
The Integration of the Software Studio Approach into
the Undergraduate Computer Science Curriculum

J. Ben Schafer
Department of Computer Science

University of Northern Iowa
Cedar Falls, IA 50614-0507

schafer@uni.edu

Abstract

The computer science professional solves problems for a living. When confronted with a
new challenge, the professional must use the technical knowledge that is common to all
solutions. At the same time, each problem presents new difficulties that demand new
solutions. The goal of a computer science curriculum should be to help students learn
how to approach problems requiring both solutions. While many “traditional” courses
teach students to solve problems involving the former, they often neglect the challenge of
teaching the latter. One approach to this challenge is through the integration of studio-
based activities into courses. This paper will present the author’s experiences employing
a variety of studio-based techniques into different undergraduate computer science
courses. It is designed to show the application of the studio approach at differing levels
of “commitment,” and create a dialog between educators interested in considering this
approach.

1 Introduction

Good design and programming is not learned by generalities, but by
seeing how significant programs can be made clean, easy to read, easy to
maintain and modify, human-engineered, efficient, reliable, and secure, by
the application of good design and programming practices. Careful study
and imitation of good designs and programs significantly improves
development skills. -- Kernighan and Plauger [1]

The computer science professional solves problems for a living. When confronted with a
new challenge, the professional must use the technical knowledge that is common to all
solutions. At the same time, each problem presents new difficulties that demand new
solutions. For many, this contrast between the analytic and the artistic is what draws
them to the profession. The goal of a computer science curriculum should be to help
students learn how to innovate and invent. Innovation occurs in adapting old solutions to
new problems. Invention is required where past solutions are insufficient.

More traditional courses can teach the technical, analytic skills needed by a professional,
but without an application to real problems these skills become purely “in head” skills
and are not a true part of the student's expertise. Arguably, more traditional courses are
almost entirely inappropriate for helping students to develop the creative, artistic side of
their skill set. So what techniques will allow computer science educators to provide an
environment where students can move these technical skills from “in head” skills to
“applied” skills and allow them to explore the creative skills necessary to be a reflective
practitioner? The answer may lie in the implementation of studio courses within the
computer science curriculum.

1.1 What Are Studio Courses?

Studio courses have been a common teaching technique in schools of architecture and art
for decades, if not centuries. Reimer and Douglas [2] describe these courses in a
traditional school of architecture.

“Each term, in addition to regular lecture courses, architecture students are
required to enroll in a studio class tailored to their skill level in the
program. Studio classes are held 3 days a week, 4 hr per day. Each studio
class takes a real-world architectural problem and requires students to
produce a final building design through an iterative design process.
Problems vary by complexity of function, complexity of environmental
conditions, or other aspects depending on the skill level of the students.
Each week the instructor will emphasize the design of a particular
architectural aspect, such as form, site location, function, and so forth, of
the overall project. Depending on the studio class, students often work in
collaborative teams to produce a joint design.”

A studio course is more than simply a change in the number of hours or the types of
problems addressed in the course. Studio courses are typically built around material
where the process, the design of the project, and a continual analysis of both project and
process are as much a part of the evaluation of the project as the resulting project. As
such, a key component of a studio is the inclusion of a period of time known as the
“design crit” [2].

“The design crit is the central means of conveying design knowledge.
Instructors usually gather from 2 to 4 students together at one time. Each
student either brings his or her drawings over to the common meeting area
or pins them up on the wall for review. Design representations are often
low- fidelity sketches to promote the general communication of ideas and
to enable students to throw away bad designs. While the instructor focuses
on the work of one individual at a time – taking between 20 and 30 min –
the remaining students benefit from the comments made by the faculty
member and student.

Design crits start with the student explaining how he or she is meeting the
particular design emphasis for the week. To keep the critiques positive,
reviewers generally begin their comments with statements like ‘‘I like
what you’ve done with –’’. Many reviewers then use the Socratic method
to ask the student a number of strategic questions which serve to highlight
perceived weaknesses with the design. Reviewers often end their critique
by suggesting similar problems/solutions done by well-known architects,
and by asking the student if he or she has any specific problems and/or
questions they wish to ask. Finally, faculty reviewers will also make
helpful suggestions on the student’s presentation itself (e.g., urging the
student to frame the problem and to discuss his or her goals overall before
getting into details). This provides the student with direction for future
success, both in the current class and elsewhere. “

1.2 Studio Courses in Computer Science?

While the studio approach has been in existence for years, it has only recently begun to
be applied to the field of computer science – particularly in the domain of software
development. Several companies such as RoleModel Software [3] have begun to employ
a software studio approach toward the development of their products

In a traditional design studio in a field such as architecture, the studio is designed to
complement one or more classroom based courses. As such, the studio is designed to
provide students with an opportunity to apply and discuss concepts learned initially
elsewhere. While there are parallels between this structure and the lecture/closed-lab
structure common in many computer science departments, there are several fundamental
differences. The largest of these is what actually happens in the traditional CS “closed
lab” vs. what happens in studio. In a closed lab situation students are often involved in

relatively “cookbook” activities under instructor/TA supervision. Most of these activities
have a goal of simple completion, and little time is spent discussing how and why the
code is written the way that it is written.

Studio courses indicate a different course organization and reinforce the intent that a
course pays special attention to the artistic skills of the profession. Such courses require
a design where students are put into a constant state of questioning. The student is forced
to explain and defend the choice of proposed methods, processes, solutions, and
implementations. She must relate these choices to other parts of the problem and solution
and convince others of their adequacy. The course "instructor" metamorphoses into
something of a coach: a sounding board for ideas, a constant critic who helps the student
see other alternatives, and a source of direct instruction when new technical knowledge is
needed.

2 Different Ways to Incorporate the Studio Approach, or
“Fifty Ways to Lead the Others”

Often, at first glance it sounds as though classroom organization is particularly easy when
using the studio approach. After all, it would appear there are fewer lectures to deliver,
seemingly less class preparation, etc. Upon further reflection, it turns out that
implementing the studio approach into existing classes can be relatively difficult and time
consuming. As such, instructors interested in implementing such an approach into their
courses must consider how much time they are able/willing to put into the development
of such courses. The following section will discuss three different approaches with
significantly varying degrees of commitment for integrating studio-like activities into
undergraduate computer science courses. These include the use of in-person grading, the
implementation of a “weekly” studio into a lecture based course, and a largely full-scale
studio course.

2.1 A “One-on-One” Studio

While the design studio approach may interest many instructors, it is a significant change
to the way most are used to running their classroom. One technique that can provide a
fairly “low investment” introduction to the overall process of the design studio is the
incorporation of “in-person grading” [4], [5]. This technique has been successfully used
at the University of Northern Iowa in classes ranging from Introduction to Computer
Science in Java [5] and Object-Oriented Design and Patterns (CS I and II respectively) to
COBOL and Algorithms.

Instructors who choose to use in-person grading sessions require their students to
schedule one or more personal and private meetings over the course of the semester.
There are several different structures for how frequently such sessions occur depending
on the instructor and the course topic. In some cases, all students are required to
participate in several in person grading sessions for the same set of pre-arranged

assignments. In other cases, students are divided into sub-groups and rotate on an
assignment-by-assignment basis. The advantage of the former is that the assignments can
be selected so the instructor is meeting with students to discuss the most interesting
assignments or the ones with the most flexibility in design. The advantage of the latter is
that the weekly load for the instructor is fairly consistent – a small amount of time
frequently rather than large amounts of time infrequently.

Prior to an in-person grading session the instructor considers the student’s assignment
(normally code) for “correctness” and to preview which key concepts to discuss with the
student. During a 20 to 30 minute in-person grading session, the instructor and the
student discuss the student's solution and the decisions the student made while
completing the assignment. For example, a typical in-person grading dialogue might
consist of the following:

How did this assignment go for you?
Walk me through your code?
Show me the code executing.
Why did you choose to …?
What would your code do if …?
What if we wanted to …?
What would/could you do differently?
What did you learn?

While this technique may be used purely as an evaluation technique – as a way for
instructors to obtain a more accurate picture of the student’s understanding of the
material – it may also be used as an opportunity for the instructor to teach – to discuss
why decisions were made, what tradeoffs were consciously considered by the student (vs.
those which were merely artifacts), and to discuss with the student alternative solutions
which may be better, or in some cases, worse, and why. Rather than simply having
students produce solutions, in-person grading provides students with the opportunity to
begin to evaluate and critique solutions. In-person grading has been particularly helpful
as a teaching tool in courses where design of the solution is a fundamental part of the
goals of the class (e.g. OO Design and Algorithms).

While in-person grading is a technique that is relatively easy to apply, it may cause
instructors to experience a fair amount of déjà vu. The problem with meeting with
individual students in a one-on-one situation is that instructors may spend a significant
amount of time leading different students to independently reach the same conclusions.
While this may be of higher benefit to the individual students, it can create significant
time constraints on the part of the instructor. Similarly, in-person grading does not allow
an entire class to benefit from the wisdom/experiences of a single individual without a
significant effort on the instructor’s part to recreate a given scenario from an in-person
grading session during large-group time.

2.2 A Part-Time Studio

One of the real challenges of using a studio in teaching is that studio time is supposed to
be about application/evaluation of knowledge rather than the acquisition of knowledge.
For example, recall that studios in schools of art and architecture are designed to allow
students to apply concepts learned either in previous semesters or to apply material
learned elsewhere during the current semester. How are such activities scheduled in
computer science; in particular when the studio is designed to complement classroom
material learned in the same semester in which the student is completing the studio? One
technique for integrating a studio-based approach into the classroom is the creation of a
“part-time” studio. The following explanation of the part-time studio will be framed in
the context of the “User Interface Design, Implementation, and Evaluation” course
(UIDIE) being currently taught at the University of Northern Iowa [6].

The UIDIE course at UNI is a team-project based course in which students complete a
large-scale software project over the course of the semester. The UIDIE course is offered
within a “traditional” scheduling block. That is, it meets for 50 minutes three days a
week. In a typical week Monday and Wednesday are spent in “knowledge acquisition”
activities. That is, students are either listening to lectures or are participating in active
learning activities. For example, a week’s topic might be how to gather information from
users to complete a task-analysis, the generation of paper prototypes, the completion of a
cognitive walkthrough, the completion of a heuristic evaluation, and so on. By the end of
Wednesday’s lecture, students have gained enough knowledge to begin the next
deliverable (typically due the Friday of the following week) for their semester long
project.

Fridays are spent “in studio” performing design crits on the week’s deliverable(s).
During the design crits, teams take turns presenting and discussing their deliverables.
Early in the semester these take the form of short presentations by each team followed by
a series of, frequently instructor led, discussion generation questions similar to those used
in in-person grading. Depending on the deliverable, students are expected to defend the
“what,” “why,” and “how” they went through in generating their deliverable.
Furthermore, questions may be directed towards the “other teams” to question alternative
approaches or to identify problems unseen by the “on the spot” team.

As the semester progresses, the format of these design crits tends to shift. At first, as
students begin to become familiar with the process, members of the “other” teams start to
lead the discussion after team presentations. Remarkably, this seems to occur with little
explicit encouragement from the instructor. This quickly “evolves” into a less structured
presentation/question format and the process begins to take on the feel of a truly open
studio. Teams make their presentations but are constantly interrupted by other teams to
ask questions, challenge assumptions, and suggest alternatives.

The “part time” studio approach allows instructors to structure their course in such a way
that new content can be interspersed with in-depth participation with, and analysis of, this
content. Furthermore, the advantage that this studio approach has over simply having

students participate on a team is that the studio gives them exposure to the process for
more than one team. A team who struggles with a deliverable can gain insight by
observing a team that has done it well. Even when all teams have done it well, each
project provides a different approach to the design and implementation of a usable
product. Furthermore, the inclusion of the studio puts an additional emphasis on the fact
that the knowledge to be learned in the course is more than simply some facts thrown out
by an instructor. As the semester progresses, the studio allows the students begin to see
that the material presented is all about the process and the creativity learned by
participating in the process.

2.3 A Full-Time Studio

While the part-time studio works well as a complement to the application of material
currently being learned, many computer science curriculums also have a limited number
of situations where students learn material in one semester and truly start to apply it in
subsequent semesters. When this is the case, follow up courses may actually be
structured as “full-time” studios. The following explanation of the full-time studio will
be framed in the context of the “Intelligent Systems” course taught at the University of
Northern Iowa [7], [8].

Similar to the UIDIE course, Intelligent Systems (IS) is a semester long, team-based
project course. Unlike UIDIE, Intelligent Systems has a prerequisite specifically related
to the content of the course. Students must have previously completed the department’s
Artificial Intelligence course. At the very start of the semester, students divide into teams
and identify a project using one or more techniques they learned in AI. From the very
beginning, activities are tailored towards the type of projects selected by the students.

The day-to-day structure of the IS course is much less rigid than that in a traditional
course. While students are required to meet on a regular course schedule (the course has
been taught using both a three-day a week and a two-day a week format) what is done
during those regular meetings is highly flexible, and modeled loosely after the studios in
art and architecture. On any given day an observer might discover students performing
one of three activities; presentation/discussion of “content,” project design crits, and open
lab workdays.

On content days (frequently Mondays), the entire class has previously read a reading
related to the design of intelligent systems. These may come from a standard required
text, or they may come from the research literature. Ideally, the readings are selected for
their applicability to the types of projects being completed during the given semester. A
team of two students (not necessarily working together on the same project) leads a
whole class discussion of the specific content of the readings. This if followed by a
discussion regarding how this material is related to each team’s project. Some weeks, the
topic is a perfect fit for a particular team’s project (an in depth reading on a variety of
learning techniques in neural environments in semesters when students are building
neural networks). Other weeks, the topic is less ideal (the discussion of an article on

MYCIN for the same team). However, students are encouraged to consider how they
would make a technique work in their project (“Suppose you are offered BIG bucks to
build a system that does X using technique Y. How would you make it work?”). Finally,
they are asked to defend why a technique is (in)appropriate for their project. In doing so,
students begin to spend less time thinking about how a technique works, and more time
with analyzing where and why it might work.

Design crit days (typically Wednesdays) are very similar to those described with the
UIDIE course. Design crits in the IS course involve a single team discussing the current
status of their project. Initially these sessions involve students explaining their project to
the other teams and identifying the scope of the project they hope to complete and the
techniques they are considering using. As the semester goes on, these begin to become
much more detailed as teams explain tools/techniques they have discovered, how they are
evolving their project, and how the project continues to fit the definition of an “intelligent
system.” While this may sound very similar to the project updates used in many other
project based courses, the fundamental difference lies in the interaction between the “on
the spot” team and the remainder of the class. Students from all teams are encouraged to
become actively engaged in an analysis of the decisions made by both their team and the
other teams in the class.

Open work days (often Fridays) are much like “work days” in non-studio based courses.
Students are given in class time to meet with their teams, conduct research, write code,
and ask for assistance from the instructor and fellow classmates. In keeping with the
spirit of the studio, students are encouraged to interact with each other and members of
the other teams. In “traditional” classes, students are encouraged to “work alone.” In
studio, students are encouraged to take advantage of the experiences and expertise of
their fellow classmates. As students look for tools/algorithms appropriate for their
project, they often stumble across things appropriate for other groups and are encouraged
to share. If the instructor is aware of a particularly interesting discussion occurring, she
may bring the other groups over to include them in the process.

In all three of these activities, the fundamental difference between the studio approach
and the non-studio equivalent is the amount of interaction students have with each other
and in the amount of time spent in the role of critic or analyst. Students rapidly learn to
become an active participant in presentations and projects of other students. They
quickly discover that thinking about problems in other people’s projects can lead to
insight into solving problems in their project.

3 Discussion

While the prior section might lead one to believe that implementing a studio approach
within a CS class is a simple matter, that conclusion would be erroneous. In fact, the
process can be difficult, time consuming, and a challenge for both students and
instructors who must modify how courses and class times are structured.

One of the most difficult adjustments for an instructor to make is to overcome the initial
feeling that the course has no structure. This is often the case because the instructor fails
to plan appropriately for the studio (although it can also be the case even with well
planned studios). On first glance, it seems like all an instructor needs to do to conduct
the studio is to walk in and lead a discussion. More often than not, when this approach is
attempted, the instructor will find that the result is little more than a team status report or
a discussion of some minor side issue to the course. Experience suggests the most
successful studios have occurred when there are explicit goals in mind for the studio. It
is important for the instructor to have a firm idea regarding what issues he wants the
students to come away with and what topics might come out of discussions as meaningful
spin-offs. This is not only difficult, but also time-consuming. In essence, the instructor
needs to consider multiple game plans for any given class period and be accepting of the
fact that, at best, only one of the game plans may go into play.

Having said all of this, both instructors and students alike need to be willing to make the
adjustment to a course structure that allows open-ended discussions to be initiated and
maintained. The instructor has to come to class prepared for the unexpected. There is a
plan, but that plan may deviate if not completely disappear at any point during the day.
Some days, students come ill prepared and/or unwilling to participate. On these days, the
instructor must be able to ask questions, pose dilemmas, challenge assumptions, and
introduce modifications that completely change the nature of the problem currently on the
table. On other days, students will play this role. On yet other days, students will pose
issues that were never on the instructor’s radar. This can lead to days (and sometimes
weeks) where the course goes a direction that the instructor had never anticipated. It
requires the instructor to reconsider what is important and what topics need to be
readdressed later. However, these spin-off discussions often develop because there are
unanticipated issues that several students/teams are facing. In these cases, the instructor
needs to be ready to let new discussions occur while continually monitoring the direction
of the discussions to see if they are continuing to cause “learning” on the part of the
students. For example, there is constructive complaining about lack of appropriate tools
to solve a particular problem and there is just simple complaining. The former allows
students to consider why such tools do not exist or may be difficult to maintain while the
later simply allows students to waste time complaining.

Despite these difficulties, both anecdotal and experimental results suggest that the end
results are well worth the efforts. In the IS course one student was recently discussing his
project to train a neural network to perform OCR with computer-generated fonts. The
images he was using were simple graphics files 18x24. He was commenting that while
that seemed small, the 432 inputs necessary for the network was causing a minor
challenge. Another member of the class observed that the image files all seemed to have
some white-space padding around the actual characters and questioned whether the files
could be trimmed by finding rows/columns which were nothing but white-space for all
character files. A third student, who had been spending a fair amount of time working
with bitwise operations for his team’s project, immediately suggested converting the
image files to a bit String (something likely to happen anyways in order to more
efficiently process the training data) and performing a cumulative OR over the set of

data. Any bits still set to 0 would be inputs unutilized in the network (although the
network should LEARN this fact). A fourth student proposed that performing a
cumulative AND over the set of data would indicate any bits which are always on. In
hearing this, the third student suddenly realized one of the solutions to a problem he had
been having with his project involved a similar solution (actually using XOR). The
initial student learned a VERY elegant technique that might help him reduce his problem
slightly. The third student got to be an expert and help out, but also learned a possible
solution for his own problems. The whole class benefited from the exchange by seeing a
completely “different” way to solve the problem.

In another example from the IS course, in a recent design crit, one team was discussing
how they have decided to write some wrapper code so that they could get two existing
tools (a natural language processing tool and a knowledge management tool) to work
together within the context of their project (a system to read story problems and write out
the algebraic equation which will solve the problem). A non-team member made the
comment that he couldn’t imagine going to all the trouble to make existing, generalized,
public domain tools work in a specific application. He would rather start from scratch
and simply build the tool to do what he needed it to do. This led to an extremely long
discussion (that continued to a second class) about the tradeoffs between using existing
tools vs. writing your own tools and under what circumstances each seemed to be the
most appropriate approach. Students learn the most from these discussions when they
come up under their own power rather than when an instructor decrees, “Today we want
to discuss X.” Students could immediately relate to the question and find a position to
fight for, yet by discussing it in the group context of multiple team projects, begin to
consider why their initial answer might not be the one, true “right answer.” This type of
discussion came about because of the class structure established through the use of a
studio approach to learning.

While little has been done to experimentally to consider the affect/effect of full or part
time studio courses in computer science, there has been initial work done to consider the
affect of in-person grading [5]. Initial results of a controlled user study show that there
was no effect on grades or in-class participation of those students who participated in in-
person grading sessions. However, the same study showed that students were much
happier with their overall course experience and felt like they learned more (even though
the data shows they did not). In a field where retention of students has become a
significant discussion point, any technique that seems to improve the students’ attitudes
toward their coursework seems to be a technique worth considering.

All in all, these experiences have left the author feeling confident that studio courses have
a place in the undergraduate computer science curriculum. In order to fully enjoy the
benefits of these techniques, however, it will require the continued efforts by instructors
to try different mechanisms for implementing such open ended analysis techniques into a
variety of courses and sharing which techniques work and which techniques do not.

4 Acknowledgments

The author would like to thank Drs. Gene Wallingford and Philip East for their direct and
indirect contributions to the author’s understanding of in-person grading and the studio
approach as well as for continuing to fuel the author’s passion for figuring out how
further application of these techniques can improve the way he teaches.

5 References

1. Kernighan, B. and Plauger, PJ. The Elements of Programming Style. McGraw-
Hill 1974.

2. Reimer, Y.J. and Douglas, S., “Teaching HCI Design With the Studio Approach”,
Computer Science Education Vol. 13, No. 3, special issue on Human-Computer
Interaction, September 2003, pp. 191-205.

3. http://www.rolemodelsoftware.com/process/whatIsXp.php
4. East J.P., “Experience with in-person grading.” In Proceedings of the 34th

Midwest Instruction and Computing Symposium. 2001.
5. East, J.P., and Schafer, J.B, “In-Person Grading : An Evaluative Experiment,”

Proceedings of the 2005 ACM Conference of the Special Interest Group,
Computer Science Education (SIGCSE-05), pp. 378-382.

6. http://www.cs.uni.edu/~schafer/courses/112/
7. http://www.cs.uni.edu/~schafer/courses/162/
8. http://www.cs.uni.edu/~wallingf/teaching/162/

