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PHYSICS 4750 Physics of Modern Materials 
Chapter 8: Magnetic Materials 

 
1. Atomic Magnetic Dipole Moments 
 
A magnetic solid is one in which at least some of the atoms have a permanent magnetic dipole 
moment µ . The atoms are said to be moment-bearing. The magnetic dipole moment for a single 
electron orbiting a nucleus can be written as 

 
   


µ = −

µB




l + gs( ),  (8.1) 

where Bµ  = / 2 ee m  is the Bohr magneton, l


 is the (quantized) orbital angular momentum of a 
single electron, s is the spin angular momentum, and g is the electron g factor ≅  2. If a magnetic 
field B


 is applied in the z direction and a magnetic dipole is immersed in it, the moment will 

experience a torque and an attendant potential energy of orientation given by 
 .zE B Bµ µ= − ⋅ = −

  (8.2) 
For a single electron, this becomes 

 ( ) ( )2 .B
z z z B l s

BE B l gs B m mµµ µ= − = + = +


 (8.3) 

In most magnetic atoms, two or more electrons (usually d or f electrons) contribute to the total 
moment of the atom. Assuming all other electrons (s and p) are paired up, the total angular 
momentum J


 for the entire atom is then given by 

 ,J L S= +
 

 (8.4) 
where L


 is the total orbital angular momentum of the electrons that contribute to the moment 

and S


 is their total spin angular momentum. Such an atom when immersed in a field has energy 
    E = −µz B = gJµB Jz B /  = gJµB M J B,  (8.5) 
where MJ can have any integer value in the range JJ M J− ≤ ≤ and gJ is called the Landé g 
factor. In the preceding, J is the total angular momentum quantum number. 
 
2. Magnetization and Magnetic Susceptibility 
 
The magnetization M


 of a sample of material is defined as the total magnetic moment per unit 

volume. For a homogeneous medium, M


 is the same everywhere in the sample. Of course, at 
the edges where the homogeneity is lost, the magnetization will differ from the bulk value.  
 
We mentioned the magnetic field or magnetic flux density B


 above. The unit of B


 is the tesla 

(T). In vacuum (free space), this field is related to another field H


, which is also called the 
magnetic field: 
 0 .B Hµ=

 
 (8.6) 

In Eq. (8.6), 7 1
0 4 10  Hmµ π − −= × is the permeability of free space. H


 is an applied magnetic 

field resulting from a current or a magnet. B


 is a response to the applied field, either in free 
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space or a material medium. If there is a material present in the applied magnetic field, the 
relationship becomes 
 0 ( ).B H Mµ= +

  
 (8.7) 

For a linear material, the magnetization is proportional to H


. The proportionality constant is 
called the magnetic susceptibility: 
 .M Hχ=

 
 (8.8) 

In SI units, both M


 and H


 are measured in units of Am-1, so the susceptibility is dimensionless. 
Substituting Eq. (8.8) into Eq. (8.7) gives 
 0 0(1 ) ,rB H Hµ χ µ µ= + =

  
 (8.9) 

where rµ =1 χ+  is the relative permeability of the material.  
 
If the susceptibility is negative, the material is said to be diamagnetic. The change in the 
magnetization of a diamagnetic material is in the opposite direction to the change in the field. 
Paramagnetic, ferromagnetic, and antiferromagnetic (and other categories as well!) materials 
have positive susceptibilities. It should be noted that all atoms and therefore all materials have a 
diamagnetic contribution to the total magnetization. However, the effect is very small and is 
overwhelmed in a paramagnetic, ferromagnetic, or antiferromagnetic material. 
 
3. Diamagnetism 
 
Experimentally, diamagnetism can be observed by placing a diamagnetic 
material in a strong magnetic field gradient. The material will experience a 
force toward the weaker region of the field. (See Fig. 4.1 in Spaldin.) We 
will derive an expression for the diamagnetic susceptibility of a material 
using classical means. The same result is obtained using the correct (but 
more complicated) quantum-mechanical method. In fact, diamagnetism is a 
quantum-mechanical effect. The use of the classical method gives us a way 
to think about diamagnetism, but it is really not correct. 
 
Consider an electron orbiting in a plane perpendicular to an applied magnetic field. The current 
is in the opposite direction to the electron's velocity. If the field has been increased slowly from 
zero, Faraday's law tells us that there will be an induced emf: 

 
   
emf =


E∫ ⋅ dl = −

dΦ
dt

. (8.10) 

The induced emf will arise from the non-electrostatic electric field, which will act to oppose the 
flux change. Assuming the electron orbit is circular, we have 

 2
.

demf E r
dt

π Φ= = −  (8.11) 

The opposing of the flux change is accomplished by increasing the electron's speed (for the case 
pictured above), which also increases its magnetic moment ( IAµ = ). [When the field stops 
changing, the new value of the current (and moment) remains because there is no agent to restore 
the original value.] 
 

H


 

e- 
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Recall that torque .r F dL dtτ = × =
    The torque exerted on the electron by the induced electric 

field is given by 

 
2

0 .
2 2

erdL e d dHeEr
dt dt dt

µ
π

Φ= − = =  (8.12) 

Integrating over time, the change in angular momentum is given by 

 
2

0 ,
2

erL HµΔ =  (8.13) 

 
where the change in field is H. The magnetic moment of the orbiting electron can be written as 

 .
2 e

eLIA
m

µ = = −  (8.14) 

   
Thus, the change in the magnetic moment due to the change in applied field is given by 

 
2 2

0 .
2 4e e

e re L H
m m

µµ ΔΔ = − = −  (8.15) 

 
Hence, the induced moment is proportional to the field and in the opposite direction to it. Now, 
we have assumed the orbit is perpendicular to the field. Because the electron orbits are not in 
general perpendicular to the field, we need to take the average of the square of the radius of the 
projection of the orbit onto the field direction (i.e., the mean square radius). This introduces a 
factor of 2/3. In addition, we need to multiply by a factor of Z since there are Z electrons. Finally, 
we need to take the average value of all occupied orbital radii. Thus, 

 
2 2

0 .
6

av

e

Ze r
H

m

µ
µΔ = −

  (8.16) 

To obtain the magnetization, we need to multiply the magnetic moment per atom by the number 
of atoms per unit volume N: 

 
2 2

0 .
6

av

e

NZe r
M N N H

m

µ
µ µ= = Δ = −

    (8.17) 

The susceptibility is therefore given by 

 
2 2

0 .
6

av

e

NZe rM
mH

µ
χ = = −


  (8.18) 

 
The susceptibility is always negative. Note that there is no explicit temperature dependence, but 

2

av
r is weakly temperature dependent. Typically, 610 ,χ −−  which is very small. (Show video 

of diamagnetic levitation of frog.) 
 
4. Paramagnetism 
 
In diamagnetic materials, the atoms or molecules that constitute them have no permanent 
magnetic moment; the moment is induced upon application of a magnetic field. In contrast, the 
constituent atoms or molecules of a paramagnetic material have a permanent moment. The 



 4 

moments do not interact with each other strongly via dipole-dipole magnetic forces because the 
moments are not close enough for that weak interaction to be significant. Thus, at all 
temperatures, the moments are randomly oriented in the absence of a magnetic field. If a 
magnetic field is applied, there is a slight alignment of the moments in the same direction as the 
field. [Fig. 5.1, Spaldin] This is rather like an electric current, in which the individual electrons 
are moving very rapidly and scatter frequently in different directions but there is an overall slow 
drift in one direction. Because the alignment is in the same direction as the field, the induced 
magnetization is in the same direction as field. Thus, the susceptibility /M Hχ =

 
 is positive.  

 
To describe the paramagnetic susceptibility quantitatively, we shall use a classical theory that is 
due to Langevin. The energy of interaction of a magnetic moment with an applied magnetic field 
is given by Eq. (8.2): zE B Bµ µ= − ⋅ = −

 , assuming that the field is along the z axis. If the angle 
between the field and the direction of the moment is θ , then cosE Bµ θ= − . According to 
Boltzmann statistics, the probability that a state with energy E is occupied is given by 
 / cos / .B BE k T B k T

Bolp e eµ θ−= =  (8.19) 
We assume that the magnitude of a moment is constant; only its direction changes. Thus, the tip 
of a moment can lie anywhere on the surface of a sphere whose radius is equal to the magnitude  
of the moment. The number of moments that make angles that lie 
between  and dθ θ θ+ is proportional to the area of a ring of thickness 
rdθ , where r is the radius of the sphere. This area is 

2(2 sin )( ) 2 sin .dA r rd r dπ θ θ π θ θ= =  It follows that the probability that 
a moment has a direction such that it makes an angle with the z axis that 
lies between  and dθ θ θ+ is 

 

  

p(θ ,T , B) =
pBoldA

pBol dA
sphere∫

= eµBcosθ /kBT sinθdθ

eµBcosθ /kBT sinθ dθ
0

π

∫
.  (8.20) 

The magnetization is the average z-component of the total magnetic moment per unit volume, 
i.e., the average value of the component of the total moment per unit volume along the direction 
of the field. For a given moment, the component along the direction of the field (i.e., z 
component) is cosµ θ . Thus, the magnetization is 

 

  

M = Nµcosθ p(θ ,T , B) = Nµ
eµBcosθ /kBT cosθ sinθ dθ

0

π

∫

eµBcosθ /kBT sinθ dθ
0

π

∫
∫ ,  (8.21) 

where N is the number of moments per unit volume. Performing the integrations yields 

 coth ( ),B

B

B k T
M N N L x

k T B
µµ µ

µ
⎡ ⎤⎛ ⎞

= − =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (8.22) 

where Bx B k Tµ= and L(x) = coth (x) – 1/x is the Langevin function. For B→∞  or 0T → , 
L(x) 1→ , which is the maximum value of the Langevin function. Thus, the maximum 
magnetization of the paramagnet is ,Nµ  i.e., the magnetization when all the moments are 
aligned with the field. 

 

 
 dθ
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The Langevin function can be expanded as a Taylor series: 

 
3

( ) ...
3 45
x x

L x = − +  (8.23) 

 
 
If x is small, (i.e., small B or high T ), then ( ) 3.L x x≈ In this regime, the magnetization becomes 

 
2

.       (Small ,  high )
3 3 B

N x N B
M B T

k T
µ µ= =  (8.24) 

The magnetic susceptibility is therefore given by 

 
2

0

0

.
/ 3 B

NM M
H B k T

µ µχ
µ

= = =  (8.25) 

(Recall that B = 0 ,Hµ where 0µ  is the permeability of free 
space, which is unrelated to the magnitude µ  of the 
magnetic moment.) We see that in the small-field, high-
temperature regime, the susceptibility is independent of 
the field and is inversely proportional to the temperature. 
Eq. (8.25) is called the Curie law. The constant of 
proportionality 2

0 3 BC N kµ µ=  is called the Curie 
constant. 
 
The Langevin function form for the magnetization of a paramagnet was derived using classical 
considerations, i.e, the moment could point in any direction. This is a good approximation if the 
moments are large, as in superparamagnets, which are materials in which the moments are 
supermoments consisting of many elementary moments that are all aligned. However, for most 
paramagnetic materials, the moments are those of single atoms or molecules, whose z-
components are quantized because of the quantization of angular momentum. Thus, to calculate 
the magnetization, one has to sum over the finite number of quantized orientations (instead of 
integrating over the continuous variable θ ). Consider an individual magnetic moment which has 
a z component given by ,z J B Jg Mµ µ= − where JJ M J− ≤ ≤ . Performing the appropriate 
summation over all possible MJ values yields the following equation for the magnetization: 

 2 1 2 1 1
coth coth ( ),

2 2 2 2J B J B J
J J yM Ng J y Ng JB y
J J J J

µ µ⎡ + + ⎤⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (8.26) 

where  y = gJµB JB kBT and BJ(y) is called the Brillouin function. It is gratifying that when one 
takes the limit J →∞ , the Langevin function is recovered. 
 
The Brillouin function has the following Taylor expansion: 

 
2 2

3
3

1 [( 1) ]( 1)( ) ...
3 90J
J J J JB y y y
J J
+ + + += − +  (8.27) 

For small y (small B, high T ), we see that ( ) ( 1) / 3 .JB y J y J≈ +  Thus, for small y,  
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2 2

0 ( 1) ,       (Small ,  high )
3
J B

B

Ng J J C B T
k T T

µ µχ += =  (8.28) 

which is the Curie law for quantum-mechanical magnetic moments. [Show MATLAB graphs for 
Langevin and Brillouin functions on the same axes.] 
 
In deriving the Curie law for the paramagnetic susceptibility, we assumed that the magnetic 
moments were essentially isolated, i.e., interactions were negligible. In many paramagnets, the 
simple Curie law is not followed because interaction between moments is not negligible. Instead, 
the Curie-Weiss law is valid: 

 ,C
T

χ =
−Θ

 (8.29) 

where C is the same Curie constant that we saw before and Θ is called the Weiss temperature, 
which is a measure of the strength of the interaction between moments. Let us derive the Curie-
Weiss law using a classical argument due to Weiss.  
 
To model the interaction between the atomic moments, Weiss introduced the concept of the 
molecular field. Each moment will experience an effective field that is a superposition of the 
effects of its interactions with all the other moments in the material. This effective field has the 
same effect as an applied magnetic field and Weiss assumed that this field is proportional to the 
magnetization of the material. (This makes sense: stronger moments should lead to stronger 
interactions.) Thus, the net field experienced by a moment is due to the applied field H and the 
molecular field Hm, where 
 mH Mλ= . (8.30) 
 Hence,  

 .
tot m

M M M C
H H H H M Tλ

= = =
+ +

 (8.31) 

Using the last two expressions in Eq. (8.31) to solve for M gives 

 .CHM
T Cλ

=
−

 (8.32) 

Hence,  

 ,M C
H T

χ = =
−Θ

 (8.33) 

where CλΘ = .  
 
Note that the susceptibility diverges as the temperature approaches Θ . This divergence of the 
susceptibility signals a phase transition to a state in which the magnetic moments are 
spontaneously ordered at low enough temperatures. Ferromagnetism is such a state. In 
ferromagnetism, there is a spontaneous ordering of the moments such that neighboring moments 
align themselves parallel to each other over macroscopic regions. In Weiss's theory, the 
interaction that causes this parallel alignment is the molecular field. As we shall see when we 
discuss ferromagnetism in more detail, molecular field theory leads to a paramagnetic to 
ferromagnetic phase transition temperature CT =Θ . At temperatures greater than TC, the thermal 
energy dominates the molecular-field energy and the system is paramagnetic. At temperatures 
below TC, the molecular-field energy exceeds the thermal energy and the ordered ferromagnetic 
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state exists. Thus, at TC, the molecular field energy and the thermal energy are approximately 
equal. This gives a method of estimating the strength of the molecular field: 0 .B C B mk T Hµ µ≈ So, 

0 /m B C BH k Tµ µ≈ . Using 1000 KCT ≈ (close to that for iron), we find that 3
0 10  TmHµ ≈ , which 

is an extremely large field. (Typically, the largest fields that are produced in labs are ~10 T.) It 
turns out that this strong interaction between elementary magnetic moments is quantum 
mechanical in origin. It is called the exchange interaction, and arises because of the overlap of 
electron wave functions and the Pauli principle. 
 
We have seen that magnetic moments that interact weakly give rise a temperature-dependent 
susceptibility (Curie-Weiss law). Some metals exhibit a paramagnetic susceptibility that is 
temperature-independent. It is called Pauli paramagnetism. As we have seen before, the electrons 
close to the Fermi level of a metal give rise to the temperature-dependent properties. This is true 
in the case of the magnetic susceptibility, but it turns out the temperature dependence cancels 
out. 
 
Each conduction electron in a metal (like all the other electrons) has a permanent spin magnetic 
moment of magnitude Bµ . The z-component of the magnetic moment has only two possible 
orientations – approximately parallel to an external field and approximately antiparallel to it 
(spin down or spin up). In the presence of an applied magnetic field, more electrons will have 
their moments parallel to the field than antiparallel to it and 
so there will be a magnetization. Let us calculate this 
magnetization and the magnetic susceptibility of a metal, 
which is represented by a free-electron gas. 
 
The figure shows the density of states for the parallel and 
antiparallel electron moments. The temperature is low, so 
that there are few occupied states above the Fermi level, and 
nearly all the states below the Fermi energy are occupied. 
When the field is first turned on, the electron energies change 
and the electron distribution adjusts so that the Fermi levels 
of spin up and spin down electrons are equal. The 
magnetization of the electron gas can therefore be calculated as 

 1 1( ) ( ) ( ) ( ) .
2 2

F F

B B

E E

B B B B
B B

M F E Z E B dE F E Z E B dE
µ µ

µ µ µ µ
−

= + − −∫ ∫  (8.34) 

The factor of ½ accounts for the fact that we have separate densities of states for spin up and spin 
down electrons and so we have to eliminate the twofold degeneracy for spin. We take F(E) = 1 
and make substitutions of variables ( BE E Bµ′ = + and BE E Bµ′′ = − ) to rewrite the integrals: 

 
0 0

1 1( ) ( ) ( ) .
2 2

F B F B F B

F B

E B E B E B

B B
E B

M Z E dE Z E dE Z E dE
µ µ µ

µ

µ µ
+ − +

−

⎡ ⎤
′ ′ ′′ ′′= − =⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ ∫  (8.35) 

Since B FB Eµ << ,  

 ( ) ( ) 2 ( ).
F B

F B

E B

F B F
E B

Z E dE Z E E BZ E
µ

µ

µ
+

−

≈ Δ =∫  (8.36) 

Thus, 



 8 

  2 2
0( ) ( ) ,B F B FM Z E B Z E Hµ µ µ= =  (8.37) 

and so 

 2
0 ( ).B F

M Z E
H

χ µ µ= =  (8.38) 

We see that the susceptibility is indeed temperature-independent. In a real metal, the 
susceptibility is measured to be smaller than the value in Eq. (8.38) because of a diamagnetic 
contribution.  
 
5. Ferromagnetism 
 
As we have seen previously, in the classical Weiss theory, the elementary magnetic moments 
interact via the molecular field, which gives them a tendency to align parallel to each other. At a 
low enough temperature, the aligning influence of the molecular field overcomes the disordering 
influence of thermal energy and the material becomes spontaneously ordered, i.e., there is 
parallel alignment of the moments in the absence of an external applied field over 
macroscopically-sized regions. This ordered state with parallel moments constitutes 
ferromagnetism.  
 
Let us assume that the ferromagnetic state can be described by the Langevin function, with the 
molecular field added to the applied field. (The Brillouin function would be more accurate, but it 
is a bit more complex.) Then 

 0 ( ) .m

B

H HM N L
k T

µ µµ
⎡ ⎤+= ⎢ ⎥
⎣ ⎦

 (8.39) 

This gives 

 0 ( ) .
B

H MM L
N k T

µ µ λ
µ

⎡ ⎤+= ⎢ ⎥
⎣ ⎦

 (8.40) 

Let us look for a solution that gives a non-zero magnetization when the applied field H is zero. 
This is called the spontaneous magnetization and is characteristic of the ferromagnetic state. 
Thus, Eq. (8.40) becomes 

 0 .
B

MM L
N k T

µ µλ
µ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (8.41) 

A useful way to find the solution is to graph both sides of the equation and find a point of 
intersection. The figure shows this for various values of T. 
(Note that in the figure, 0 / .Bb M k Tµ µλ= Thus, the LHS of 
Eq. (8.41) is 2

0/ ( / ) .BM N k T N bµ µ µ λ=  Hence, the slope 
of the straight line representing the LHS is proportional to 
T.) For high temperatures, there is no point of intersection 
(excluding the origin). This is the paramagnetic state. At a 
particular temperature ,T =Θ the straight line (LHS) is 
tangent to the Langevin function (RHS) at the origin. For 
temperatures ,T >Θ there is a single point of intersection 
corresponding to a non-zero spontaneous magnetization. 
Thus, the temperature T =Θ is the transition temperature where the paramagnetic to 
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ferromagnetic phase transition takes place. The transition temperature is also called the Curie 
temperature TC. 
We can determine the transition temperature by equating the slope of the straight line represented 
by the LHS of Eq. (8.41) to that of the Langevin function (representing the RHS of that equation) 
at the origin. Near the origin (b = 0), ( ) / 3L b b≈  as seen before. Thus, the slope of the Langevin 
function at the origin is 1/3. The slope of the straight line is 2

0/Bk T Nµ µ λ  as seen above. 
Equating the slopes gives 

 2
0

1 ,
3

B Ck T
Nµ µ λ

=  (8.42) 

or, 

 
2

0 .
3C

B

NT
k

µ µ λ=  (8.43) 

Thus, the Curie temperature is proportional to the molecular field constant λ . This makes sense: 
the stronger the interactions between the moments, the greater the greater the thermal energy 
required to destroy the order. 
 
As alluded to above, the use of the Brillouin function gives a better description of the 
magnetization of real ferromagnetic materials. [Fig. 6.3 in Spaldin] This is not unexpected, since 
the elementary moments in common ferromagnetic materials are atomic moments that must be 
described quantum mechanically. 
 
The Brillouin function would predict that the saturation magnetization of a ferromagnetic 
material should always be an integer number of Bohr magnetons per magnetic ion (i.e., 

2B Bg J Jµ µ= ). However, for transition-element ferromagnets such as Fe, Co, and Ni, one finds 
that the saturation magnetization per ion is non-integral. The reason is that the ferromagnetism 
arises from collective behavior of the electrons that give rise to the magnetism. In the Weiss 
theory, the magnetic ions are treated as local moments, i.e., the magnetic moment is due to 
electrons that are localized to the parent atom.  
 
In collective electron ferromagnetism, the exchange interaction plays a similar role to the 
external magnetic field in Pauli paramagnetism. It lowers the energy of one spin direction (let us 
say spin up) and raises the energy of the other spin direction (spin down). Thus, it might seem 
that to minimize the total energy, the electrons that are favorably aligned (spin up) should 
outnumber those that are not (spin down). However, since the electron states are in a band, the 
spin down electrons are moved up in energy in their sub-band and if the density of states is low, 
the energy cost becomes prohibitive. Thus, the numbers of spin up and spin down electrons 
remains about the same. If, however, the density of states at the Fermi level is high, e.g., for the d 
band electrons in transition metals, a relatively large number of spin down electrons can move up 
in energy, but with a relatively small energy change. (Remember: a high density of states means 
a large number of states per unit energy interval.) Thus, for a high-enough exchange energy and 
a high-enough density of states at the Fermi level, there can be a significant difference in the 
population of spin up and spin down electrons in the minimum-energy configuration. Thus, there 
is a macroscopic magnetization without the presence of an external field, i.e., ferromagnetism. 
Because the magnetization involves differing numbers of electrons occupying band states, the 
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magnetic moment per atom need not be an integral number of Bohr magnetons. [Insert Fig. 6.6, 
Spaldin.] 
 
5a. Domains 
A paper clip is made of (mostly) iron, which is ferromagnetic at room temperature. Why doesn't 
a paper clip behave like a magnet? The reason is that the magnetization of the paper clip is zero 
because of the formation of domains. Domains are regions within a ferromagnetic material 
containing many atoms whose moments point in the same direction. Thus, each domain has a net 
magnetization. However, the magnetization (magnitude and direction) varies from domain to 
domain so that the total magnetization of all the domains (i.e., the entire sample) is zero in the 
absence of an external magnetic field. 
 
Domains form in order to minimize the total energy 
of the ferromagnetic material. Consider a material 
consisting of a single domain (i.e., all of it is 
magnetized in the same direction). The 
magnetization changes discontinuously at the 
surfaces, forming free poles. These poles are 
sources of a magnetic field (called the 
demagnetization field)  that fills all of space. The 
energy associated with this field, called 
magnetostatic or demagnetization  energy, is 
proportional to the square of the magnetization. 
Thus, for a single domain with a large 
magnetization, the magnetostatic energy is large. 
This energy can be reduced by the formation of 
domains. Domains form in such a way that opposite 
poles are close to each other thereby confining the 
path of the flux lines and reducing the net magnetization to a value close to zero. This reduces 
the magnetostatic energy. Note that the moments at the boundary between domains of opposite 
magnetization are misaligned, which increases the exchange energy. Thus, the formation of 
domain boundaries, or domain walls, also costs some energy. We will delve more deeply into 
this issue when we study domain walls. 
 
5b. Magnetocrystalline Anisotropy 
 
In a ferromagnetic crystal, there is a lowering 
of the energy if the magnetization points 
along certain directions. Thus, the material 
will magnetize more easily if an external 
magnetic field is directed a along certain axis 
called the easy axis. (There may be more 
than one.) The energy associated with the 
alignment of the magnetization relative to 
crystalline axes is called the 
magnetocrystalline anisotropy energy. This 
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phenomenon is shown in the figure to the right, which displays the magnetization of iron versus 
field for three different crystallographic directions. (Fe has a cubic crystal structure.) The (100) 
crystallographic axes (cube edges) are the easy axes, whereas the (111) axes (body diagonals) are 
the hard axes. The (110) axes (face diagonals) are intermediate. To minimize magnetocrystalline 
anisotropy energy, domains form such that their magnetizations points along local easy axes. At 
a domain wall, the magnetization direction changes and so both magnetization cannot lie along 
an easy axis. This tends to raise the anisotropy energy. For crystals with easy axes that are 
perpendicular to one another (e.g., Fe), domains of closure can form, which give the most 
effective arrangement to minimize the total energy of the ferromagnetic system. [See (d) and (e) 
in figure above that shows domain arrangements.] 
 
c. Domain Walls 
 
Domain walls are the boundaries or 
transition regions between 
domains. These walls are usually 
between either domains with 
opposite magnetizations (180º 
walls) or domains with 
magnetization that are at right 
angles (90º walls). We have seen 
that domain walls tend to increase 
exchange and anisotropy energy. In 
fact, the thickness of a domain wall 
is dictated by the need to minimize the sum of the two energies. Exchange energy is minimized 
when the domains have parallel magnetizations. Thus, to minimize exchange energy, the domain 
wall should be wide so that moments within the wall are as closely aligned as possible. (The 
rotation is "stretched out" as much as possible to make neighboring moments as close to parallel 
as possible.) On the other hand, to minimize anisotropy energy, the walls should be narrow 
because this minimizes the number of moments within the transition region that are misaligned 
with the local easy axis. Thus, the width of the wall is dictated by the relative strengths of the 
exchange and anisotropy energies. The wall width for a cubic crystal is given by 

 ,A
K

δ π=  (8.44) 

where A is an exchange parameter and K measures the strength of the anisotropy. 
 
We should mention that magnetostriction also plays a role in the energy balance of domain 
walls. Magnetostriction is the change in length of a ferromagnetic material when it is 
magnetized. Because of magnetostriction, changes in length of a ferromagnetic material will 
cause changes in the magnetization, which may affect the directions of easy magnetization. 
 
d. Magnetization Process and Hysteresis 
 
Let us start from a completely demagnetized sample (net magnetization = 0) and apply an 
increasing magnetic field starting from zero. For small fields, the magnetization increases fairly 
rapidly because of the movement of domain walls. The walls move easily so that domain 



 12 

magnetizations that are favorably oriented with respect to the field grow, and those that are not, 
shrink. As the domain walls move, they may become pinned by a defect within the material. The 
pinning occurs because the wall lowers the magnetostatic energy associated with the defect. To 
further increase the magnetization, the pinned walls must be dislodged by higher magnetic fields. 
Eventually, all the walls are removed from the sample, which becomes a single domain. At even 
higher fields, the domain magnetization will rotate to align with the easy axis closest to the field 
direction. Saturation of the sample requires the domain magnetization to rotate away from the 
local easy direction to the direction of the field. If the anisotropy energy is high, this will require 
a large field. 
 
If the field is now reduced, the domain 
magnetization will rotate back toward 
the nearest easy axis; this process is 
reversible. Eventually, domains of 
reverse magnetization nucleate, driven 
by the demagnetization field and the 
sample becomes partially 
demagnetized. However, the walls 
cannot be restored to their former 
positions because the demagnetization 
field is not strong enough to overcome 
all the energy barriers created when 
domain walls intersect defects. Thus, the magnetization is not 
reversible and the ferromagnet displays hysteresis. When the field is 
reduced to zero, the material retains a non-zero magnetization in the 
original direction of the field. This magnetization is called the 
remanent magnetization or remanence. The application of a field is 
the reverse direction is necessary to bring the magnetization back to 
zero. The magnitude of this field is called the coercivity or coercive 
field. [Fig. 7.17, Spaldin.] 
 
If the coercivity of a ferromagnetic material is high, the material is 
said to be a hard magnetic material. These materials are useful for 
permanent magnets, which also usually possess a large remanent 
magnetization. The product of the coercivity and the remanent magnetic flux density is called the 
energy product, which is a figure of merit for permanent magnets. Neodymium-iron-boron (Nd-
Fe-B) magnets have one of the highest energy products of all magnets. Applications of 
permanent magnets include electric motors, generators, and battery-free flashlights. If the 
coercivity of a material is low, i.e., it is easily magnetized and demagnetized, it is a soft magnetic 
material. Applications include magnetic recoding heads, transformer cores, and high-frequency 
devices. 


