
Hands-on Artificial Intelligence Education
Using LEGO Mindstorms:

Lessons Learned

J. Ben Schafer
Department of Computer Science

University of Northern Iowa
schafer@uni.edu

Abstract

Educational researchers have suggested that instruction utilizing a variety of delivery
modes helps students with differing learning styles to better understand the studied
material. While introductory CS courses frequently contain “hands on” application of the
material, many upper division courses seem to focus largely on the concept of “reflective
practice.”

This paper will focus on the author’s attempts to provide a series of hands on activities
conducted as part of an Artificial Intelligence course. “RoboLab” was an optional, 1-
credit lab offered in conjunction with the more traditional 3-credit AI course. This lab,
using the LEGO Mindstorms robotics platform and the leJOS firmware, allowed
students to apply a variety of the AI topics studied in the classroom to the
construction/creation of student-built robots to solve a diverse set of tasks. These AI
topics included problem solving, as well as rudimentary knowledge acquisition and
planning, and multi-agent communication.

Introduction

Educational researchers have long suggested that instruction utilizing a variety of
delivery modes helps students with differing learning styles to better understand the
studied material. Few, if any of us, would think about teaching our introductory
programming courses solely via textbook readings and lecture. We firmly believe that, to
learn, students must “do.” Thus, we provide a variety of assignments and “labs” that
allow students to participate in both reflective practice in the classroom, and active
practice in the computer lab. Thomas et al. [7] have studied the success rate in traditional
CS I courses by students exhibiting each of the different learning styles described in the
work of Richard Felder [2] and suggested that instruction targeted across styles greatly
improves the performance of students from all styles, but in particular from those styles
less prominent in the domain of computer science.

Despite all of this, many of us seem to push aside this belief when we teach our upper
division courses. It is not uncommon to find these courses being taught with little or no
“hands on” application of the techniques being studied. Is this because we suddenly feel
these principles become less important as students mature, or are we are simply modeling
what we know (“Our instructors didn’t provided hands on instruction. Why should
we?”)? If it is the latter, than perhaps it is time we examine these upper-division classes
and consider where a more active learning approach may be appropriate.

This paper describes the author’s attempts to provide a series of hands on activities
conducted as part of the Artificial Intelligence course taught during the fall semester of
2003 at the University of Northern Iowa. Modeled, in part, on an AI course taught by
Frank Klassner at Villanova [1], “RoboLab” was an optional, 1-credit lab offered in
conjunction with the more traditional 3-credit AI course. This lab, using the LEGO
Mindstorms robotics platform and the leJOS firmware (a Java based OS), allowed
students to apply a variety of the AI topics studied in the classroom to the
construction/creation of student-built robots to solve a diverse set of tasks. These AI
topics included problem solving – using simple search, informed search, and exploration
techniques such as hill climbing and simulated annealing – as well as rudimentary
knowledge acquisition and planning, and multi-agent communication.

Organization of the Lab

In an effort to provide a hands-on environment for learning and discussing artificial
intelligence, the author spent the spring of 2003 (and approximately $3000) planning and
constructing an eight station “RoboLab” to be used as an optional supplement to the
artificial intelligence course offered at the University of Northern Iowa. This section will
discuss the equipment used in RoboLab, including the hardware, site needs, and software,
as well as the course structure for such a lab.

Equipment

While there are a variety of “cost accessible” platforms for building robots at the
undergraduate level, including HandyBoard and perhaps even ActiveMedia robots, we
decided to use the LEGO Mindstorms platform. This decision was made for a variety of
reasons including overall cost, ease with which students can construct and modify a
variety of robots, and the “fun factor” – most of the students participating in RoboLab
chose to do so largely because they remembered how much fun it was to play with
LEGOs as a child.

The LEGO equipment was purchased directly from LEGO’s website. While, historically,
LEGO has chosen to not offer any form of educational or bulk discounts they do
routinely offer a “Robotics Invention System Kit” (RISK) via their print and online
catalogs. This kit consists of the standard Robotics Invention System (RIS) bundled
with additional sensors and pieces. The actual contents of this kit changes over time
depending on what they choose to promote (or more pessimistically, what they chose to
clear out of their warehouse). For example, at the time that we chose to purchase our
equipment, the System Kit came with the RIS 2.0, the Ultimate Builder’s Challenge, a
remote control, as well as additional motors and a capacitor. In addition to the RISK, we
chose to purchase a rotation sensor for each team. The total purchase price was
approximately $250 per team.

In addition to the robotics equipment, each team was issued eight rechargeable AAA
batteries (the “computer” portion of the robot, the RCX brick, requires six batteries)
and a charger able to handle all eight batteries at once. The total purchase price was
approximately $45 per team.

At this point, we had invested over $2400 in equipment. Clearly, it was essential to have
a means by which student teams could organize and securely store the equipment that
they were issued. To achieve this, we purchased a multi-tray, parts-organizer and a 2-
gallon Rubbermaid storage bucket for each group. Small parts were sorted by type, size,
and color into the parts organizer, while larger or oddly shaped parts were sorted into
Ziploc storage bags and kept in the storage bucket. The bucket also doubled as a
container for their work in progress. Finally, we purchased two Rubbermaid locker units.
Each unit features four independently lockable storage spaces approximately 18x18x36.
In addition to plenty of room for both parts containers, teams had room for textbooks and
other materials they were working with. The total purchase price of lockers and storage
units was approximately $55 per team.

In addition to a secure and organized work environment, we needed a lab setting where
students could both work on their programs and run their robots around the given
interaction environment with as little disturbance as possible. Fortunately, we were able
to obtain the shared use of a teaching lab. This lab contained six networked computers
specifically for the use of RoboLab participants, a large “testing table” (an old conference
room table which would comfortably support a 4x8 foot sheet of plywood, as well as a
variety of “work” tables and chairs that could be rearranged as needed.

LEGO distributes the Mindstorms with a powerful visual programming environment
often referred to as ROBOLAB. This environment is a great example of how to write a
“clean,” intuitive interface. However, it is targeted towards an audience half the age of
the typical undergraduate. While an intelligent seven-year-old could use it to develop
fairly sophisticated programs, the visual, drag and drop, environment is probably too
simplified for the typical AI student, and there are many activities that would be fairly
difficult if not impossible to perform using this base environment.

Fortunately, several free, third-party, firmwares (operating systems) exist for the
Mindstorms platform. These include NQC (not quite C) [1], leJOS (LEGO Java
Operating System) [4], and RCXLisp [5]. Since the students at UNI receive a minimum
of two semesters of programming instruction in Java, we chose to use the leJOS firmware
for the labs. Students write code in a slightly modified version of Java, compile using the
leJOS compiler, and then download the byte code to the RCX brick. leJOS is open
source, readily available online [4], and several helpful tutorials exist for installing and
programming using this environment.

Course Structure

The artificial intelligence course at UNI has traditionally been available in either a three-
credit or four-credit version. The three-credit version was available for MIS majors from
the College of Business and involved no actual programming. The four-credit version
was required for departmental majors and consisted of additional programming activities.
Recent restructuring of the CS majors has left non-majors largely ineligible for this
course due to pre-requisite issues, yet both sections were still on the scheduling books.

Taking advantage of this, it was decided that the offering of AI presented in the fall of
2003 would consist of two simultaneous versions. Eight students chose to enroll in the
three-credit version that, in addition to meeting three days a week for lecture/discussion,
required students to complete several homework activities (involving both programming
and paper/pencil tasks), and a semester long research paper. An additional twelve
students chose to enroll in the four-credit version that consisted of all of the requirements
for the three-credit version of the course, plus one additional, regularly scheduled hour of
“RoboLab.”

Students in RoboLab selected their own three-member teams. While they were expected
to attend the weekly RoboLab session, time was, for the most part, used as unstructured
meeting time during which teams could demonstrate previous assignments and begin
construction/coding of additional assignments. Each lab required the students to work as
a team to code and construct the robot as necessary. Deliverables for each lab included
group code, as well as individual write-ups by each member of the team. Students were
told that it was expected they would need to spend a total of 5-8 hours per week in the
RoboLab to be successful. Teams were provided with keys to the RoboLab facility and
were told that they could use the room at any times that worked for their teams.

Activities

Participants in RoboLab completed seven different lab activities. The following are brief
descriptors of the labs as well as a short discussion of student approaches and/or
difficulties. Complete lab instructions for each lab are available online [6].

RoboLab #1 – Object Avoider (using the touch sensor)

Primarily a “starter” lab, the Object Avoider lab asked students to construct the basic
double bumper robot from the Constructopedia™ (The large instruction guide the comes
standard with the RIS). The students were to program the robot to serve as a simple
stimulus/response robot. The robot was to progress through its environment until it
detected that it had interacted with an object. At that point, the robot was to back off,
turn to avoid the object, and continue on its way.

While students were free to interpret directions relatively freely, they were required to
justify their control decisions. Most chose to use a combination of a random length
“reversal” with a random length turn “away” from the encountered object (with a double
bumper configuration it is possible to detect with slightly more precision “where” the
obstacle is with respect to the robot).

RoboLab #2 – Line Follower (using the light sensor)

Designed to allow students to both write more complex leJOS code as well as introducing
them to the light sensors, RoboLab#2 was a two-part lab. Students were told that their
robot would be placed in a “monochrome” environment with a single color “in bounds”
area and a contrasting “out of bounds” area. Their robot’s task was to navigate around
the environment while staying in bounds. When the robot detected that it was proceeding
out of bounds it was to return in bounds in a “sensible” fashion. Robots were to account
for both black on white and white on black environments. In the second part of the lab,
students were asked to produce a robot that could navigate a monochrome environment
by following a “smoothly curving line” roughly 1 inch wide.

The challenge was to understand how to handle “loss of line.” That is, what do you do
when the sensor no longer detected it was above a line? While most groups chose to
pivot the robot around its center axis in increasingly larger arcs until the line was
“reacquired” the most successful group chose to zig-zag back and forth along a line edge.
By employing a constant “creep forward to the left until line is lost” then “creep forward
to the right until line is reacquired, they managed to produce a robot that moved
extremely quickly around tracks of several different shapes.

RoboLab #3 – Shape Tracer (using the rotation sensor)

Designed to allow students to built control structures that produced as much accuracy as
possible in their robot, lab #3 introduced the use of the LEGO rotation sensor. This
sensor’s output is a voltage from one of four discrete values. As the input axle rotates,
the output voltage changes. The voltage changes 16 times through a single 360-degree
rotation. Students were to use this knowledge and a little bit of mathematics to create a
robot which could be provided some integer N and some distance M in centimeters and
would then traverse along the outer edge of an N-sided regular polygon with sides of
length M.

Students were largely judged on the robot’s ability to finish tracing the shape on or near
its starting point. This turns out to be a non-trivial task. While one group was able to
finish within 2 centimeters of its starting point regardless of shape and size, most groups
were off by anywhere from 10-20% of M, and one group, when asked to produce a
square with sides of 1 meter, managed to end the task well over 2 meters from the starting
point.

RoboLab #4 – La Cucaracha (hill climbing, simulated annealing)

La Cucaracha was designed to blend skills/code created in the completion of labs 1 and 2.
Students were asked to create a robotic cockroach by creating a robot that avoided
obstacles and sudden bright lights – both stimulus/response actions – as well as actively
seeking a dark space.

While the stimulus/response actions of the robot did not prove to be difficult, students
took significantly different approaches towards the generation of behavior that caused the
robot to “seek dark.” Several employed a simplified “hill climbing” approach involving
moving in any direction which their robot perceived as darker than their current location
until they reached a location where any movement took the robot to a spot which was
“brighter” than the current location. Others implemented an occasional “random walk”
which attempted to avoid becoming stuck at a local maximum. One group even
attempted to remember the location of the last local maximum and implemented a time
interval during which the random walk had to produce a result that was “no worse.” If
the robot failed to do so during that time interval, it returned to the previous maximum
and took a different random walk.

RoboLab #5 – SuckerBot (searching and simple planning)

This lab is based on the vacuum world problem repeatedly discussed in Russell and
Norvig’s AI text and was modified with permission from an activity originally written by
David Musicant at Carleton College. Students were to construct a robot that could
navigate a 3x3 grid searching for “dirt piles” (squares of construction paper). When the
robot detected dirt it was to clean it up (emit a tone which signaled a human user to

remove the construction paper). When the robot had cleaned the entire world it was to
return to a “home cell.”

In early tests, students were allowed to start their robot in a known location (the home
cell). In further testing the robots started in a known orientation (facing east) but did not
know their specific location. They were, again, required to clean the entire grid and
return home. While all students produced robots that succeeded at this later task, there
were significant differences in how robots achieved this goal. One group determined its
location first before performing any dirt sensing/cleaning activities. They did this by
navigating to the home cell first (traveling northwest until they had worked their way into
a corner) and then completing the original task. While this was a good implementation of
“code reuse” it was not a particularly efficient solution. Other groups largely reversed
this procedure by performing a semi-random traversal until they had determined all cells
were clean, and then making a similar northwest run to home. Still other groups
conducted fairly structured traversals that cleaned as they worked their way to the cell
furthest from home (determining their location in the process) and then figuring out the
most efficient way to clean the remaining cells on their way back to the home base.

RoboLab #6 – aMAZEing Bot (search, knowledge acquisition and planning)

In probably the most complex lab of the semester, students were asked to create a robot
that could search a maze of unknown shape that was superimposed on a 5x5 grid.
“Walls” in the maze were represented by black electrical tape, while “openings” were
represented in red electrical tape. Through this technique, robots were able to keep track
of the specific cell they were in by detecting the crossing of red lines. It also allowed for
a maze that took up less space overall since robots did not have to worry about backing
away from walls prior to turning. Robots began in the home square, navigated the world,
determining the shape of the maze as they went. As soon as they located the “goal cell”
they were to return to the “home cell.”

Most students programmed a robot that used a slightly beefed up version of a depth first
search. That is, upon entering any cell there are, in theory, three different directions in
which the robot could leave the cell. Thus, treating each cell as a node in a search tree it
has, at most, three child nodes. Known walls (outside walls) and discovered/previously-
learned walls (maze walls) can reduce this down to zero, making the cell a terminal node.
By employing a depth first search with an aspect of knowledge acquisition (there is no
reason to attempt to expand a child node in a direction previously known to contain a
wall) robots were able to efficiently navigate the maze as well as develop a known path to
the home cell.

Final Projects

Each team proposed a final project that was to demonstrate one or more of the AI
techniques they had learned during the semester. Descriptions of the final projects during
the fall of 2003, including relative levels of completion, are as follows:

• Tic-Tac-Toe Playing Robot – Using the grid and programming techniques from
the SuckerBot Lab, this group produced a robot that was “player 2” in a tic-toe-
game. That is, it began by navigating the grid to determine in which cell the
human player had placed its first piece (construction paper). Once it located this,
it selected its responding move, and navigated to that cell in the grid, and signaled
the human player to mark its move. It then awaited a signal from the human that
it had placed its second piece, and then repeats the above process of locating and
processing the human’s move. While this group succeeded, the intelligence of
their player was severely limited by the limited memory on the RCX bricks.

• Mancala Playing Robots – Mancala was an ongoing example throughout the
classroom portion of the AI course. This team attempted to create two Mancala
Playing robots placed on opposite sides of an oversized Mancala board. Each
robot would determine from which pit it wanted to pick up stones, move to that
pit, and signal the human “supervisor” to distribute the stones. Upon receiving a
signal from the human that this action had been conducted, the robot would return
to its “home base” and send an IR signal to the other robot including the previous
move. This robot would determine its move and repeat the process. This project
was simply too complex to allow for completion in the timeframe allowed. The
team solved basic movement and communication issues, but was unable to
produce robots that intelligently played the game, and an unresolved bug caused
the agent to make each move twice before signaling the opponent that it was
done.

• Fax Machine – Using a structural design from the LEGO materials, this team
programmed two different “robots” to use IR communication to coordinate the
movements of a “scanner bot” and a “plotting bot.” While the resolution of the
material to be scanned and reproduced was severely limited by the resolution of
the light sensor, this group was able to create a relatively accurate “block plotter.”
Their real challenge was in the coordination of the two bots. They were unable to
determine how to handle the lag between the scanner detecting that the pen should
be raised/lowered and the plotter actually performing the action. When combined
with a system that used bi-directional scans (the scanner made a pass from left-to-
right, advanced slightly, and then scanned from right-to-left on the next pass)
produced plots that had very jagged edges.

• Obstacle Avoiding Search and Rescue Robot – The final team produced another
robot that started at a known location in a grid and searched the grid for a goal
cell. However, the grid contained several obstacles in unknown locations and
orientations. The challenge was to navigate the grid, avoiding obstacles, to find
the goal cell and return home. This project was heavily influenced by the robotics
competition being held in conjunction with this year’s MICS conference.

Lessons Learned and Recommendations

For the most part, we were very pleased with the results of RoboLab. When asked if they
would “do it again” and if they would recommend RoboLab to students taking the course
in the future, 10 of the 12 students provided positive feedback. Having said that, there
were clearly things that we would do differently in the future, and students completing
the course were more than willing to point out ways in which they thought the course
could be improved. This section will focus on several of the lessons that we learned in
teaching RoboLab, and recommendations for those considering such a course. These
issues include course structure, control issues, and equipment needs.

Course Structure

Student concerns about RoboLab fell relatively clearly in two camps. The first of these
were issues surrounding the amount of time that they spent on RoboLab projects.

While it was our initial intention that students spend 5-7 hours a week on RoboLab tasks
(including both scheduled course meetings and unscheduled team times) most students
reported a figure about twice this. By students’ own admission, part of the problem was
that they enjoyed “tinkering” with robotic design too much. They would spend two hours
trying to get a VaccuumBot that looked “cool” or that played the theme song to Legend
of Zelda when it reached the home square on the grid.

However, they were also working fairly hard. The first four labs were completed one per
week one right after the other, and the fifth lab actually was divided into two mini labs
which were due in two consecutive weeks. Only labs six and the final project extended
over multiple weeks. Thus, teams had very little flexible time, as there was always an
upcoming deadline.

The other downside was that the instructor knew that he was working the RoboLab
participants rather hard and, despite the fact they were earning an extra hour of credit for
this work, he was reluctant to burden them to much more. As such, the quality and
quantity of homework assignments made in the regular AI classroom suffered. On
several occasions I convinced myself to delay or cancel a homework assignment because
it meant that RoboLab participants would have to be working on two difficult coding
assignments simultaneously.

So what is the solution? One solution is to drop back to a single offering style for the
course. That would involve rolling RoboLab into the three-credit version of the course,
or requiring that everyone enroll in the four-credit version. However, we do not feel that
this is the solution that we will take. In order to put RoboLab into 3 credits we would
have to eliminate some topics that we feel are important to cover. But on the flip side, we
clearly have students who cannot afford the time required to take a four-credit version of
this course.

Thus, for the fall of 2004 we will once again be offering two concurrent offerings of the
course. However, in order to address the time concerns of RoboLab we will be backing
off slightly on the quantity and length of the labs being required. This will be attempted
through two independent actions. First, we need to re-evaluate the ultimate goal(s) of
each of our previous labs and either eliminate some labs, or merge labs into a single lab
(“killing two birds with one stone”). Second, we can, perhaps, reduce the programming
time required of our teams by providing students with a calibrated, robot control package
as discussed in the next section.

Robotics Control

The one thing that caused students the most difficulty during the course of the semester
was achieving the fine-grained level of control over their robots that is needed to produce
accurate results. The motors that come with the Mindstorms kits are highly sensitive to
voltage, and a robot that travels perfectly straight during testing can travel with a
significant curve one direction or another as the voltage in the batteries depletes. While
the more successful groups learned to always work with a set of fully charged batteries to
try to have reproducible results, even this was not enough to eliminate significant control
problems in groups with otherwise good code.

Because of this several of the students from the Fall 2003 course have suggested, and are
contributing code towards, a standardized Robotics Control package that would be built
on top of the leJOS language. This package would provide the ability for programmers to
run a calibration program prior to any runs of their robots. This program would allow for
simple human user adjustments of voltage over individual motors until the robot was
traveling straight given the current battery voltage. Robotics control code would then
replace a series of calls such as:

motorA.setVoltage(9);
motorB.setVoltage(8);
motorA.forward();
motorB.forward();

with a single call to a helper method such as
RobotControlPackage.robotForward();

While the development of this package is expected to be non-trivial, it is expected to be
doable with some part time, cooperative work of several students and the instructor, and
be available for use by the time of the next offering of RoboLab (fall 2004).

Robotics Equipment

One of the criticisms of using the Mindstorms as a platform for robotics instruction is that
you can’t build anything serious with the basic RIS [1]. However, it was our observation
that very little additional equipment is needed to produce reasonable kits that can
complete labs focusing on most of the introductory AI topics. Other than the basic RIS,

the only additional equipment necessary for the labs provided in RoboLab are a rotation
sensor and an additional light sensor. The double light sensor configuration is needed to
perform runtime adjustments to the direction of the robot, and the rotation sensor can
allow students to more accurately control angular turns of their robot. Since one or both
of these frequently come bundled with the previously mentioned RISK instructors
looking at adopting this approach may want to consider the purchase of the RISK rather
than the RIS and the sensors separately. Frequently the costs are comparable, however,
by purchasing the RISK you get “free,” additional components (although the actual
helpfulness of these additional components is debatable and depends on the particular
bundle being offered). Having said all of this, every lab described in this paper was
completed with a kit assembled for approximately $250 per kit – a cost far less than many
of the more “serious” robotics kits.

The other concern that we continue to have about the Mindstorms platform is its limited
onboard memory capacity. Until LEGO builds a Mindstorms kit that includes the ability
to expand the unit’s memory through devices such as Smartmedia or Flash Memory,
students will be quite limited by the 32KB of RAM contained in the RCX. Attempts to
perform any kind of serious search very quickly cause a memory dump due to overuse of
the RAM. For example, the tic-tac-toe playing robot originally attempted to use the
MiniMax algorithm to decide which move to make, but even with a game this small, the
data structure(s) produced during execution of the algorithm would not fit on the RCX.

Conclusions

Despite the limitations of the Mindstorms’ platform, and despite the initial difficulties,
we were pleased with the initial results of RoboLab. While it was not without its faults,
the lab provided students with the opportunity to have a lot of fun and participate in
activities that motivated them. While a series of revisions will need to be made to find
the right balance between fun, busy work, and actual learning through application of
ideas from the classroom, the author firmly believes this balance exists and is looking
forward to trying the whole process all over again during the fall of 2004.

References

1. Klassner, F., “A Case Study of LEGO Mindstorms’ Suitability for Articifial
Intelligence and Robotics Courses at the College Level,” Proceedings of the 33rd
SIGCSE Technical Symposium on Computer Science Education, pp 8-12.

2. Learning Styles and Strategies home page, http://www.ncsu.edu/felder-
public/ILSdir/styles.htm

3. leJOS home page, http://http://lejos.sourceforge.net/
4. NQC home page, http://www.enteract.com/~dbaum/nqc/
5. RCXLisp users manual, http://www.csc.vill.edu/~klassner/csc4500/RCXLisp-

Manual.pdf
6. RoboLab home page, http://www.cs.uni.edu/~schafer/robolab/

7. Thomas L., Ratcliffe, M., Woodbury, J., and Jarman, E., “Learning Styles and
Performance in the Introductory Programming Sequence,” Proceedings of the 33rd
SIGCSE Technical Symposium on Computer Science Education, pp 33-37.

Acknowledgements

I would like to acknowledge Dr. Bart Bergquist and the entire Department of Computer
Science at UNI for their initial and continued support of the construction and
implementation of RoboLab.

