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ABSTRACT 
Prior research has shown that Parsons problems are an engaging 
type of code completion problem that can be used to teach 
syntactic and semantic language constructs.  They can also be 
used in summative assessments to reduce marking time and 
grading variability compared to code writing problems. In a 
Parsons problem the correct code is provided, but is broken into 
mixed-up code blocks that must be assembled in the correct order. 
Two-dimensional Parsons problems also require the code blocks 
to be indented correctly. Parsons problems can contain extra code 
blocks, called distractors, which are not needed in a correct 
solution. We present a study that compared the efficiency, 
effectiveness, and cognitive load of learning from solving two-
dimensional Parsons problems with distractors, versus fixing code 
with the same errors as the distractors, versus writing the 
equivalent code.  We found that solving two-dimensional Parsons 
problems with distractors took significantly less time than fixing 
code with errors or than writing the equivalent code.  
Additionally, there was no statistically significant difference in 
the learning performance, or in student retention of the knowledge 
one week later.  
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1 INTRODUCTION 
Learning to program is difficult.  Students spend many frustrating 
hours trying to figure out why their programs don’t compile [2].  
Drop out and failure rates in many introductory college-level 
computing classes are high with an average pass rate worldwide 

of only 67% [3, 54], perhaps in part due to this frustration.  
Several multi-institution and multi-national studies have found 
that students perform poorly on tests of their knowledge [28, 30, 
47, 51], suggesting that the current instructional strategies do not 
lead to effective learning.  

Beginning programming students have to learn many things.  
They have to develop a mental model of the computer (the 
notional machine), the notation (syntax and semantics), the 
structures (programming schemas and plans), and skill in 
planning, developing, and debugging programs [5].  Piaget 
popularized the term schema, which is a mental framework for 
organizing and applying knowledge [52]. Experts have a large 
number of robust schemas that they can use to recognize and 
solve similar problems [1, 55]. It can take 10 years of sufficient 
and sustained practice to turn a novice programmer into an expert 
programmer [55].   

In introductory college-level programming courses students 
are mostly expected to practice by writing code, which can take a 
large and unpredictable amount of time.  Students have reported 
spending hours trying to fix a simple syntax error like a comma 
out of place [2]. Despite its difficulties, writing code is common 
in an introductory programming course because it is an authentic 
task.  An authentic task is one that someone in the field of study 
might encounter in their work [40]. Constructivists encourage the 
use of authentic tasks to motivate students [13].  However, 
without appropriate guidance, students can easily be overwhelmed 
by the complexity of an authentic task, especially when they have 
little knowledge about the domain [33]. Cognitive load theory 
(CLT) states that the human mind has limited processing 
capability and that the cognitive load of complex tasks must be 
reduced in order for learning to occur [45].    

One of the recommended approaches to reducing cognitive 
load is to use completion tasks rather than whole tasks [31, 32]. 
An example of a completion task is modifying or extending a 
program, rather than writing a program from scratch. Parsons 
problems are a type of code completion practice problem in which 
the learner must place blocks of mixed up program code in the 
correct order.  Some types of Parsons problems, called two-
dimensional (2D) Parsons problems, also require the code to be 
indented correctly. Parsons problems can also have distractor 
code blocks that are not needed in the correct solution. The 
distractor blocks can include syntactic errors like a missing colon 
as well as semantic errors like the wrong boundary condition on a 
loop.  The distractor blocks can be randomly mixed in with the 
correct blocks.  Alternatively, each distractor can be shown paired 
with the matching correct code block so that the learner only has 
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to choose the distractor or the correct code, as shown in Fig. 1. 
Parsons problems can be used to teach syntactic and semantic 
language constructs as well as expose students to common 
programming plans [37]. Several researchers have hypothesized 
that solving Parsons problems should result in more effective and 
efficient learning than having students write the equivalent code 
[12, 37], but to our knowledge none have empirically tested that 
hypothesis. 

 

 

Figure 1: A 2D Parsons problem with paired distractors 

Our research questions were: 

1. What are the relative effects on performance of 1) 
solving two-dimensional Parsons problems with paired 
distractors, 2) fixing the equivalent code with the same 
distractors, and 3) writing the equivalent code? 

2. What is the effect on completion time for each of the 
three conditions (solving Parsons Problems, fixing, and 
writing code)? 

3. What is their effect on self-reported cognitive load? 

2 RELATED WORK 
This research is based on several theories from educational 
psychology including constructivist learning and cognitive load 
theory.  It also incorporates research findings on worked 
examples, deliberate practice, desirable difficulties, and subgoal 
labeling. This study was informed by prior research on Parsons 
problems. 

2.1 Constructivist Learning 
In Piaget’s theory of constructivist learning learners must 
construct their understanding by making sense of the information 
and by building a mental representation [52].  Chi found that 
constructive learning leads to better outcomes than passive or 
active learning [9]. Solving Parsons problems with distractors 
should help the learner construct an understanding of common 

errors and algorithms as she or he selects blocks and places them 
in the correct order [37]. 

2.2 Cognitive Load Theory 
Cognitive Load Theory (CLT) was developed by John Sweller in 
the late 1980s [44].  For learning to occur new information must 
be processed in working memory and then added to the 
knowledge representations (schemas) that exists in long-term 
memory [6]. However, working memory has a limited capacity, 
and if that capacity is needed entirely to process new information, 
it cannot be used to modify or build schemas. Instructional 
material can be designed to reduce the cognitive load that is 
devoted to processing new information.  It is important to note 
that the amount of cognitive load a learner experiences is based on 
three components: the complexity of the material or task, the way 
the instruction is designed, as well as the strategies used for 
constructing knowledge.  The complexity of the material or task 
varies with the learner’s prior knowledge.  Parsons problems, as a 
type of code completion problem, should have a lower cognitive 
load than a problem that requires the learner to write the code 
from scratch, because the problem space is more constrained.  

2.3 Worked Examples 
One of the most well known effects predicted by cognitive load 
theory is the worked example effect.  A worked example is a 
detailed description or demonstration of how to solve a problem, 
including both the problem statement and all steps of the problem 
solution.  Sweller proposed a “Borrowing and Reorganizing 
Principle” which means that the way humans build long-term 
knowledge is by imitating others [46]. Studies have shown that 
worked examples improve learning in algebra, physics, and 
programming [10, 38, 53, 56].  However, students don’t always 
learn from worked examples [15]. They learn best when the 
worked examples are interleaved with practice problems that are 
similar to the worked examples [48].    Another argument in favor 
of worked examples is that students prefer learning by studying 
examples rather than learning by reading text [26].  In this study, 
the instructional material contains four worked examples with 
interleaved practice problems. 

2.4 Subgoal Labeling 
One of the reasons experts perform better than novices is that they 
can recognize structural similarities on tasks or problems, while 
novices tend to focus on surface level features [6]. For instance, 
when students are given a worked example about calculating the 
average rainfall, they typically focus on surface features, like the 
variable names, rather than the structural process of the solution. 
This makes it difficult for them to transfer their knowledge to 
other similar problems (e.g., calculating the average score for a 
range of indices in a list) and seemingly different, but actually 
structurally similar, problems (e.g., counting the number of target 
values in a list). The subgoal learning framework addresses this 
problem by drawing students’ attention to the structural features 
to improve their problem solving performance and transfer [7, 
29]. 
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Subgoal labeling is a method of teaching subgoal learning 
through worked examples [7, 29]. Subgoal labeled worked 
examples visually group subgoals of the problem solution (i.e., 
functional pieces of the problem solution) and give them a 
meaningful label that describes their function. For example, in 
Fig. 1, the first block on the left includes the subgoal label “return 
sum” as a comment. This label describes the function of the line 
below it. All of the worked examples, fix code problems, and 
Parsons problems in this study used subgoal labels in the 
comments to help novices focus on the structure of the solution 
rather than just the surface level features.   In the paired distractor 
Parsons problems the distractor blocks contained the same 
subgoal labels as the correct code blocks to further indicate that 
the blocks were paired and that the student should only choose 
one of the pair as shown in Fig. 1. 

2.5 Deliberate Practice 
Practice is essential for learning [6]. It helps the learner focus on, 
organize, integrate, and retrieve new knowledge from long-term 
memory.  Several studies show the importance of practice in 
developing expertise [42, 50].  But, it needs to be the right kind of 
practice. It is possible to spend many hours practicing without any 
improvement in ability.  

To improve performance it needs to be deliberate practice 
which means that it focuses on areas where the learner is weaker 
and it must include feedback, which can be used to improve 
results [19]. Parsons problems can be used to focus learning on 
areas that learners typically struggle with, such as recognizing 
common syntax errors. Parsons problems can include distractor 
blocks that contain common syntactic or semantic errors, which 
should help novices learn to recognize those errors with less 
frustration than encountering them when they are programming a 
solution from scratch [37].   

2.6 Desirable Difficulties 
New information is not just stored or copied into long-term 
memory; it is related to and integrated into what learners already 
know [6].  Retrieval of information depends heavily on the 
context, which can limit our ability to transfer information from 
one context to another [6].  Retrieving information from long-term 
memory increases our ability to recall it in the future. Desirable 
difficulties are those that help learners store and recall information 
in multiple contexts [4]. One key idea of this work is that 
improving the learner’s performance while learning can actually 
decrease long-term learning, and conversely techniques that 
reduce the learner’s performance while learning can actually lead 
to long-term retention and better recall.  One technique that 
promotes desirable difficulties is spaced practice over time rather 
than massed practice [14, 39]. In this study we use paired 
distractors to increase the difficulty of the Parsons problems and 
to help the user learn to identify common errors [12]. 

2.7 Parsons Problems 
Researchers have studied several variants of Parsons problems.  
They have used different names for them such as Parson’s 

programming puzzles [37], Parson’s puzzles [24, 25], and 
Mangled code [8].  Dale Parsons, for whom they are named, has 
said that Parson’s was a mistake since her last name is Parsons. 
We use Parsons problems, which is consistent with other 
researchers [12, 23]. 

2.7.1 Evidence that Parsons Problems are Engaging 
One of the reasons we choose to study Parsons problems is that 
there is evidence that users find them engaging.  Dale Parsons and 
Patricia Haden originally created Parsons problems with syntactic 
distractors to provide an engaging way to help novices master 
syntax [37].  Most undergraduate students (82%) in their study 
(n=17) reported that the Parsons problems were useful or very 
useful for learning Pascal on a post survey.   

Ericson has provided further evidence that learners find 
Parsons problems engaging. She added two-dimensional Parsons 
problems to interactive ebooks and found that more students and 
teachers attempted to solve the Parsons problems than tried to 
solve the nearby multiple choice questions after a worked 
example [17, 18]. In an online feedback form, teachers mentioned 
Parsons problems as being valuable at twice the rate of multiple-
choice questions or fill in the blank questions [18]. 

2.7.2 What Makes Parsons Problems Difficult? 
Researchers have studied several variants of Parsons problems 
and reported on what makes them easier or harder.  This 
information was used to design the Parsons problems for this 
study. 

Garner’s small study (n=8) found evidence that Parsons 
problems with only the correct code and no distractors were 
easiest to solve and that problems that provided some of the 
correct code, but also required the solver to write some code were 
the hardest [20]. This provides some evidence that Parsons 
problems might have a lower cognitive load than writing code. 

Harms, Chen, and Kelleher reported that middle school 
students (n=92) had less success, took significantly longer to 
solve problems, and reported a higher cognitive load during the 
training phase when solving Parsons problems with distractors 
versus solving Parsons problems without distractors [23].   

Ihantola and Karavirta found that two-dimensional Parsons 
problems, in which the blocks must also be indented correctly, are 
more difficult than one-dimensional Parsons problems, which do 
not require indentation [25].  

Denny, Luxton-Reilly, and Simon explored paper-based 
Parsons Problem as a possible replacement for requiring students 
to write code on exams [12].  They argued that Parsons problems 
would be quicker to grade and result in more consistent grades 
between markers. They tested several variants of Parsons 
problems.  During think aloud observations they found evidence 
that Parsons problems with randomized distractors for nearly 
every line of code were too difficult for the students.  Parsons 
problems with visually paired distractors were easier.  Providing 
the structure of the code, the number of statements in a block 
indicated by curly braces and the indention, also made Parsons 
problems easier to solve.   
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Denny et al. also had 74 undergraduate students solve a 
Parsons problem, a write code problem, and a trace code problem 
on a paper-based exam [12].  The Parsons problem was a paired 
distractor Parsons problem.  The pairing was indicated by extra 
space above and below each pair of distractor and correct code.  
The students had to write the code in the correct order and add the 
curly braces to indicate the block structure. They found a notable 
correlation (Spearman's ρ of .53), between the score on the write 
code and Parson problem. The lowest quartile of students did the 
worst on tracing code, better on writing code, and better still on 
solving Parsons problems.   

Cheng and Harrington’s large scale study (n=473) also 
investigated using a variant of Parsons problems, that they called 
a Code Mangler question, on an exam [8].  They found that the 
Code Mangler problem took less time to score than the equivalent 
write code problem and that the teaching assistants felt more 
confident that the grading was easier and consistent.  They also 
found a notable correlation (Spearman's ρ of .6457), between the 
students score on the write code problem and the Code Manger 
(Parsons) problem.   

Morrison et al. provided evidence that Parsons problems are 
a more sensitive measure of learning, i.e., that a Parsons problem 
might detect a learning difference between students that might not 
appear in a code writing problem [36]. 

Harms, Rowlett, and Kelleher compared solving Parsons 
problems with only correct code to following tutorials in Looking 
Glass [22].  They measured learning, cognitive load, and transfer.  
They found that the Parsons problem solvers complete the 
learning task more quickly (23% less time) than tutorial takers and 
also did 26% better on transfer tasks.  The Parsons problem 
solvers also reported higher mental effort to complete the task 
than the tutorial followers, which is consistent with the idea that 
desirable difficulties lead to increased learning [4].   

This study uses two-dimensional Parsons problems with 
visually paired distractors in an effort to provide desirable 
difficulty, but not excessive difficulty, in order to enhance 
learning. 

3 SOFTWARE DEVELOPMENT 
We used the Runestone Interactive platform to create and serve 
our study materials [34]. Our research team added the js-parsons 
software developed by Ihantola and Karavirta [25] to the 
Runestone platform in 2012.  This software originally supported 
one and two-dimensional Parsons problems with distractor blocks 
randomly mixed in with the correct code blocks.  We made the 
following changes: 1) added guidelines to signify that indentation 
was allowed as shown previously in Fig. 1, 2) allowed distractors 
to be displayed paired with the correct code blocks with purple 
edge decorations as shown in Fig. 1, and 3) allowed the 
specification of the display order for the blocks to guarantee 
consistency for experiments. 

We also modified the Runestone Interactive platform to 
support timed exams, which have a maximum time limit and can 
only be taken once.  The user must click a button to start the exam 
and a button to finish the exam and both of these events are 

logged. If the participant doesn’t complete the exam in the 
specified time, the exam will automatically end and all current 
answers will be logged. This prevents students from spending too 
much time on a problem when they had no idea how to solve it.  

4 STUDY PURPOSE 
While several researchers have hypothesized that solving Parsons 
problems could result in more efficient learning than writing the 
equivalent code [12, 37], none to our knowledge have empirically 
tested this assumption. While some researchers have found a 
notable correlation between scores on Parsons problems and 
performance on different write code problems, these studies have 
not compared groups solving the same problems. In addition, no 
researchers have compared solving two-dimensional Parsons 
problems with paired distractors to fixing code with the same 
errors as the distractors. Since the learner doesn’t have to type the 
code while solving either Parsons problems or fix code problems, 
they could have similar completion times.  

The purpose of the study was to investigate the efficiency, 
effectiveness, and cognitive load of learning from solving two-
dimensional Parsons problems with paired distractors, versus 
fixing code with the same distractors as errors, versus writing the 
equivalent code.   

Our hypotheses were that 1) Parsons problems would be more 
efficient (take less time to solve) than fixing code with errors or 
writing the equivalent code.  2) Parsons problems would lead to at 
least the same amount of learning and retention as fixing or 
writing code, and 3) students in the Parsons problem condition 
would report lower cognitive load than students in the fix code or 
write code conditions.  

5 STUDY DESIGN 
This was a between subjects design, with one pretest and two 
posttests. There were two sessions in the study.  The first session 
was 2.5 hours and included consent, a demographic survey, 
pretest, instructional material, a cognitive load survey, and a 
posttest.  The second posttest, which lasted one hour and was held 
one week later, was administered to measure retention of the 
instructional material.  

The instructional material in the first session contained four 
worked-example and practice pairs.  Students were randomly 
assigned to one of three practice conditions for the instructional 
material: 1) solving two-dimensional Parsons problems with 
paired distractors, 2) fixing code with the same errors as the 
distractors, or 3) writing the equivalent code. The instructional 
practice condition was the independent variable.  The dependent 
variables were the performance on the pretest and posttests, the 
time spent on each practice problem, and the cognitive load 
survey results.  

6 STUDY PROCEDURES 
This study consisted of two separate sessions one week apart.  The 
sessions were held in a closed classroom with all participants 
attending at the same time. Students were instructed to bring their 
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laptops.  They were provided with scratch paper and a pen.  All of 
the study materials were online and students were asked to only 
use those materials, even though they had access to the Internet.  
Proctors checked that the students were on task and not visiting 
other web sites.  The scratch paper was collected and analyzed to 
replicate a previous study of code tracing on paper [11]. 

In the first session the procedure was 1) provide consent and 
randomly be placed into one of the three practice conditions, 2) 
complete the demographic survey, 3) complete familiarization 
activities, 4) complete the pretest, 5) review material on lists and 
ranges, 6) complete four worked example plus practice pairs 
where the type of practice problem differed based on the 
condition, 7) complete a cognitive load survey, and 8) complete 
the immediate posttest.  

At the second session a week later each participant completed 
the second posttest, which was isomorphic to the first posttest. 
Only the variable names and some values were changed, but the 
structure of the problems was the same, meaning that they 
required near transfer to solve. Near transfer is being able to solve 
a new problem in a similar context to one that you have already 
solved. The second posttest also tested for retention of the 
material one week later.      

7 STUDY MATERIALS 
We developed, tested, and refined our materials through 
observations of three undergraduate students from an introductory 
computing course for computer science majors. Each student was 
observed as he or she worked through the material for one of the 
three conditions. After the observational study we added more 
familiarization material, because some of the students had 
difficulty using the environment.  

We next conducted a pilot study with 24 undergraduate 
students from an introductory course for computer science majors.  
In the pilot study, five (21%) of the 24 students submitted at least 
one solution to the pretest Parsons problem that contained both a 
correct block and its paired distractor. This indicated that they 
didn’t realize that each distractor was shown paired with the 
correct code, for at least some of the distractors. At that time the 
distractors were shown either above or below the correct code, but 
there was no other visual indication that they were paired.  

After the pilot study we added the purple edge decorations 
shown in Fig. 1 to better indicate that each distractor block was 
displayed paired with its correct code block.  We also added the 
same subgoal label as a comment to both the correct and distractor 
code blocks to further indicate that the blocks were paired. The 
blocks in the source area were always displayed with the purple 
edge decorations, which helped to show that they were one of a 
pair. However, the purple edge decorations were not shown on the 
blocks in the solution area.  

7.1 Demographic Survey 
The demographic survey asked for the participant’s age, gender, 
race, first spoken language, comfort level with reading English, 
high school grade point average, college grade point average, 
current major, expected grade in the course, and prior 

programming experience. If they had any prior programming 
experience, they were also asked what courses and where they 
took them and how many years they had been programming. In 
addition, participants were asked to rate their ability to read, fix, 
and write Python code on a 5-point Likert scale.   

7.2 Familiarization Material  
The familiarization activities included instruction on how to use 
the environment, including how to start and finish a timed exam, 
how to get to the next page, how to answer multiple-choice 
questions, how to check the solution for the fix code and write 
code problems, and how to drag blocks and check the solution on 
a Parsons problem.   

This section also included two easy practice multiple choice 
question, a practice fix code problem with instructions for how to 
fix the problem, a practice Parsons problem and a write code 
problem.  Both the fix code problem and the Parsons problem 
included the correct solution displayed above the problem.  

7.3 Pretest 
There were four timed exams in the pretest. The participants had 
15 minutes to complete the first timed exam of multiple-choice 
questions and 10 minutes to complete each of the other three 
timed exams (fix code, Parsons problem, and write code). 

The five multiple-choice questions included tracing code that 
included lists, ranges, selection, and iteration. The questions 
included code to find the minimum value in a list between a range 
of indices, return the count of the number of times a target value 
appeared in a range of indices in a list, trace the values of 
variables in a complex for loop, and return the average of values 
in a range of indices in a list (as shown in Fig. 2).   

 

 

Figure 2: One of the pretest multiple-choice questions 

One question provided code that was intended to return the 
longest run in a list of numbers, but the code contained an error 
and the student had to select the answer that matched what the 
code actually returned. 

The second timed exam contained one fix code problem. It 
was a modified version of Soloway’s rainfall problem which has 
been extensively studied [41, 43] as shown in Fig. 3.  This 
problem totals all of the non-negative values in an input loop until 
a sentinel value is reached and then outputs the average.  The 
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solution should also avoid a division by zero. The problem was 
modified to loop through a list of numbers rather than read input 
until a sentinel value was reached. Simon found that students still 
perform poorly on this problem and that students are not used to 
reading input in a loop until a sentinel value is reached [41]. The 
instructions explained the algorithm in English, provided example 
input and output, and provided hidden unit tests.    

 

 

Figure 3: The pretest fix code problem with errors  

The third timed exam contained one Parsons problem to create a 
function to calculate and return the average of the values at a 
range of indices (inclusive) in a list.  The problem had five paired 
distractors as shown in Fig. 4. The instructions explained the 
algorithm in English, provided example input and output, and 
gave feedback on the solution.  The feedback was either that the 
solution was correct, or too short, or one or more code blocks 
were either out of order or the wrong blocks (and these blocks 
were highlighted in red), or that the indentation was wrong (and 
yellow decorations were added to the side of the block with 
arrows to indicate the direction the block needed to move).    
 

 

Figure 4: The pretest Parson problem showing unused 
distractors on the left and the correct solution on the right. 

The fourth timed exam contained one write code problem as 
shown in Fig. 5.  This problem asked the participant to write a 
method to check if a trail was level between a start and end index 
(inclusive).  A trail was considered to be level if the difference 
between the minimum and maximum values was less than or 
equal to 10. The problem provided the function header and hidden 
unit tests. The instructions explained the algorithm in English, 
provided example input and output, and provided hidden unit tests 
to test the solution.  
 

 

Figure 5: A correct solution to the write code problem 

7.4 Review Material 
The review material explained what a list was, how to use the 
range function to create a list, how to get a value from a list, how 
to get the length of a list, how to loop through all values in a list, 
and how to loop through a range of indices in a list.  It contained 
example Python code that the participant could run.  The students 
in the experiment had already covered these concepts and had 
moved on to cover more advanced topics, so we felt it would be 
helpful to provide this review material.   

7.5 Instructional Material 
The instruction material contained four worked examples with 
interleaved practice problems. The worked examples contained an 
algorithm in English, example input and output, and runnable 
Python code with hidden unit tests, which all passed.  The practice 
problems varied by condition with one group solving two-
dimensional Parsons problems with paired distractors, one solving 
fix code problems with the same distractors as errors, and the third 
writing the equivalent code.  Each of the practice problems also 
contained an algorithm in English, example input and output, and 
a way to test the solution.  Each practice problem was in a timed 
exam and each had a time limit of 10 minutes. The page following 
the timed exam displayed an English description of a correct 
solution and the code for that solution. 

The first worked example returned a count of the number of 
times a target value appeared in a list using a loop that looped 
through all the indices.  The associated practice question was to 
return the count of a target value in a given range of indices 
(inclusive).  The second worked example returned the maximum 
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value from a list and the associated practice problem was to return 
the minimum value. The third worked example returned the 
average of the values in a list and protected against a divide by 
zero error.  The associated practice problem returned the average, 
but didn’t include the lowest value in the list in the average and 
also guarded against a divide by zero error.  The fourth worked 
example returned the minimum value in a given range of indices 
(inclusive). The associated practice problem returned the 
maximum value in a given range of indices (inclusive).   

7.6 Cognitive Load Survey 
To measure the cognitive load for each of the practice conditions 
we used the CS Cognitive Load Component Survey, which has 
been tested and shown some initial validation in computer science 
[35]. This survey was adapted from the Cognitive Load 
Component Survey that has been used to measure cognitive load 
in statistics and health sciences [27].  

7.7 Posttests 
The immediate posttest in the first session had the same questions 
as the pretest.  The second posttest, which was administered one 
week later, was isomorphic to the first posttest, meaning that the 
problems to be solved had the same structure, but different surface 
level features, like variable names. 

8 PARTICIPANTS 
Undergraduate students were recruited from two sections of a first 
computer science course for computing majors at a research-
intensive university in the US. The sections had different 
instructors, but they followed the same curriculum with the same 
homework and assessments. This course covers introductory 
programming concepts in Python including variables, selection, 
iteration, and lists.  At the time of the study the course had 
covered all of these topics and was covering files and dictionaries. 
One of the authors visited the course during lecture to recruit 
participants and also sent an announcement to all of the students 
enrolled in the course.  Participants could earn 2.5 points of extra 
credit for completing the first session and another 2.5 points of 
extra credit for completing the second session one week later.  
Students who did not participate in the pilot study or large-scale 
study could alternatively earn up to 5 points of extra credit by 
writing a paper on a computing innovation, which was graded by 
one of the authors and that grade was submitted to the course 
instructors. None of the authors were involved in the teaching of 
the course. 

9 ANALYSIS 
A total of 159 students participated in the first session. However, 
24 of these students did not answer at least one question during 
the session or spent less than 30 seconds answering a question. 
We are reporting on the data from 135 students (45 in the fix 
condition, 44 in the Parsons condition, and 46 in the write 
condition) from the first session.  Students were not required to 
come back for the second session one week later, but earned an 

additional 2.5 points of extra credit for completing that session.  A 
total of 106 students returned for the second session.  Of these, 82 
completed all the questions in both the first session and second 
session and spent at least 30 seconds on each question (27 in the 
fix condition, 25 in the Parsons condition, and 30 in the write 
condition).    

9.1 Data Analysis 
For each instructional practice problem we recorded the start time 
and end time and then calculated the elapsed time in seconds to 
compare the efficiency of the three conditions.  We created 
grading rubrics for the write and fix code problems on the pretest 
and posttests.  Two people graded each problem independently 
and then met to resolve any differences in scores. The hand 
graded scores on the fix and write problems correlated with the 
number of unit tests passed (p < .001 for all). 

 We automated the grading for the Parsons problems.  
Grading started from the beginning of the solution and each line 
in the correct order received one point and if the line or its paired 
distractor was indented correctly it received half a point.  Grading 
continued until a line was found that was neither the correct line 
nor its paired distractor.  Grading then continued from the end of 
the solution in the same fashion toward the first line that had been 
found to be incorrect. We also reviewed the middle of the 
solutions manually to give credit if at least two consecutive lines 
were in the correct order relative to each other. This grading 
approach was based on our observation that learners had the most 
difficulty in the middle of the solution.  We also wanted the 
grading to be similar to the grading of the fix code problems, and 
the fix code problems had the advantage that the code was already 
in the correct order.   

We checked our data for normal distribution using skewness, 
whether the peak of the bell curve is in the middle, and kurtosis, 
whether the bell curve is too narrow or wide [21]. For all pre-test 
measurements, skewness and kurtosis checks were within the 
acceptable +/-2 range. For all post-test measurements, skewness 
was about -2, meaning that there was a slight negative skew (i.e., 
bell curve looks like it is leaning towards the larger numbers), but 
these values were still acceptable. Kurtosis, however, was above 3 
in all cases, meaning that the scores clustered more closely around 
the mean than in a normal distribution. Based on these results, we 
suspect that there was a slight ceiling effect for the posttests in 
which many participants scored the highest score possible. Most 
parametric statistical tests, including all of those that we have 
used, are robust to abnormal kurtosis, meaning that they are still 
valid with a distribution like ours. Therefore, we used parametric 
tests to analyze our results instead of their non-parametric 
equivalents, which tend to be more conservative with lower 
statistical power [49]. 

9.2 Efficiency 
The Parsons problem condition had the lowest average completion 
time for each of the four practice problems as shown in Table 1. 
This difference was significant as measured by an independent 
measures one-way analysis of variance (ANOVA) F(2,133) = 
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10.835, p < 0.001.  A Least Significant Difference (LSD) post-hoc 
test indicated that students in the Parsons problem condition took 
significantly less time to finish the four practice problems than 
students in the fix code (p<0.001) and write code conditions 
(p<0.001). However, there was no significant difference in 
completion time between the write code and fix code conditions. 

Table 1: Mean Time in Seconds (and Standard Deviation) to 
Complete each Practice Problem by Condition 

 
Prac. 1 Prac. 2 Prac. 3 Prac. 4 Total 

Parsons 84.20 
(34.77) 

83.64 
(35.99) 

227.42 
(124.66) 

77.98 
(41.29) 

473.24 

Fix 114.49 
(79.17) 

147.67 
(128.32) 

313.42 
(153.40) 

103.91 
(65.67) 

679.49 

Write 171.63 
(137.61) 

113.13 
(98.62) 

313.65 
(153.33) 

115.54 
(69.28) 

713.96 

 

9.3 Learning Performance 
The pretest measures (multiple-choice, fix, Parsons, and write) 
were condensed into a single composite pretest score. To ensure 
that this was valid and that all of the pretest measures were 
measuring the same underlying construct, factor analysis was used 
with varimax rotation. The analysis showed that the four tests 
loaded onto one factor, which we will call prior knowledge, based 
on the scree plot and eigenvalues. The factor loadings for each of 
the individual tests was above .7, the typical cutoff: fix score = 
.75, write score = .85, multiple choice score = .76, and order score 
= .79. 

9.3.1 Comparing the Practice Conditions. None of the 
practice conditions performed better than the other conditions on 
the posttest measurements (multiple choice, fix, Parsons, or write) 
as shown in Table 2. No interactions between condition and 
performance on the posttest measures were found either, meaning 
that participants who practiced on Parsons problems performed as 
well on the writing posttest as participants who practiced on 
writing problems and vice versa.  In addition, there was no 
significant difference by condition on performance on the second 
posttest.  

Table 2: Mean Score (and Standard Deviation) by Condition 
for Pretest and Immediate Posttest 

 Pretest (std dev) Posttest (std dev) 
Fix (n=44)   
Multiple-Choice 3.48 (1.45) 3.50 (1.50) 
Fix 10.36 (2.01) 11.41 (1.23) 
Parsons 11.76 (1.01) 11.63 (1.48) 
Write 9.50 (3.56) 10.18 (3.49) 
Parsons (n=45) 
MC 3.22 (1.17) 3.78 (1.17) 
Fix 10.96 (1.69) 11.42 (1.34) 

Parsons 11.61 (1.31) 11.77 (1.19) 
Write 8.40 (3.68) 9.78 (3.27) 
Write (n=46) 
MC 3.41 (1.24) 3.72 (1.19) 
Fix 10.96 (1.69) 11.37 (1.25) 
Parsons 11.38 (1.93) 11.70 (1.28) 
Write 9.48 (3.75) 10.30 (2.62) 

 
9.3.2 Comparing the Pretest to the Posttests. When analyzing 
repeated measures data, as we have for the pre-test, immediate 
post-test, and delayed post-test, it is common to violate the 
assumption of sphericity, as tested with Mauchly’s test. Our data 
violated the sphericity assumption, p < .001, so we’ve used the 
Huynh-Feldt correction to make our ANOVA results more 
conservative. We found a significant difference from the pretest to 
both posttests using an omnibus repeated measures ANOVA for 
the fix problem F(using Huynh-Feldt correction; 1.9, 161.2) = 
7.34, p = .001, and the write problem F(using Huynh-Feldt 
correction; 1.6, 139.9) = 4.56, p = .018.  Participants also 
performed better on the fix and write code problems on both post-
tests than on the pre-test. However, their performance on the 
second post-test was worse than the first post-test, though not so 
bad as to be statistically equivalent to the pre-test. There were no 
significant differences from the pretests to the posttests on the 
multiple-choice questions or the Parsons problem. For the 
multiple-choice questions this may have been due to the lack of 
feedback on the correctness of the pretest answers.  It is possible 
that the students simply remembered what they had answered 
before and used the same answer since they were not told if the 
answers were wrong. The lack of significant difference on the 
Parsons problem is likely due to a ceiling effect, because each 
group had a mean above 11 (out of 12 possible points). 

9.4 Cognitive Load 
We found no significant difference in the self-reported cognitive 
load measures between the three conditions, F(2, 132) = 1.21, p = 
.30.  However, the students in the Parsons problem condition 
solved the same problems as those in the fix code and write code 
conditions in significantly less time as shown in Table 1.  

9.5 Comparing Demographic Data to Performance 
To check for possible interaction between the demographic data 
and the conditions, we created a composite score using the fix and 
write code problem scores from the two posttests.  We found no 
interaction between condition and demographic characteristics 
that affected performance.  

We found a moderate correlation for age, r(88) = -.22, p = 
.04, with younger students performing better than older students. 
We also found a moderate correlation by major with computer 
science majors, ρ(88) = -.24, p = .02, performing better than the 
non-computer science majors.  One unusual finding was that 
students who had a previous programming course performed 
worse than those without any prior programming experience, 
ρ(88) = -.24, p = .02. This could be due to prior experience in 
another language with different syntax or semantics than Python.  
We found a moderate correlation on all of the self-reported 
measures of ability to read, ρ(88) = .32, p = .002; fix, ρ(88) = .28, 
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p = .008; and write, ρ(88) = .34, p = .001, Python code. We found 
a strong correlation between expected grade in the course and 
performance. ρ(88) = -.50, p < .001.  We did not find any 
correlations for the other demographic characteristics including 
race, gender, first language, high school grade point average, or 
college grade point average.  

10 DISCUSSION 
The students in the Parsons problem condition completed the four 
instructional practice problems in significantly less time than 
those in the fix code or write code conditions.  This supports our 
first hypothesis that Parsons problems are a more efficient form of 
practice than fixing the same code with errors or than writing the 
equivalent code. There was no significant difference between the 
completion time for the students in the fix code or write code 
conditions. Fix code problems, like Parsons problems, have an 
advantage over write code problems, because the student doesn’t 
need to type the code for the solution. However, Parsons problems 
with paired distractors are easier for students to debug since they 
don’t have to interpret compiler errors or debug code. They can 
simply pick between the paired correct and incorrect blocks. 

There was a significant improvement from the pretest fix and 
write code problems to the same problems on the immediate 
posttest as well as on the posttest one week later, which provides 
evidence of near transfer and retention.  These findings, coupled 
with the fact that there was no significant performance difference 
on the posttests by condition, supports our second hypothesis that 
solving Parsons problems would lead to similar learning 
performance than fixing code with errors or than writing the 
equivalent code.  

However, it is possible that the performance improvements 
may not be solely due to the practice condition.  Students may 
have learned from the pretest problems, review material, worked 
examples, or answers to the four practice problems.  This study 
could have been improved by adding a control group that did an 
off-task activity rather than solve the four practice problems. This 
would have strengthened the claim that the performance gains 
were due to the practice problems, and not the other materials. 
The retention results on the delayed posttest could have also been 
partially due to learning in the students’ course during the week 
after the immediate posttest, however the topics covered that week 
were more advanced.  Further experiments should be done to 
verify that solving Parsons problems results in equivalent 
performance gains compared to fixing and/or writing code. 

We did not find any significant difference on the self-
reported cognitive load survey by condition, so our third 
hypothesis that Parsons problems would have lower self-reported 
cognitive load was not supported.  While the cognitive load 
survey that we used had been initially validated, it may not be an 
effective measure for comparing the cognitive load of different 
types of practice problems. The first study was 2.5 hours long and 
included many different parts, which were completed one after the 
other without a break. It is possible that students were responding 
to the difficulty of the entire study rather than just the 
instructional section or were fatigued and just wanted to finish. 

Further studies should be done to test if the self-reported cognitive 
load of solving Parsons problems is lower than that of solving fix 
code and write code problems. However, students in the Parsons 
problem condition solved the same practice problems in 
significantly less time than those in the fix code or write code 
conditions, which implies that they do have a lower cognitive 
load. 

11 CONCLUSIONS 
This study provides evidence that solving two-dimensional 
Parsons problems with paired distractors takes significantly less 
time than fixing the same code with the same errors as the 
distractors or than writing the equivalent code, while still resulting 
in statistically significant improvement in scores from pretest to 
immediate posttest and retention one week later. This 
demonstrates that solving Parsons problems with paired 
distractors is a more efficient, but just as effective, form of 
practice than writing or fixing code. However, further research 
needs to be done to verify that the performance gains were solely 
due to the type of practice.  

If Parsons problems are a more efficient and effective form 
of practice than writing code, they could be used to speed the 
learning of basic syntax, semantics, and algorithms. While this 
study only included four practice Parsons problems in the 
instructional material, our research team has added over a hundred 
Parsons problems to several free interactive ebooks that we and 
others have developed for introductory programming in Python 
and Java [16, 18]. Thousands of students and hundreds of 
institutions are already using these ebooks. Instructors can use or 
customize these existing ebooks or use the ebook platform 
(Runestone) to create their own ebooks with Parsons problems. 
The ebooks log user interaction, which can be used for research in 
computing education, including work on the effectiveness and 
efficiency of Parsons problems.  
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