin in telophase 
[Nasmyth, 2001]. The loading of cohesin complexes to 
chromosomes depends on the Scc2/Scc4 adherin com-
plex [Ciosk et al., 2000; Watrin et al., 2006] ( fig. 2 ). This 
loading is not sufficient for the cohesion function in chro-
mosome segregation and the Eco1/Ctf7p acetyltransfer-
ase is required for the establishment of cohesion [Skib-
bens et al., 1999; Toth et al., 1999]. A substrate of Eco1 
acetylase is SMC3 and this cohesin subunit is acetylated 
in an Eco1-dependent manner during replication to pro-
mote sister chromatid cohesion [Ben-Shahar et al., 2008; 
Zhang J et al., 2008a] ( fig. 2 ). Human SMC3 is acetylated 
at K105 and K106 by the human Eco1 homolog ESCO1; 
these acetylation sites are located in the middle of the N-
terminal head domain, which contains the ‘Walker A’ nu-
cleotide-binding domain and it could be important in the 
interactions of SMC1/SMC3 heterodimer with SCC1 for 
closing the ring. Very recently, Heidinger-Pauli et al.  
 [2010], using SMC mutants proteins to block steps in co-

hesin’s ATPase cycle in yeast, developed a working mod-
el showing how SMC3 binding to ATP might modulate 
cohesin binding and cohesion establishment and help us 
understand the role of this cohesin-cofactor.

  Two cohesin-regulators Rad61/WapL and Pds5 are 
also involved in the opening/closing of cohesin ring by 
interactions with different cohesin subunits [Rowland et 
al., 2009] ( fig. 2 ). These cofactors are necessary for cohe-
sin complex dynamics, but are not considered compo-
nents of the canonical cohesin complex. One of these co-
factors is PDS5/BimD/Spo76 [Denison et al., 1993], which 
interacts with human SA1/STAG1- and SA2/STAG2-con-
taining complexes in somatic cells [Sumara et al., 2000]. 
Two vertebrate PDS5 proteins, PDS5A and PDS5B, have 
been characterized [Losada et al., 2005]. PDS5 are large 
HEAT-repeat proteins that bind to chromatin in a cohe-
sin-dependent manner in both human cells and  Xenopus  
egg extracts. They are not required for cohesin associa-
tion to chromosomes, but are needed for maintaining co-
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  Fig. 2.  Cohesin-interacting proteins controlling the different 
steps of sister chromatid cohesion. The adherin complex formed 
by SCC2 and SCC4 proteins is involved in the loading of cohesin 
complex to chromatin. ECO1-dependent SMC3 acetylation regu-
lates the opening of cohesin ring allowing de novo synthesized 
chromatid to enter through the cohesin complex. The molecular 
mechanism closing the cohesion ring again is currently unknown, 
but it has been proposed that this process is dependent of the 
PDS5/WAPL complex. Sororin is a protein needed for the main-

tenance of cohesion; however, this specific function has not been 
determined yet. Removal of chromatid cohesion is mediated by 
Aurora B and Polo-like kinases and by the specific protease sepa-
rase. Separase and its inhibitor securin are forming a complex 
until APC/CDC20 ubiquitinizes securin, which is released from 
the complex and degraded by proteasome. Separase is now acti-
vated to cleave the SCC1 kleisin subunit removing cohesins from 
chromosomes. 
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hesion. RNAi depletion of PDS5A and/or PDS5B in HeLa 
cells provokes partial defects in sister chromatid cohesion 
and preferentially alters centromeric cohesion in  Xeno-
pus  egg extracts. These chromosomes contain unusually 
high levels of cohesins, suggesting a role for PDS5 pro-
teins in the regulation of cohesin-mediated cohesion in 
vertebrate mitosis. Mice lacking  Pds5B  function die 
shortly after birth and exhibit multiple developmental 
anomalies that resemble those found in humans with 
Cornelia de Lange syndrome, indicating a relevant func-
tion for PDS5B beyond chromosome segregation [Zhang 
et al., 2007]. To date, however, there are no known studies 
of the putative role of PDS5 proteins in sister chromatid 
cohesion and chromosome dynamics during mammali-
an meiosis.

  Another interesting cohesin cofactor is the product of 
the previously identified  Drosophila wings apart-like 
(Wapl)  gene, involved in heterochromatin organization 
[Verni et al., 2000]. Human WAPL regulates the resolu-
tion of sister chromatid cohesion and promotes cohesin 
complex removal by direct interaction with the RAD21 
and SA/STAG cohesin subunits [Gandhi et al., 2006; 
 Kueng et al., 2006]. Wapl was found on AE/LE in some 
prophase I stages in mouse spermatocytes [Kuroda et al., 
2005] and oocytes [Zhang J et al., 2008b], colocalizing 
with SYCP3; however, no more extensive study has been 
carried out on the role of Wapl in meiosis. Further cyto-
logical and biochemical studies are needed to character-
ize the role of Pds5 and Wapl during meiosis.

  Sororin is a protein which has been implicated in cen-
tromere cohesion. Sororin was identified in a screen for 
substrates of anaphase-promoting complex (APC) in ver-
tebrates for the first time, and, to date, no homologues 
have been described in other organisms [Rankin et al., 
2005]. Different results in somatic cells suggested that so-
rorin interacts with the cohesin complex and it is essen-
tial for the maintenance of sister chromatid cohesion 
( fig. 2 ). Sororin is ubiquitinized and degraded after sister 
chromatid cohesion is dissolved [Rankin, 2005]. Studies 
on sororin-depleted and shugoshin-depleted cells indi-
cated that sororin and shugoshin might act in concert in 
the protection of centromeric cohesion [Díaz-Martínez et 
al., 2007]. More recently, Schmitz et al. [2007] reported 
that sororin is also needed for efficient repair of DNA 
double-strand breaks in G2 and for maintaining stable 
chromatin-bound cohesin in G2, suggesting a crucial co-
hesin regulator role for this protein.

  The release of cohesin complexes from chromatin at 
the metaphase/anaphase transition is mediated by sepa-
rase, a specific cysteine protease, that cleaves the SCC1 

subunit of the cohesin complex, destabilizing cohesion 
and allowing chromatid segregation [Uhlmann et al., 
1999] ( fig. 2 ). Before anaphase, separase remains inacti-
vated by binding to its specific inhibitor securin [Ciosk et 
al., 1998]. In metazoa, dissociation of cohesin complexes 
from chromatin proceeds in a 2-step manner. In a first 
step, the bulk of cohesin complexes is removed from 
chromosome arms during prophase by a separase-inde-
pendent pathway [Waizenegger et al., 2000], in which 
phosphorylation of the SA2/STAG2 subunit by Aurora B 
and Polo-like kinases triggers the removal of arm cohe-
sins [Hauf et al., 2005]. Cohesin complexes remain essen-
tially at centromeres until the chromosomes are correct-
ly bi-oriented and the spindle assembly checkpoint is 
completed in metaphase. Activation of the anaphase pro-
moting complex/cyclosome (APC/C) leads to ubiquitina-
tion of securin, allowing cleavage of SCC1/RAD21 from 
centromeric cohesin complexes by separase and trigger-
ing the onset of anaphase [Uhlmann et al., 2000] ( fig. 2 ).

  Shugoshins and Centromeric Cohesins 

 In somatic cells from higher organisms, most cohesin 
complexes from chromosome arms are released from 
chromatin during prophase and prometaphase by a 
mechanism that requires phosphorylation of the SA2/
STAG2 cohesin subunit [Hauf et al., 2005]. During meio-
sis, arm cohesion is lost during the metaphase I/anaphase 
I transition by a process mediated by REC8 subunit cleav-
age from chromosome arms [Buonomo et al., 2000]. One 
relevant question is how centromeric cohesin complexes 
in mitosis are protected from phosphorylation until the 
metaphase/anaphase transition and how the centromeric 
cohesins are protected from separase cleavage until the 
second meiotic division. This problem was first resolved 
in fission yeast with the identification of a protein family 
called shugoshins (Japanese for ‘guardian spirit’); Sgo1 
and Sgo2 play a role in the centromeric protection of co-
hesin [Kitajima et al., 2004]. In fission yeast, Sgo1 is es-
sential in meiosis, whereas Sgo2 is major in mitosis. Shu-
goshins protect centromeric cohesion in yeast mitosis 
and meiosis by recruitment of a specific subtype of ser-
ine/threonine protein phosphatase 2A, which blocks the 
cohesin phosphorylation necessary for removal of cen-
tromeric cohesion [Kitajima et al., 2006; Riedel et al., 
2006] ( fig. 3 ).

  This review does not address the function of SGO pro-
teins in meiosis in depth because there is a specific chap-
ter about this field in this issue.
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  Mitosis versus Meiosis 

 Meiosis presents 2 unique characteristics: (1) the for-
mation and posterior destruction of a specific structure, 
the synaptonemal complex (SC), during prophase I, and 
(2) the participation of meiotic-specific cohesin subunits 
and different cohesin complexes on the control of chro-
mosome arms and centromere cohesion during meiotic 
divisions. In mammals, only some of the protein mole-
cules involved in the formation and control of SC are 
known. Three SC component proteins, SYCP1, SYCP2 
and SYCP3, have been largely studied and new SC pro-
teins, SYCE1, SYCE2 and TEX12, more recently charac-
terized [for a review, see Suja and Barbero, 2009]. How-
ever, other proteins such us DIDO3 [Prieto et al., 2009] 
and HORMAD1 and HORMAD2 [Fukuda et al., 2010; 
Wojtasz et al., 2009] are emerging and appear to be im-
portant in the regulation of assembly and disassembly of 
SC. Anyway, a close spatio-temporal relationship be-
tween cohesin axes and axial elements of SC is needed for 
the successful pairing and synapsis of homologous chro-
mosomes and for the correct meiosis progression (see the 
next section about animal models).

  During meiosis I, the cohesin complexes at chromo-
some arms are removed during the metaphase I/ana-
phase I transition to allow segregation of recombined ho-
mologues to opposite poles ( fig. 4 ). The centromeric co-
hesin complexes remain associated to chromosomes until 
the onset of anaphase II [Page et al., 2006; Revenkova and 

Jessberger, 2006] ( fig. 4 ). This is necessary to prevent pre-
mature separation of sister chromatids and aneuploidy in 
the resulting gametes.

  STAG3, REC8, SMC1 �    meiosis-specific cohesins and 
RAD21 are also expressed in mammalian fetal oocytes, 
and their dynamics during early prophase I are similar to 
that in spermatocytes [Prieto et al., 2005]. Total loss of co-
hesin signals, as well as of SYCP2 and SYCP3, is nonethe-
less observed in both human and mouse oocytes as they 
progress through dictyate arrest [Kouznetsova et al., 2005; 
Prieto et al., 2005]; they are again detected on bivalents in 
metaphase I oocytes [Kouznetsova et al., 2005; Lee et al., 
2006, 2008]. Studies of cohesion on  Smc1  � -deficient oo-
cytes [Hodges et al., 2005] and on oocytes from senes-
cence-accelerated mice in which REC8, STAG3 and 
SMC1 �  were greatly reduced [Liu and Keefe, 2008] suggest 
that defective cohesin levels are associated with age-relat-
ed non-disjunction in oocytes. More recently, in a study 
of the cohesin dynamic during meiosis in human oocytes, 
García-Cruz et al. [2010] showed that cohesins are present 
in human oocytes during meiotic arrest, although the 
REC8, STAG3 and SMC3 immunofluorescence signals 
were visualized as short filamentous structures instead of 
fully formed axes in this stage. All 4 subunits are observed 
at centromeres and along the chromosome arms, except at 
chiasmata during metaphase I, and are present at centro-
meric domains from anaphase I to metaphase II, suggest-
ing a role for cohesins in sister chromatid cohesion during 
the 2 meiotic divisions in human oocytes.
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  Fig. 3.  Shugoshin and phosphatase PP2A protects centromeric co-
hesion. In fly and vertebrate mitosis, during the prophase-meta-
phase transition, the kinases Aurora B and/or Polo-like phos-
phorylate the SCC3 subunit of most cohesin complexes from 
chromosome arms and promote their dissociation from chromo-
somes. Shugoshin localizes at the centromeres and recruits the 

phosphatase PP2A, which protects centromere cohesin complex-
es from phosphorylation. When all chromosomes are correctly 
bi-oriented at the metaphase plate, shugoshin and PP2A are delo-
calized from centromeres allowing the phosphorylation and sep-
arase degradation of centromere cohesins and the segregation of 
sister chromatids. 
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  On the other hand, Lister et al. [2010], using a long-
lived wild-type mouse strain, reported that cohesin levels 
decline gradually during the long prophase arrest that 
precedes MI in mouse oocytes. This cohesin loss may be 
amplified by an associated decline in the level of SGOL2 
(mouse shugoshin 2 homolog), leading to chromosome 
missegregation during metaphase I and supporting a mo-
lecular link between cohesins/SGOL2 with female aging 
effect.

  Mutant Mouse Models of Cohesins and/or 
Synaptonemal Complex Proteins 

 The characterization of mice deficient in either meio-
sis-specific cohesin subunits and/or in SC proteins has 
helped understand the biological role of these proteins 
during in vivo mammalian meiosis .  The characterization 
of mouse  mei8 , a disrupted allele of  Rec8  induced by 
chemical mutagenesis, shows that homozygous mutant 
males and females are sterile and that REC8 is required 
to maintain chromosome synapsis, sister chromatid co-
hesion and chiasmata formation during prophase I [Ban-
nister et al., 2004]. Another  Rec8  knockout model was 
generated by deletion of all coding exons of the mouse 

 Rec8  allele by gene targeting [Xu et al., 2005]. The absence 
of REC8 function in these mice also provokes infertility 
in both sexes. These authors found that SC formation in 
mutant spermatocytes occurs between sister chromatids 
and not between homologue chromosomes, although 
they found no differences in SMC3 and RAD21 localiza-
tion to that of wild-type in the earlier prophase I stages.

   Smc1  �  mutant mice present complete male and female 
infertility, indicating an essential role of this cohesin for 
meiosis [Revenkova et al., 2004]. Male meiosis is blocked at 
pachytene, axial elements (AE) are shortened, homologue 
synapsis is incomplete, and chromosome arm and centro-
meric cohesion is lost prematurely. Although  Smc1  �  –/– oo-
cytes also show problems in SC formation, they progress 
until metaphase II, but defective sister chromatid cohesion 
results in massive aneuploidy during meiotic divisions. A 
recent comparison of oocytes from  Sycp3  –/– ,  Smc1  �  –/–  and 
 Sycp3–/–    Smc1  �  –/–  double mutants suggested a distinct role 
for each SMC1 isoform ( �    and  � ) in meiotic AE/lateral ele-
ments (LE) organization [Novak et al., 2008].

  An interesting model is the mouse deficient in  Sgol2,  
a mammalian shugoshin orthologue essential for the 
completion of meiosis in mice. The loss of SGOL2 induc-
es a precocious dissociation of the meiosis-specific REC8 
cohesin complexes from anaphase I centromeres. Al-
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  Fig. 4.  Sister chromatid cohesion and chro-
mosome segregation during mitosis and 
meiosis.  A  During mitosis, sister chroma-
tids are bi-oriented in metaphase and seg-
regate correctly at anaphase (normal) or 
present synthelic orientation segregating 
the 2 sister chromatids to the same spindle 
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I division results in the segregation of ho-
mologous chromosomes. Errors in the sis-
ter chromatid cohesion control could pro-
voke that the homologues migrate togeth-
er to the same pole (non-disjunction) or 
precocious separation of sister chroma-
tids. During meiosis II, similar to mitosis, 
sister chromatid could segregate to a dif-
ferent pole (normal) or to the same pole 
(non-disjuntion). 
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though the meiosis progresses in mutant mice, this mo-
lecular alteration provokes the formation of aneuploid 
gametes and infertility [Llano et al., 2008].

  The absence of AE/LE proteins SYCP3 [Yuan et al., 
2000] and SYCP2 [Yang et al., 2006] induces sexually di-
morphic phenotypes; males are sterile due to a disruption 
in chromosome synapsis and a meiosis block in prophase 
I, whereas females are subfertile with reduced litter size 
and with embryo death due to an increase in aneuploid 
oocytes generated by chromosomal segregation errors. 
The checkpoints controlling homologue pairing and syn-
apsis are, therefore, more restrictive in male germ cells 
[Kolas et al., 2005]. In contrast, the null mutants of trans-
verse filaments/central element (TF/CE) proteins present 
distinct behavior relative to sexual dimorphism. Null 
mutation of  Sycp1  causes sterility in homozygous male 
and female mice. Most  Sycp1  –/–  spermatocytes arrest at 
pachytene and show problems in repair/recombination 
and crossover formation [de Vries et al., 2005].

  In addition to the initially characterized SYCP1 pro-
tein as the major component of CE of SC, 3 new compo-
nents have been identified recently: SYCE1, SYCE2 and 
TEX12. These proteins interact together, and with SYCP1 
during SC assembly, to form a correct CE [Costa et al., 
2005; Hamer et al., 2006]. Meiosis is blocked at pachytene 
stage in  Syce1  null mutants, and the double-strand breaks 
(DSB) produced during prophase are not efficiently re-
paired in absence of SYCE1 [Bolcun-Filas et al., 2009]. 
The  Syce2  mutant mouse phenotype is very similar to that 
of  Sycp1  knockout mice.  Syce2  –/–  mice can produce dou-
ble-strand breaks and initiate recombination processes, 
but cannot complete SC formation; this results in male 
and female infertility [Bolcun-Filas et al., 2007]. The in-
activation of the central element  Tex12  gene in mice re-
sults in: an incomplete homologous synapsis and incom-
plete maturation of early recombination events during 
prophase I [Hamer et al., 2008].

  These phenotypes suggest inter-dependence among 
the distinct cohesin, AE and CE axes, and that absence of 
function of 1 component of these axes causes SC malfor-
mation, almost always provoking meiotic arrest at pro-
phase I.

  Defective Control of Sister Chromatid Cohesion, 
Aneuploidy, Cancer and Other Cohesinopathies 

 As mentioned before, the correct control of sister chro-
matid cohesion is crucial for successful segregation of 
chromosomes. In addition to molecules implicated in the 

spindle assembly checkpoint (SAC), which will be men-
tioned in another chapter of this issue, sister chromatid 
cohesion control proteins are involved in the correct am-
phitelic (or bi-orientation) of sister kinetochores in mito-
sis and meiosis II and in the unique chromosome behav-
ior during meiosis I. This includes the maintenance of 
physical connections between homologues, posterior 
chiasmata resolution and the synthelic (mono-orienta-
tion) of sister kinetochores ( fig. 4 ). Failures in centromer-
ic proteins controlling correct bi-orientation or to estab-
lish a chiasma during meiosis I can result in the segrega-
tion of homologues to the same pole of MI spindle [Parra 
et al., 2004] ( fig. 4 ). In addition, precocious separation of 
sister chromatids (PSSC) at meiosis I can cause the segre-
gation of a whole chromosome and a single chromatid to 
the same pole ( fig. 4 ). A typical error found during meio-
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  Fig. 5.  Cohesin and cohesin-regulators involved in the human de-
velopmental cohesinopathies. Mutations in the  SCC2/NIPBL  ad-
herin gene are the cause of the most severe phenotype in Cornelia 
de Lange patients. Mutations in genes encoding for the cohesin 
subunits SMC1 �    and SMC3 cause a mild variant of this syn-
drome. Although the phenotype of mice lacking the function of 
 PDS5A and/or PDS5B  exhibit developmental abnormalities such 
as Cornelia de Lange patients, currently there are no data found 
supporting mutations of these genes as a possible cause of this
cohesinopathy in humans. A human orthologue of yeast, Eco1 
named ESCO2, is mutated in Roberts syndrome, which presents 
a very related phenotype as seen in Cornelia de Lange pathology.     
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sis II is that sister chromatids are not separated (non-dis-
junction in meiosis II,  fig. 4 ).

  The loading of cohesin complex and the generation of 
cohesion are key processes in cell life. Mutations in gene 
encoding adherin SCC2/NIPBL are involved in the phe-
notype of human Cornelia de Lange Syndrome (CdLS) 
(OMIM 122470, 300590, 610759) [Krantz et al., 2004; 
Tonkin et al., 2004]. This pathology is a multiple neuro-
developmental disorder characterized by facial dysmor-
phisms, upper limb abnormalities, mental retardation, 
and growth delay. Later studies of several cases of this 
syndrome showed that mutations in  SMC1  �  and  SMC3  
cause a mild variant of CdLS [Musio et al., 2006; Dear-
dorff et al., 2007] ( fig. 5 ).

  Mutations in the gene encoding for human ESCO2, a 
homolog to yeast Eco1 acetyltransferase, were found re-
sponsible for the human Roberts syndrome/phocomelia 
(RBS) (OMIM 268300) [Vega et al., 2005] ( fig. 5 ). This is 
an autosomal recessive disorder related phenotypically to 
CdLS; patients present craniofacial abnormalities, limb 
reduction and growth retardation. Cells from RBS pa-
tients show lack of cohesion at the heterochromatic re-
gions around centromeres and at the Y chromosome long 
arm [Van Den Berg and Francke, 1993].

  Mice that lack PDS5B die shortly after birth and have 
multiple developmental anomalies that resemble those 
found in humans with CdLS [Zhang et al., 2007]. The 
study  of  chromosomes  from    Pds5B  –/–    mouse   cells   
showed no defects in sister chromatid cohesion. In addi-
tion,  Pds5A  deficiency results in developmental abnor-
malities similar to those present in  Pds5B  knockout mice 
[Zhang et al., 2009]. However, a recent study looking for 
mutations in  PDS5A  gene in 137 Italian CdLs patients, 
who do not have mutations in  Scc2/NIPBL ,  SMC1  �    nor 
 SMC3,  was negative [Oliver et al., 2010]. These 2 syn-
dromes have been recently described as cohesinopathies, 
and they were excellently reviewed in Liu and Krantz 
[2008].

  Mutations in the  RECQL4  gene encoding for a human 
RecQ DNA helicase are found in a large fraction of type 
II Rothmund-Thomson syndrome (OMIM 268400) pa-
tients. This is a rare autosomal recessive genetic disorder 
characterized by a congenital skin rash, skeleton birth 
defects, genomic instability, and cancer predisposition. 
Mann et al. [2005] generated a viable  Recql4  mutant 
mouse and found that the cells have high frequencies of 
premature centromere separation and aneuploidy, sug-
gesting a new role for RECQL4 in sister chromatid cohe-
sion. On the other hand, overexpresssion of separase, the 
endopeptidase that cleaves SCC1 cohesin subunit and 

triggers anaphase, induces premature separation of sister 
chromatids, lagging chromosomes and anaphase bridges 
in an in vivo mouse mammary transplant model [Zhang 
N et al., 2008a]. Separase is found to be significantly over-
expressed in human breast tumors, suggesting that over-
expression of separase induces aneuploidy and tumori-
genesis.

  Recently, different somatic mutations were character-
ized in more than 130 cases of colorectal cancer. Six mu-
tations map to 3 cohesin subunit genes,  SMC1  � ,  SMC3 
 and  STAG3  and 4 to a cohesin cofactor  SCC2/NIPBL  gene 
[Barber et al., 2008]. Colorectal cancer cells are character-
ized by chromosomal instability and high rates of chro-
mosome missegregation; these problems could be due to 
an aberrant cohesin dynamic resulting from cohesin mu-
tations [reviewed in Mannini et al., 2010]. All these re-
sults strongly support that cohesin plays an essential role 
in genome stability and chromosome aneuploidy.

  Concluding Remarks 

 Aneuploidy is a characteristic feature of human malig-
nancies and has been proposed as a frequent event in tu-
mor formation and progression [Kops et al., 2005]; how-
ever, the molecular mechanisms yielding aneuploidy re-
main an essential, unresolved problem in cancer biology. 
Malfunction of molecules involved in chromosome seg-
regation during mitosis and meiosis frequently results in 
aneuploidy. Cohesins emerged just over a decade as key 
protagonists in chromosome segregation during cell di-
vision, regulating sister chromatid cohesion. During this 
period, a lot of effort has been developed to elucidate the 
structure and role of cohesin complex and on the charac-
terization of the cohesin-interacting proteins that modu-
late cohesin complex function. All these findings, which 
have been summarized in this review, locate cohesins and 
cohesin-regulators as essential players in the molecular 
mechanisms that generate aneuploidies, resulting in hu-
man pathologies such as Down syndrome, tumor forma-
tion and progression, and infertility. In addition, in the 
last 5 years, 2 different approaches based on the genera-
tion of mice deficient in cohesin function, on one hand, 
and the identification and characterization of mutations 
of cohesin and cohesin-regulator genes in human syn-
dromes, on the other hand, have revealed new and impor-
tant roles for cohesins in gene expression control and in 
chromosome stability, improving our understanding of 
chromosome dynamics during cell division. However, 
there are still many unanswered questions concerning 
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the different molecules involved and the differences in 
the control of sister chromatid cohesion between mitosis 
and meiosis. The future research on structure and role of 
molecular partners of cohesins that modulate the func-
tion of cohesin complex during cell division is an exciting 
and crucial task in our aspiration to learn more about the 
molecular bases of aneuploidy.
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