
 1

Solving Parsons Problems Versus Fixing and Writing Code
Barbara J. Ericson

School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA, 30332
USA

ericson@cc.gatech.edu

Lauren E. Margulieux
Learning Technologies Division

Georgia State University
Atlanta, GA, 30303

USA
lmargulieux @gsu.edu

Jochen Rick
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA, 30332
USA

jochen.rick@gatech.edu

ABSTRACT
Prior research has shown that Parsons problems are an engaging
type of code completion problem that can be used to teach
syntactic and semantic language constructs. They can also be
used in summative assessments to reduce marking time and
grading variability compared to code writing problems. In a
Parsons problem the correct code is provided, but is broken into
mixed-up code blocks that must be assembled in the correct order.
Two-dimensional Parsons problems also require the code blocks
to be indented correctly. Parsons problems can contain extra code
blocks, called distractors, which are not needed in a correct
solution. We present a study that compared the efficiency,
effectiveness, and cognitive load of learning from solving two-
dimensional Parsons problems with distractors, versus fixing code
with the same errors as the distractors, versus writing the
equivalent code. We found that solving two-dimensional Parsons
problems with distractors took significantly less time than fixing
code with errors or than writing the equivalent code.
Additionally, there was no statistically significant difference in
the learning performance, or in student retention of the knowledge
one week later.

CCS CONCEPTS
• Social and Professional Topics~Computing Education; Social
and professional topics~Student assessment

KEYWORDS
Parsons problems, Parsons programming puzzles, code-
competition problems, cognitive load, assessment

1 INTRODUCTION
Learning to program is difficult. Students spend many frustrating
hours trying to figure out why their programs don’t compile [2].
Drop out and failure rates in many introductory college-level
computing classes are high with an average pass rate worldwide

of only 67% [3, 54], perhaps in part due to this frustration.
Several multi-institution and multi-national studies have found
that students perform poorly on tests of their knowledge [28, 30,
47, 51], suggesting that the current instructional strategies do not
lead to effective learning.

Beginning programming students have to learn many things.
They have to develop a mental model of the computer (the
notional machine), the notation (syntax and semantics), the
structures (programming schemas and plans), and skill in
planning, developing, and debugging programs [5]. Piaget
popularized the term schema, which is a mental framework for
organizing and applying knowledge [52]. Experts have a large
number of robust schemas that they can use to recognize and
solve similar problems [1, 55]. It can take 10 years of sufficient
and sustained practice to turn a novice programmer into an expert
programmer [55].

In introductory college-level programming courses students
are mostly expected to practice by writing code, which can take a
large and unpredictable amount of time. Students have reported
spending hours trying to fix a simple syntax error like a comma
out of place [2]. Despite its difficulties, writing code is common
in an introductory programming course because it is an authentic
task. An authentic task is one that someone in the field of study
might encounter in their work [40]. Constructivists encourage the
use of authentic tasks to motivate students [13]. However,
without appropriate guidance, students can easily be overwhelmed
by the complexity of an authentic task, especially when they have
little knowledge about the domain [33]. Cognitive load theory
(CLT) states that the human mind has limited processing
capability and that the cognitive load of complex tasks must be
reduced in order for learning to occur [45].

One of the recommended approaches to reducing cognitive
load is to use completion tasks rather than whole tasks [31, 32].
An example of a completion task is modifying or extending a
program, rather than writing a program from scratch. Parsons
problems are a type of code completion practice problem in which
the learner must place blocks of mixed up program code in the
correct order. Some types of Parsons problems, called two-
dimensional (2D) Parsons problems, also require the code to be
indented correctly. Parsons problems can also have distractor
code blocks that are not needed in the correct solution. The
distractor blocks can include syntactic errors like a missing colon
as well as semantic errors like the wrong boundary condition on a
loop. The distractor blocks can be randomly mixed in with the
correct blocks. Alternatively, each distractor can be shown paired
with the matching correct code block so that the learner only has

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

Koli Calling 2017, November 16–19, 2017, Koli, Finland
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5301-4/17/11...$15.00
https://doi.org/10.1145/3141880.3141895

20

 2

to choose the distractor or the correct code, as shown in Fig. 1.
Parsons problems can be used to teach syntactic and semantic
language constructs as well as expose students to common
programming plans [37]. Several researchers have hypothesized
that solving Parsons problems should result in more effective and
efficient learning than having students write the equivalent code
[12, 37], but to our knowledge none have empirically tested that
hypothesis.

Figure 1: A 2D Parsons problem with paired distractors

Our research questions were:

1. What are the relative effects on performance of 1)
solving two-dimensional Parsons problems with paired
distractors, 2) fixing the equivalent code with the same
distractors, and 3) writing the equivalent code?

2. What is the effect on completion time for each of the
three conditions (solving Parsons Problems, fixing, and
writing code)?

3. What is their effect on self-reported cognitive load?

2 RELATED WORK
This research is based on several theories from educational
psychology including constructivist learning and cognitive load
theory. It also incorporates research findings on worked
examples, deliberate practice, desirable difficulties, and subgoal
labeling. This study was informed by prior research on Parsons
problems.

2.1 Constructivist Learning
In Piaget’s theory of constructivist learning learners must
construct their understanding by making sense of the information
and by building a mental representation [52]. Chi found that
constructive learning leads to better outcomes than passive or
active learning [9]. Solving Parsons problems with distractors
should help the learner construct an understanding of common

errors and algorithms as she or he selects blocks and places them
in the correct order [37].

2.2 Cognitive Load Theory
Cognitive Load Theory (CLT) was developed by John Sweller in
the late 1980s [44]. For learning to occur new information must
be processed in working memory and then added to the
knowledge representations (schemas) that exists in long-term
memory [6]. However, working memory has a limited capacity,
and if that capacity is needed entirely to process new information,
it cannot be used to modify or build schemas. Instructional
material can be designed to reduce the cognitive load that is
devoted to processing new information. It is important to note
that the amount of cognitive load a learner experiences is based on
three components: the complexity of the material or task, the way
the instruction is designed, as well as the strategies used for
constructing knowledge. The complexity of the material or task
varies with the learner’s prior knowledge. Parsons problems, as a
type of code completion problem, should have a lower cognitive
load than a problem that requires the learner to write the code
from scratch, because the problem space is more constrained.

2.3 Worked Examples
One of the most well known effects predicted by cognitive load
theory is the worked example effect. A worked example is a
detailed description or demonstration of how to solve a problem,
including both the problem statement and all steps of the problem
solution. Sweller proposed a “Borrowing and Reorganizing
Principle” which means that the way humans build long-term
knowledge is by imitating others [46]. Studies have shown that
worked examples improve learning in algebra, physics, and
programming [10, 38, 53, 56]. However, students don’t always
learn from worked examples [15]. They learn best when the
worked examples are interleaved with practice problems that are
similar to the worked examples [48]. Another argument in favor
of worked examples is that students prefer learning by studying
examples rather than learning by reading text [26]. In this study,
the instructional material contains four worked examples with
interleaved practice problems.

2.4 Subgoal Labeling
One of the reasons experts perform better than novices is that they
can recognize structural similarities on tasks or problems, while
novices tend to focus on surface level features [6]. For instance,
when students are given a worked example about calculating the
average rainfall, they typically focus on surface features, like the
variable names, rather than the structural process of the solution.
This makes it difficult for them to transfer their knowledge to
other similar problems (e.g., calculating the average score for a
range of indices in a list) and seemingly different, but actually
structurally similar, problems (e.g., counting the number of target
values in a list). The subgoal learning framework addresses this
problem by drawing students’ attention to the structural features
to improve their problem solving performance and transfer [7,
29].

21

 3

Subgoal labeling is a method of teaching subgoal learning
through worked examples [7, 29]. Subgoal labeled worked
examples visually group subgoals of the problem solution (i.e.,
functional pieces of the problem solution) and give them a
meaningful label that describes their function. For example, in
Fig. 1, the first block on the left includes the subgoal label “return
sum” as a comment. This label describes the function of the line
below it. All of the worked examples, fix code problems, and
Parsons problems in this study used subgoal labels in the
comments to help novices focus on the structure of the solution
rather than just the surface level features. In the paired distractor
Parsons problems the distractor blocks contained the same
subgoal labels as the correct code blocks to further indicate that
the blocks were paired and that the student should only choose
one of the pair as shown in Fig. 1.

2.5 Deliberate Practice
Practice is essential for learning [6]. It helps the learner focus on,
organize, integrate, and retrieve new knowledge from long-term
memory. Several studies show the importance of practice in
developing expertise [42, 50]. But, it needs to be the right kind of
practice. It is possible to spend many hours practicing without any
improvement in ability.

To improve performance it needs to be deliberate practice
which means that it focuses on areas where the learner is weaker
and it must include feedback, which can be used to improve
results [19]. Parsons problems can be used to focus learning on
areas that learners typically struggle with, such as recognizing
common syntax errors. Parsons problems can include distractor
blocks that contain common syntactic or semantic errors, which
should help novices learn to recognize those errors with less
frustration than encountering them when they are programming a
solution from scratch [37].

2.6 Desirable Difficulties
New information is not just stored or copied into long-term
memory; it is related to and integrated into what learners already
know [6]. Retrieval of information depends heavily on the
context, which can limit our ability to transfer information from
one context to another [6]. Retrieving information from long-term
memory increases our ability to recall it in the future. Desirable
difficulties are those that help learners store and recall information
in multiple contexts [4]. One key idea of this work is that
improving the learner’s performance while learning can actually
decrease long-term learning, and conversely techniques that
reduce the learner’s performance while learning can actually lead
to long-term retention and better recall. One technique that
promotes desirable difficulties is spaced practice over time rather
than massed practice [14, 39]. In this study we use paired
distractors to increase the difficulty of the Parsons problems and
to help the user learn to identify common errors [12].

2.7 Parsons Problems
Researchers have studied several variants of Parsons problems.
They have used different names for them such as Parson’s

programming puzzles [37], Parson’s puzzles [24, 25], and
Mangled code [8]. Dale Parsons, for whom they are named, has
said that Parson’s was a mistake since her last name is Parsons.
We use Parsons problems, which is consistent with other
researchers [12, 23].

2.7.1 Evidence that Parsons Problems are Engaging
One of the reasons we choose to study Parsons problems is that
there is evidence that users find them engaging. Dale Parsons and
Patricia Haden originally created Parsons problems with syntactic
distractors to provide an engaging way to help novices master
syntax [37]. Most undergraduate students (82%) in their study
(n=17) reported that the Parsons problems were useful or very
useful for learning Pascal on a post survey.

Ericson has provided further evidence that learners find
Parsons problems engaging. She added two-dimensional Parsons
problems to interactive ebooks and found that more students and
teachers attempted to solve the Parsons problems than tried to
solve the nearby multiple choice questions after a worked
example [17, 18]. In an online feedback form, teachers mentioned
Parsons problems as being valuable at twice the rate of multiple-
choice questions or fill in the blank questions [18].

2.7.2 What Makes Parsons Problems Difficult?
Researchers have studied several variants of Parsons problems
and reported on what makes them easier or harder. This
information was used to design the Parsons problems for this
study.

Garner’s small study (n=8) found evidence that Parsons
problems with only the correct code and no distractors were
easiest to solve and that problems that provided some of the
correct code, but also required the solver to write some code were
the hardest [20]. This provides some evidence that Parsons
problems might have a lower cognitive load than writing code.

Harms, Chen, and Kelleher reported that middle school
students (n=92) had less success, took significantly longer to
solve problems, and reported a higher cognitive load during the
training phase when solving Parsons problems with distractors
versus solving Parsons problems without distractors [23].

Ihantola and Karavirta found that two-dimensional Parsons
problems, in which the blocks must also be indented correctly, are
more difficult than one-dimensional Parsons problems, which do
not require indentation [25].

Denny, Luxton-Reilly, and Simon explored paper-based
Parsons Problem as a possible replacement for requiring students
to write code on exams [12]. They argued that Parsons problems
would be quicker to grade and result in more consistent grades
between markers. They tested several variants of Parsons
problems. During think aloud observations they found evidence
that Parsons problems with randomized distractors for nearly
every line of code were too difficult for the students. Parsons
problems with visually paired distractors were easier. Providing
the structure of the code, the number of statements in a block
indicated by curly braces and the indention, also made Parsons
problems easier to solve.

22

 4

Denny et al. also had 74 undergraduate students solve a
Parsons problem, a write code problem, and a trace code problem
on a paper-based exam [12]. The Parsons problem was a paired
distractor Parsons problem. The pairing was indicated by extra
space above and below each pair of distractor and correct code.
The students had to write the code in the correct order and add the
curly braces to indicate the block structure. They found a notable
correlation (Spearman's ρ of .53), between the score on the write
code and Parson problem. The lowest quartile of students did the
worst on tracing code, better on writing code, and better still on
solving Parsons problems.

Cheng and Harrington’s large scale study (n=473) also
investigated using a variant of Parsons problems, that they called
a Code Mangler question, on an exam [8]. They found that the
Code Mangler problem took less time to score than the equivalent
write code problem and that the teaching assistants felt more
confident that the grading was easier and consistent. They also
found a notable correlation (Spearman's ρ of .6457), between the
students score on the write code problem and the Code Manger
(Parsons) problem.

Morrison et al. provided evidence that Parsons problems are
a more sensitive measure of learning, i.e., that a Parsons problem
might detect a learning difference between students that might not
appear in a code writing problem [36].

Harms, Rowlett, and Kelleher compared solving Parsons
problems with only correct code to following tutorials in Looking
Glass [22]. They measured learning, cognitive load, and transfer.
They found that the Parsons problem solvers complete the
learning task more quickly (23% less time) than tutorial takers and
also did 26% better on transfer tasks. The Parsons problem
solvers also reported higher mental effort to complete the task
than the tutorial followers, which is consistent with the idea that
desirable difficulties lead to increased learning [4].

This study uses two-dimensional Parsons problems with
visually paired distractors in an effort to provide desirable
difficulty, but not excessive difficulty, in order to enhance
learning.

3 SOFTWARE DEVELOPMENT
We used the Runestone Interactive platform to create and serve
our study materials [34]. Our research team added the js-parsons
software developed by Ihantola and Karavirta [25] to the
Runestone platform in 2012. This software originally supported
one and two-dimensional Parsons problems with distractor blocks
randomly mixed in with the correct code blocks. We made the
following changes: 1) added guidelines to signify that indentation
was allowed as shown previously in Fig. 1, 2) allowed distractors
to be displayed paired with the correct code blocks with purple
edge decorations as shown in Fig. 1, and 3) allowed the
specification of the display order for the blocks to guarantee
consistency for experiments.

We also modified the Runestone Interactive platform to
support timed exams, which have a maximum time limit and can
only be taken once. The user must click a button to start the exam
and a button to finish the exam and both of these events are

logged. If the participant doesn’t complete the exam in the
specified time, the exam will automatically end and all current
answers will be logged. This prevents students from spending too
much time on a problem when they had no idea how to solve it.

4 STUDY PURPOSE
While several researchers have hypothesized that solving Parsons
problems could result in more efficient learning than writing the
equivalent code [12, 37], none to our knowledge have empirically
tested this assumption. While some researchers have found a
notable correlation between scores on Parsons problems and
performance on different write code problems, these studies have
not compared groups solving the same problems. In addition, no
researchers have compared solving two-dimensional Parsons
problems with paired distractors to fixing code with the same
errors as the distractors. Since the learner doesn’t have to type the
code while solving either Parsons problems or fix code problems,
they could have similar completion times.

The purpose of the study was to investigate the efficiency,
effectiveness, and cognitive load of learning from solving two-
dimensional Parsons problems with paired distractors, versus
fixing code with the same distractors as errors, versus writing the
equivalent code.

Our hypotheses were that 1) Parsons problems would be more
efficient (take less time to solve) than fixing code with errors or
writing the equivalent code. 2) Parsons problems would lead to at
least the same amount of learning and retention as fixing or
writing code, and 3) students in the Parsons problem condition
would report lower cognitive load than students in the fix code or
write code conditions.

5 STUDY DESIGN
This was a between subjects design, with one pretest and two
posttests. There were two sessions in the study. The first session
was 2.5 hours and included consent, a demographic survey,
pretest, instructional material, a cognitive load survey, and a
posttest. The second posttest, which lasted one hour and was held
one week later, was administered to measure retention of the
instructional material.

The instructional material in the first session contained four
worked-example and practice pairs. Students were randomly
assigned to one of three practice conditions for the instructional
material: 1) solving two-dimensional Parsons problems with
paired distractors, 2) fixing code with the same errors as the
distractors, or 3) writing the equivalent code. The instructional
practice condition was the independent variable. The dependent
variables were the performance on the pretest and posttests, the
time spent on each practice problem, and the cognitive load
survey results.

6 STUDY PROCEDURES
This study consisted of two separate sessions one week apart. The
sessions were held in a closed classroom with all participants
attending at the same time. Students were instructed to bring their

23

 5

laptops. They were provided with scratch paper and a pen. All of
the study materials were online and students were asked to only
use those materials, even though they had access to the Internet.
Proctors checked that the students were on task and not visiting
other web sites. The scratch paper was collected and analyzed to
replicate a previous study of code tracing on paper [11].

In the first session the procedure was 1) provide consent and
randomly be placed into one of the three practice conditions, 2)
complete the demographic survey, 3) complete familiarization
activities, 4) complete the pretest, 5) review material on lists and
ranges, 6) complete four worked example plus practice pairs
where the type of practice problem differed based on the
condition, 7) complete a cognitive load survey, and 8) complete
the immediate posttest.

At the second session a week later each participant completed
the second posttest, which was isomorphic to the first posttest.
Only the variable names and some values were changed, but the
structure of the problems was the same, meaning that they
required near transfer to solve. Near transfer is being able to solve
a new problem in a similar context to one that you have already
solved. The second posttest also tested for retention of the
material one week later.

7 STUDY MATERIALS
We developed, tested, and refined our materials through
observations of three undergraduate students from an introductory
computing course for computer science majors. Each student was
observed as he or she worked through the material for one of the
three conditions. After the observational study we added more
familiarization material, because some of the students had
difficulty using the environment.

We next conducted a pilot study with 24 undergraduate
students from an introductory course for computer science majors.
In the pilot study, five (21%) of the 24 students submitted at least
one solution to the pretest Parsons problem that contained both a
correct block and its paired distractor. This indicated that they
didn’t realize that each distractor was shown paired with the
correct code, for at least some of the distractors. At that time the
distractors were shown either above or below the correct code, but
there was no other visual indication that they were paired.

After the pilot study we added the purple edge decorations
shown in Fig. 1 to better indicate that each distractor block was
displayed paired with its correct code block. We also added the
same subgoal label as a comment to both the correct and distractor
code blocks to further indicate that the blocks were paired. The
blocks in the source area were always displayed with the purple
edge decorations, which helped to show that they were one of a
pair. However, the purple edge decorations were not shown on the
blocks in the solution area.

7.1 Demographic Survey
The demographic survey asked for the participant’s age, gender,
race, first spoken language, comfort level with reading English,
high school grade point average, college grade point average,
current major, expected grade in the course, and prior

programming experience. If they had any prior programming
experience, they were also asked what courses and where they
took them and how many years they had been programming. In
addition, participants were asked to rate their ability to read, fix,
and write Python code on a 5-point Likert scale.

7.2 Familiarization Material
The familiarization activities included instruction on how to use
the environment, including how to start and finish a timed exam,
how to get to the next page, how to answer multiple-choice
questions, how to check the solution for the fix code and write
code problems, and how to drag blocks and check the solution on
a Parsons problem.

This section also included two easy practice multiple choice
question, a practice fix code problem with instructions for how to
fix the problem, a practice Parsons problem and a write code
problem. Both the fix code problem and the Parsons problem
included the correct solution displayed above the problem.

7.3 Pretest
There were four timed exams in the pretest. The participants had
15 minutes to complete the first timed exam of multiple-choice
questions and 10 minutes to complete each of the other three
timed exams (fix code, Parsons problem, and write code).

The five multiple-choice questions included tracing code that
included lists, ranges, selection, and iteration. The questions
included code to find the minimum value in a list between a range
of indices, return the count of the number of times a target value
appeared in a range of indices in a list, trace the values of
variables in a complex for loop, and return the average of values
in a range of indices in a list (as shown in Fig. 2).

Figure 2: One of the pretest multiple-choice questions

One question provided code that was intended to return the
longest run in a list of numbers, but the code contained an error
and the student had to select the answer that matched what the
code actually returned.

The second timed exam contained one fix code problem. It
was a modified version of Soloway’s rainfall problem which has
been extensively studied [41, 43] as shown in Fig. 3. This
problem totals all of the non-negative values in an input loop until
a sentinel value is reached and then outputs the average. The

24

 6

solution should also avoid a division by zero. The problem was
modified to loop through a list of numbers rather than read input
until a sentinel value was reached. Simon found that students still
perform poorly on this problem and that students are not used to
reading input in a loop until a sentinel value is reached [41]. The
instructions explained the algorithm in English, provided example
input and output, and provided hidden unit tests.

Figure 3: The pretest fix code problem with errors

The third timed exam contained one Parsons problem to create a
function to calculate and return the average of the values at a
range of indices (inclusive) in a list. The problem had five paired
distractors as shown in Fig. 4. The instructions explained the
algorithm in English, provided example input and output, and
gave feedback on the solution. The feedback was either that the
solution was correct, or too short, or one or more code blocks
were either out of order or the wrong blocks (and these blocks
were highlighted in red), or that the indentation was wrong (and
yellow decorations were added to the side of the block with
arrows to indicate the direction the block needed to move).

Figure 4: The pretest Parson problem showing unused
distractors on the left and the correct solution on the right.

The fourth timed exam contained one write code problem as
shown in Fig. 5. This problem asked the participant to write a
method to check if a trail was level between a start and end index
(inclusive). A trail was considered to be level if the difference
between the minimum and maximum values was less than or
equal to 10. The problem provided the function header and hidden
unit tests. The instructions explained the algorithm in English,
provided example input and output, and provided hidden unit tests
to test the solution.

Figure 5: A correct solution to the write code problem

7.4 Review Material
The review material explained what a list was, how to use the
range function to create a list, how to get a value from a list, how
to get the length of a list, how to loop through all values in a list,
and how to loop through a range of indices in a list. It contained
example Python code that the participant could run. The students
in the experiment had already covered these concepts and had
moved on to cover more advanced topics, so we felt it would be
helpful to provide this review material.

7.5 Instructional Material
The instruction material contained four worked examples with
interleaved practice problems. The worked examples contained an
algorithm in English, example input and output, and runnable
Python code with hidden unit tests, which all passed. The practice
problems varied by condition with one group solving two-
dimensional Parsons problems with paired distractors, one solving
fix code problems with the same distractors as errors, and the third
writing the equivalent code. Each of the practice problems also
contained an algorithm in English, example input and output, and
a way to test the solution. Each practice problem was in a timed
exam and each had a time limit of 10 minutes. The page following
the timed exam displayed an English description of a correct
solution and the code for that solution.

The first worked example returned a count of the number of
times a target value appeared in a list using a loop that looped
through all the indices. The associated practice question was to
return the count of a target value in a given range of indices
(inclusive). The second worked example returned the maximum

25

 7

value from a list and the associated practice problem was to return
the minimum value. The third worked example returned the
average of the values in a list and protected against a divide by
zero error. The associated practice problem returned the average,
but didn’t include the lowest value in the list in the average and
also guarded against a divide by zero error. The fourth worked
example returned the minimum value in a given range of indices
(inclusive). The associated practice problem returned the
maximum value in a given range of indices (inclusive).

7.6 Cognitive Load Survey
To measure the cognitive load for each of the practice conditions
we used the CS Cognitive Load Component Survey, which has
been tested and shown some initial validation in computer science
[35]. This survey was adapted from the Cognitive Load
Component Survey that has been used to measure cognitive load
in statistics and health sciences [27].

7.7 Posttests
The immediate posttest in the first session had the same questions
as the pretest. The second posttest, which was administered one
week later, was isomorphic to the first posttest, meaning that the
problems to be solved had the same structure, but different surface
level features, like variable names.

8 PARTICIPANTS
Undergraduate students were recruited from two sections of a first
computer science course for computing majors at a research-
intensive university in the US. The sections had different
instructors, but they followed the same curriculum with the same
homework and assessments. This course covers introductory
programming concepts in Python including variables, selection,
iteration, and lists. At the time of the study the course had
covered all of these topics and was covering files and dictionaries.
One of the authors visited the course during lecture to recruit
participants and also sent an announcement to all of the students
enrolled in the course. Participants could earn 2.5 points of extra
credit for completing the first session and another 2.5 points of
extra credit for completing the second session one week later.
Students who did not participate in the pilot study or large-scale
study could alternatively earn up to 5 points of extra credit by
writing a paper on a computing innovation, which was graded by
one of the authors and that grade was submitted to the course
instructors. None of the authors were involved in the teaching of
the course.

9 ANALYSIS
A total of 159 students participated in the first session. However,
24 of these students did not answer at least one question during
the session or spent less than 30 seconds answering a question.
We are reporting on the data from 135 students (45 in the fix
condition, 44 in the Parsons condition, and 46 in the write
condition) from the first session. Students were not required to
come back for the second session one week later, but earned an

additional 2.5 points of extra credit for completing that session. A
total of 106 students returned for the second session. Of these, 82
completed all the questions in both the first session and second
session and spent at least 30 seconds on each question (27 in the
fix condition, 25 in the Parsons condition, and 30 in the write
condition).

9.1 Data Analysis
For each instructional practice problem we recorded the start time
and end time and then calculated the elapsed time in seconds to
compare the efficiency of the three conditions. We created
grading rubrics for the write and fix code problems on the pretest
and posttests. Two people graded each problem independently
and then met to resolve any differences in scores. The hand
graded scores on the fix and write problems correlated with the
number of unit tests passed (p < .001 for all).

 We automated the grading for the Parsons problems.
Grading started from the beginning of the solution and each line
in the correct order received one point and if the line or its paired
distractor was indented correctly it received half a point. Grading
continued until a line was found that was neither the correct line
nor its paired distractor. Grading then continued from the end of
the solution in the same fashion toward the first line that had been
found to be incorrect. We also reviewed the middle of the
solutions manually to give credit if at least two consecutive lines
were in the correct order relative to each other. This grading
approach was based on our observation that learners had the most
difficulty in the middle of the solution. We also wanted the
grading to be similar to the grading of the fix code problems, and
the fix code problems had the advantage that the code was already
in the correct order.

We checked our data for normal distribution using skewness,
whether the peak of the bell curve is in the middle, and kurtosis,
whether the bell curve is too narrow or wide [21]. For all pre-test
measurements, skewness and kurtosis checks were within the
acceptable +/-2 range. For all post-test measurements, skewness
was about -2, meaning that there was a slight negative skew (i.e.,
bell curve looks like it is leaning towards the larger numbers), but
these values were still acceptable. Kurtosis, however, was above 3
in all cases, meaning that the scores clustered more closely around
the mean than in a normal distribution. Based on these results, we
suspect that there was a slight ceiling effect for the posttests in
which many participants scored the highest score possible. Most
parametric statistical tests, including all of those that we have
used, are robust to abnormal kurtosis, meaning that they are still
valid with a distribution like ours. Therefore, we used parametric
tests to analyze our results instead of their non-parametric
equivalents, which tend to be more conservative with lower
statistical power [49].

9.2 Efficiency
The Parsons problem condition had the lowest average completion
time for each of the four practice problems as shown in Table 1.
This difference was significant as measured by an independent
measures one-way analysis of variance (ANOVA) F(2,133) =

26

 8

10.835, p < 0.001. A Least Significant Difference (LSD) post-hoc
test indicated that students in the Parsons problem condition took
significantly less time to finish the four practice problems than
students in the fix code (p<0.001) and write code conditions
(p<0.001). However, there was no significant difference in
completion time between the write code and fix code conditions.

Table 1: Mean Time in Seconds (and Standard Deviation) to
Complete each Practice Problem by Condition

Prac. 1 Prac. 2 Prac. 3 Prac. 4 Total

Parsons 84.20
(34.77)

83.64
(35.99)

227.42
(124.66)

77.98
(41.29)

473.24

Fix 114.49
(79.17)

147.67
(128.32)

313.42
(153.40)

103.91
(65.67)

679.49

Write 171.63
(137.61)

113.13
(98.62)

313.65
(153.33)

115.54
(69.28)

713.96

9.3 Learning Performance
The pretest measures (multiple-choice, fix, Parsons, and write)
were condensed into a single composite pretest score. To ensure
that this was valid and that all of the pretest measures were
measuring the same underlying construct, factor analysis was used
with varimax rotation. The analysis showed that the four tests
loaded onto one factor, which we will call prior knowledge, based
on the scree plot and eigenvalues. The factor loadings for each of
the individual tests was above .7, the typical cutoff: fix score =
.75, write score = .85, multiple choice score = .76, and order score
= .79.

9.3.1 Comparing the Practice Conditions. None of the
practice conditions performed better than the other conditions on
the posttest measurements (multiple choice, fix, Parsons, or write)
as shown in Table 2. No interactions between condition and
performance on the posttest measures were found either, meaning
that participants who practiced on Parsons problems performed as
well on the writing posttest as participants who practiced on
writing problems and vice versa. In addition, there was no
significant difference by condition on performance on the second
posttest.

Table 2: Mean Score (and Standard Deviation) by Condition
for Pretest and Immediate Posttest

 Pretest (std dev) Posttest (std dev)
Fix (n=44)
Multiple-Choice 3.48 (1.45) 3.50 (1.50)
Fix 10.36 (2.01) 11.41 (1.23)
Parsons 11.76 (1.01) 11.63 (1.48)
Write 9.50 (3.56) 10.18 (3.49)
Parsons (n=45)
MC 3.22 (1.17) 3.78 (1.17)
Fix 10.96 (1.69) 11.42 (1.34)

Parsons 11.61 (1.31) 11.77 (1.19)
Write 8.40 (3.68) 9.78 (3.27)
Write (n=46)
MC 3.41 (1.24) 3.72 (1.19)
Fix 10.96 (1.69) 11.37 (1.25)
Parsons 11.38 (1.93) 11.70 (1.28)
Write 9.48 (3.75) 10.30 (2.62)

9.3.2 Comparing the Pretest to the Posttests. When analyzing
repeated measures data, as we have for the pre-test, immediate
post-test, and delayed post-test, it is common to violate the
assumption of sphericity, as tested with Mauchly’s test. Our data
violated the sphericity assumption, p < .001, so we’ve used the
Huynh-Feldt correction to make our ANOVA results more
conservative. We found a significant difference from the pretest to
both posttests using an omnibus repeated measures ANOVA for
the fix problem F(using Huynh-Feldt correction; 1.9, 161.2) =
7.34, p = .001, and the write problem F(using Huynh-Feldt
correction; 1.6, 139.9) = 4.56, p = .018. Participants also
performed better on the fix and write code problems on both post-
tests than on the pre-test. However, their performance on the
second post-test was worse than the first post-test, though not so
bad as to be statistically equivalent to the pre-test. There were no
significant differences from the pretests to the posttests on the
multiple-choice questions or the Parsons problem. For the
multiple-choice questions this may have been due to the lack of
feedback on the correctness of the pretest answers. It is possible
that the students simply remembered what they had answered
before and used the same answer since they were not told if the
answers were wrong. The lack of significant difference on the
Parsons problem is likely due to a ceiling effect, because each
group had a mean above 11 (out of 12 possible points).

9.4 Cognitive Load
We found no significant difference in the self-reported cognitive
load measures between the three conditions, F(2, 132) = 1.21, p =
.30. However, the students in the Parsons problem condition
solved the same problems as those in the fix code and write code
conditions in significantly less time as shown in Table 1.

9.5 Comparing Demographic Data to Performance
To check for possible interaction between the demographic data
and the conditions, we created a composite score using the fix and
write code problem scores from the two posttests. We found no
interaction between condition and demographic characteristics
that affected performance.

We found a moderate correlation for age, r(88) = -.22, p =
.04, with younger students performing better than older students.
We also found a moderate correlation by major with computer
science majors, ρ(88) = -.24, p = .02, performing better than the
non-computer science majors. One unusual finding was that
students who had a previous programming course performed
worse than those without any prior programming experience,
ρ(88) = -.24, p = .02. This could be due to prior experience in
another language with different syntax or semantics than Python.
We found a moderate correlation on all of the self-reported
measures of ability to read, ρ(88) = .32, p = .002; fix, ρ(88) = .28,

27

 9

p = .008; and write, ρ(88) = .34, p = .001, Python code. We found
a strong correlation between expected grade in the course and
performance. ρ(88) = -.50, p < .001. We did not find any
correlations for the other demographic characteristics including
race, gender, first language, high school grade point average, or
college grade point average.

10 DISCUSSION
The students in the Parsons problem condition completed the four
instructional practice problems in significantly less time than
those in the fix code or write code conditions. This supports our
first hypothesis that Parsons problems are a more efficient form of
practice than fixing the same code with errors or than writing the
equivalent code. There was no significant difference between the
completion time for the students in the fix code or write code
conditions. Fix code problems, like Parsons problems, have an
advantage over write code problems, because the student doesn’t
need to type the code for the solution. However, Parsons problems
with paired distractors are easier for students to debug since they
don’t have to interpret compiler errors or debug code. They can
simply pick between the paired correct and incorrect blocks.

There was a significant improvement from the pretest fix and
write code problems to the same problems on the immediate
posttest as well as on the posttest one week later, which provides
evidence of near transfer and retention. These findings, coupled
with the fact that there was no significant performance difference
on the posttests by condition, supports our second hypothesis that
solving Parsons problems would lead to similar learning
performance than fixing code with errors or than writing the
equivalent code.

However, it is possible that the performance improvements
may not be solely due to the practice condition. Students may
have learned from the pretest problems, review material, worked
examples, or answers to the four practice problems. This study
could have been improved by adding a control group that did an
off-task activity rather than solve the four practice problems. This
would have strengthened the claim that the performance gains
were due to the practice problems, and not the other materials.
The retention results on the delayed posttest could have also been
partially due to learning in the students’ course during the week
after the immediate posttest, however the topics covered that week
were more advanced. Further experiments should be done to
verify that solving Parsons problems results in equivalent
performance gains compared to fixing and/or writing code.

We did not find any significant difference on the self-
reported cognitive load survey by condition, so our third
hypothesis that Parsons problems would have lower self-reported
cognitive load was not supported. While the cognitive load
survey that we used had been initially validated, it may not be an
effective measure for comparing the cognitive load of different
types of practice problems. The first study was 2.5 hours long and
included many different parts, which were completed one after the
other without a break. It is possible that students were responding
to the difficulty of the entire study rather than just the
instructional section or were fatigued and just wanted to finish.

Further studies should be done to test if the self-reported cognitive
load of solving Parsons problems is lower than that of solving fix
code and write code problems. However, students in the Parsons
problem condition solved the same practice problems in
significantly less time than those in the fix code or write code
conditions, which implies that they do have a lower cognitive
load.

11 CONCLUSIONS
This study provides evidence that solving two-dimensional
Parsons problems with paired distractors takes significantly less
time than fixing the same code with the same errors as the
distractors or than writing the equivalent code, while still resulting
in statistically significant improvement in scores from pretest to
immediate posttest and retention one week later. This
demonstrates that solving Parsons problems with paired
distractors is a more efficient, but just as effective, form of
practice than writing or fixing code. However, further research
needs to be done to verify that the performance gains were solely
due to the type of practice.

If Parsons problems are a more efficient and effective form
of practice than writing code, they could be used to speed the
learning of basic syntax, semantics, and algorithms. While this
study only included four practice Parsons problems in the
instructional material, our research team has added over a hundred
Parsons problems to several free interactive ebooks that we and
others have developed for introductory programming in Python
and Java [16, 18]. Thousands of students and hundreds of
institutions are already using these ebooks. Instructors can use or
customize these existing ebooks or use the ebook platform
(Runestone) to create their own ebooks with Parsons problems.
The ebooks log user interaction, which can be used for research in
computing education, including work on the effectiveness and
efficiency of Parsons problems.

ACKNOWLEDGMENTS
This material is based on work supported by the National Science
Foundation under grants 1138378 and 1432300. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation. Several undergraduate
students contributed to this work: Yamini Nambiar graded the fix
and write code problems, Shouyra Singh calculated averages, and
Katherine Guzdial analyzed the timing data. We also thank the
reviewers for their work to help us clarify this paper.

REFERENCES
[1] Robert K. Atkinson, Sharon J Derry, Alexander Renkl and Donald Wortham
Learning from Examples: Instructional Principles from the Worked Examples
Research. Review of Educational Research, 70, 2 (2000), 181–214.
[2] Klara Benda, Amy Bruckman and Mark Guzdial When Life and Learning Do Not
Fit: Challenges of Workload and Communication in Introductory Computer Science
Online. Trans. Comput. Educ., 12, 4 (2012), 1-38.
[3] Jens Bennedsen and Michael E. Caspersen Failure rates in introductory
programming. SIGCSE Bull., 39, 2 (2007), 32-36.
[4] Elizabeth L Bjork and Robert A. Bjork Making things hard on yourself, but in a
good way: Creating desirable difficulties to enhance learning. Psychology and the
real world: Essays illustrating fundamental contributions to society (2011), 56-64.

28

 10

[5] Benedict Du Boulay Some Difficulties of Learning to Program. Lawrence
Erlbaum Associates, 1988.
[6] John D. Bransford, Ann L. Brown and Rodney R. Cocking How People Learn.
NATIONAL ACADEMY PRESS, 2000.
[7] Richard Catrambone The subgoal learning model: Creating better examples so
that students can solve novel problems. Journal of Experimental Psychology:
General, 127, 4 (1998), 355.
[8] Nick Cheng and Brian Harrington. The Code Mangler: Evaluating Coding Ability
Without Writing any Code. In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education (Seattle, Washington, USA, 2017).
ACM.
[9] Michelene T. H. Chi Active-Constructive-Interactive: A Conceptual Framework
for Differentiating Learning Activities. Topics in Cognitive Science 1(2009), 73-105.
[10] G. Cooper and J. Sweller The effects of schema acquisition and rule automation
on mathematical transfer. Journal Educational (1987), 347-362.
[11] Kathryn Cunningham, Sarah Blanchard, Barbara Ericson and Mark Guzdial.
Using Tracing and Sketching to Solve Programming Problems: Replicating and
Extending an Analysis of What Students Draw. In Proceedings of the 2017 ACM
Conference on International Computing Education Research (Tacoma, Washington,
USA, 2017). ACM.
[12] Paul Denny, Andrew Luxton-Reilly and Beth Simon. Evaluating a New Exam
Question: Parsons Problems. In Proceedings of the International Computing
Education Research Conference (Sydney, Australia, 2008). ACM.
[13] John Dewey Experience & Education. Macmillan, New York, 1959.
[14] D. Druckman and R. A. Bjork In the mind's eye: Enhancing human
performance. National Academy Press, Washington DC, 1991.
[15] Elsa Eiriksdottir and Richard Catrambone Procedural instructions, principles,
and examples: how to structure instructions for procedural tasks to enhance
performance, learning, and transfer. Human Factors, 53, 6 (2011), 749-770.
[16] Barbara Ericson Java Review Book for the AP CS A exam,
https://runestone.academy/runestone/static/JavaReview/index.html
[17] Barbara J. Ericson, Mark J. Guzdial and Briana B. Morrison. Analysis of
Interactive Features Designed to Enhance Learning in an Ebook. In Proceedings of
the 2015 ACM Conference on International Computing Education Research (Omaha,
NE, USA, August 09-3, 2015, 2015). ACM.
[18] Barbara Ericson, Kantwon Rogers, Miranda Parker, Briana Morrison and Mark
Guzdial. Identifying Design Principles for CS Teacher Ebooks through Design-Based
Research. In Proceedings of the 2016 ACM Conference on International Computing
Education Research (Melbourne, VIC, Australia, 2016). ACM.
[19] K. Anders Ericsson The Influence of Experience and Deliberate Practice on the
Development of Superior Expert Performance. Cambridge University Press, 2006.
[20] Stuart Garner An Exploration of How a Technology-Facilitated Part-Complete
Solution Method Supports the Learning of Computer Programming. Journal of
Issues in Informing Science and Information Technology, 4 (2007), 491-501.
[21] Frederick J Gravetter and Larry B Wallnau Statistics for the behavioral
sciences. Cengage Learning, 2016.
[22] Kyle J. Harms, Noah Rowlett and Caitlin Kelleher. Enabling Independent
Learning of Programming Concepts through Programming Completion Puzzles. In
Proceedings of the Symposium on Visual Languages and Human-Centric Computing
(VL/HCC) (Atlanta, GA, 2015). IEEE.
[23] Kyle James Harms, Jason Chen and Caitlin L. Kelleher. Distractors in Parsons
Problems Decrease Learning Efficiency for Young Novice Programmers. In
Proceedings of the 2016 ACM Conference on International Computing Education
Research (Melbourne, VIC, Australia, 2016). ACM.
[24] Petri Ihantola and Ville Karavirta. Open source widget for parson's puzzles. In
Proceedings of the fifteenth annual conference on Innovation and technology in
computer science education (Bilkent, Ankara, Turkey, 2010). ACM.
[25] Petri Ihantola and Ville Karavirta Two-Dimensional Parson’s Puzzles: The
Concept, Tools, and First Observations. Journal of Information Technology
Education, 10 (2011), 1-14.
[26] J. A. LeFevre and P. Dixon Do written instructions need examples? Cognition
and Instruction, 3 (1986), 1-30.
[27] Jimmie Leppink, Fred Paas, Cees PM Van der Vleuten, Tamara Van Gog and
Jeroen JG Van MerriÃ«nboer Development of an instrument for measuring different
types of cognitive load. Behavior research methods, 45, 4 (2013), 1058-1072.
[28] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John
Hammer, Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders,
Otto Seppälä, Beth Simon and Lynda Thomas. A Multi-National Study of Reading
and Tracing Skills in Novice Programmers. In Proceedings of the Working group
reports from ITiCSE on Innovation and technology in computer science education
(Leeds, United Kingdom, 2004). ACM.
[29] Lauren E Margulieux, Mark Guzdial and Richard Catrambone. Subgoal-labeled
instructional material improves performance and transfer in learning to develop
mobile applications. In Proceedings of the ninth annual international conference on
International computing education research (Auckland, New Zealand 2012). ACM.
[30] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne
Hagan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting and
Tadeusz Wilusz A multi-national, multi-institutional study of assessment of
programming skills of first-year CS students. SIGCSE Bull., 33, 4 (2001), 125-180.

[31] Jeroen J. G. Van Merriënboer Strategies for programming instruction in high
school: Program completion vs. program generation. Journal of educational
computing research, 6, 3 (1990), 265-285.
[32] Jeroen J. G. Van Merriënboer and Marcel B. M. De Croock Strategies for
computer-based programming instruction: program completion vs. program
generation. Journal of Educational Computing Research, 8, 3 (1992), 365-394.
[33] van Merriënboer, Kirschner and Kester Taking the Load Off a Learner’s Mind:
Instructional Design for Complex Learning. EDUCATIONAL PSYCHOLOGIST, 38,
1 (2003), 5-13.
[34] Brad Miller and David Ranum. Runestone interactive: tools for creating
interactive course materials. In Proceedings of the first ACM conference on Learning
@ scale conference (Atlanta, Georgia, USA, 2014). ACM.
[35] Briana B. Morrison, Brian Dorn and Mark Guzdial. Measuring cognitive load in
introductory CS: adaptation of an instrument. In Proceedings of the tenth annual
conference on International computing education research (Glasgow, Scotland,
United Kingdom, 2014). ACM.
[36] Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson and Mark Guzdial.
Subgoals Help Students Solve Parsons Problems. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education (Memphis, Tennessee, 2016),
ACM.
[37] Dale Parsons and Patricia Haden. Parson's programming puzzles: a fun and
effective learning tool for first programming courses. In Proceedings of the 8th
Australasian Conference on Computing Education (Hobart, Australia, 2006).
Australian Computer Society, Inc.
[38] Peter L. Pirolli and John R. Anderson The role of learning from examples in the
acquisition of recursive programming skills. Canadian Journal of Psychology, 39, 2
(1985), 240-272.
[39] D. Rohrer and K Taylor The effects of over-learning and distributed practice on
the retention of mathematics knowledge. Applied Cognitive Psychology, 20 (2006),
1209-1224.
[40] David Williamson Shaffer and Mitchel Resnick "Thick" Authenticity: New
Media and Authentic Learning. Journal of Interactive Learning Research, 10, 2
(1999), 195-215.
[41] Simon. Soloway's Rainfall Problem has become Harder. In Proceedings of the
2013 Learning and Teaching in Computing and Engineering (2013). IEEE Computer
Society.
[42] J. A. Slobada, J. W. Davidson, M. J. A. Howe and D. G. Moore The role of
practice in the development of performing musicians. British Journal of Educational
Psychology, 87 (1996), 287-309.
[43] Elliot Soloway Learning to program = learning to construct mechanisms and
explanations. Communications of the ACM 29, 9 (1986), 850-858.
[44] John Sweller Cognitive load during problem solving: Effects on learning.
Cognitive science, 12, 2 (1988), 257-285.
[45] John Sweller Cognitive Load Theory: Recent Theoretical Advances. Cambridge
University Press, 2010.
[46] John Sweller Instructional design consequences of an analogy between
evolution by natural selection and human cognitive architectures. Instructional
Science, 32 (2004), 9-31.
[47] Allison Elliott Tew and Mark Guzdial. Developing a validated assessment of
fundamental CS1 concepts. In Proceedings of the 41st ACM technical symposium on
Computer science education (Milwaukee, Wisconsin, USA, 2010). ACM.
[48] John Gregory Trafton and Brian J. Reiser. The contributions of studying
examples and solving problems to skill acquisition. In Proceedings of the 15th
Annual Conference of the Cognitive Science Society (Hillsdale, NJ, 1993). Lawrence
Erlbaum Associates, Inc.
[49] William MK Trochim and James P Donnelly Research methods knowledge base
(3rd ed). Atomic Dog, Cincinnati, OH, 2006.
[50] M. Tuffiash, R. W. Roring and K. A. Ericsson Expert performance in Scrabble:
Implications for the study of the structure and acquisition of complex skills. Journal
of Experimental Psychology: Applied, 13 (2007), 124-134.
[51] Ian Utting, Allison Elliott Tew, Mike McCracken, Lynda Thomas, Dennis
Bouvier, Roger Frye, James Paterson, Michael Caspersen, Yifat Ben-David Kolikant,
Juha Sorva and Tadeusz Wilusz. A fresh look at novice programmers' performance
and their teachers' expectations. In Proceedings of the ITiCSE working group reports
conference on Innovation and technology in computer science education-working
group reports (Canterbury, England, United Kingdom, 2013). ACM.
[52] Barry J. Wadsworth Piaget's Theory of Cognitive and Affective Development -
Fourth Edition. Longman, New York 1989.
[53] Mark Ward and John Sweller Structuring Effective Worked Examples.
Cognition and Instruction, 7, 1 (1990), 1–39.
[54] Christopher Watson and Frederick W.B. Li. Failure rates in introductory
programming revisited. In Proceedings of the 2014 conference on Innovation and
technology in computer science education (Uppsala, Sweden, 2014). ACM.
[55] Leon E. Winslow Programming Pedagogy - A Psychological Overview.
SIGCSE Bull., 28, 3 (1996), 17-22.
[56] X. Zhu and H. A. Simon Learning mathematics from examples and by doing.
Cognition and Instruction, 4 (1987), 137-166.

29

