
A Study of the Difficulties of Novice Programmers

Essi Lahtinen
Tampere University of

Technology
Institute of Software Systems

P.O. Box 553
FIN-33101 Tampere, Finland

essi.lahtinen@tut.fi

Kirsti Ala-Mutka
Tampere University of

Technology
Institute of Software Systems

P.O. Box 553
FIN-33101 Tampere, Finland

kirsti.ala-mutka@tut.fi

Hannu-Matti Järvinen
Tampere University of

Technology
Institute of Software Systems

P.O. Box 553
FIN-33101 Tampere, Finland

hannu-
matti.jarvinen@tut.fi

ABSTRACT
Programming is related to several fields of technology, and many
university students are studying the basics of it. Unfortunately, they
often face difficulties already on the basic courses. This work stud-
ies the difficulties in learning programming in order to support de-
veloping learning materials for basic programming courses. The
difficulties have to be recognized to be able to aid learning and
teaching in an effective way.

An international survey of opinions was organized for more than
500 students and teachers. This paper analyses the results of the
survey. The survey provides information of the difficulties expe-
rienced and perceived when learning and teaching programming.
The survey results also provide basis for recommendations for de-
veloping learning materials and approaches.

Categories and Subject Descriptors
K.3.2 [Computers and education]: Computer and Information
Science Education

General Terms
Human Factors, Languages

Keywords
Programming, learning, teaching, difficulties, novices

1. INTRODUCTION
Programming is not an easy subject to be studied. It requires

correct understanding of abstract concepts. Many students have
learning problems due to the nature of the subject. In addition,
there are often not enough of resources and students suffer from
a lack of personal instruction. Also the student groups are large
and heterogenous and thus it is difficult to design the instruction so
that it would be beneficial for everyone. This often leads to high
drop-out rates on programming courses.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’05,June 27–29, 2005, Monte de Caparica, Portugal.
Copyright 2005 ACM 1-59593-024-8/05/0006 ...$5.00.

Codewitz (www.codewitz.net) project aims to develop solutions
that would benefit teaching and learning programming. The main
purpose of the project is to develop web-based visualisations of
programming concepts for use in classroom and for supporting in-
dependent learning. Unlike several approaches that concentrate on
algorithm animation, e.g. [4], this project aims at improving stu-
dents’ learning introductory programming concepts and language
structures, e.g., variables, loops, and conditional statements. For
developing international co-operation, it was decided to organize a
large survey among partner universities to study the present diffi-
culties in learning programming. The results of this study could be
used both as a basis for developing new visualisations as for devel-
oping learning approaches for programming courses generally.

The organization of the article is as follows. Section 2 con-
tains an overview of the related literature. The survey design and
methodology will be introduced in Section 3 and the analysis of
the results in Section 4. The results will be discussed further and
related to other studies in Section 5. Section 6 contains the conclu-
sions.

2. RELATED LITERATURE
Robins et al. [7] provide a comprehensive review on the research

relating to programming education. Another good source of infor-
mation is an older collection of research papers on novice program-
mers, edited by Soloway and Spohrer [8]. These papers provide
several viewpoints on the characteristics and common misconcep-
tions of novice programmers that should be considered when de-
signing approaches for programming education.

These sources conclude, for example, that novice programmers
are typically limited to surface knowledge of programs. They often
approach programming “line by line” rather than using meaningful
program structures. The knowledge of novices tends to be context
specific, and they also often fail to apply the knowledge they have
obtained adequately. They may know the syntax and semantics of
individual statements, but do not know how to combine them into
valid programs [9]. Hence, it is important to combine both concept
knowledge and strategies for their use in the learning process.

Several approaches for CS1 courses have been presented, e.g.
Fincher [1] surveyed ”syntax-free”, ”literacy”, ”problem-solving”
and ”computing as interaction” approaches. The most common dis-
cussion topic in the literature of today seems to be whether imper-
ative [2] or object-oriented [3] approach should be the first. What-
ever the approach, at some point the students have to learn the ba-
sic structures of the programming languages such as loops, vari-
ables, recursion, and parameter passing. Several typical miscon-
ceptions related to language constructs are presented by Soloway

14



and Spohrer [8] as well as by Pane and Myers [6]. For exam-
ple, there are often misconceptions related to variable initialization,
loops, conditions, pointers and recursion. Students also have prob-
lems with understanding that each instruction is executed in the
state that has been created by the previous instructions.

In addition to the typical misconceptions presented in the liter-
ature mentioned, a recent survey by Milne and Rowe [5] ranked
object-oriented programming concepts according to the level of
difficulty. They had only 66 respondents in their survey, but it pro-
vided interesting information about the difficulties of the students
today, with the present programming languages and programming
environments.

3. SURVEY DESIGN AND METHODOLOGY
The earlier research on this area has often been carried out with

older programming tools and languages [8], or concentrated mainly
on certain language concepts [5]. We wanted to study the present
situation with Java and C++ courses, and find out perceptions also
on the different programming phases, learning situations and ma-
terials on the courses. This way we would not only gain ideas for
topics that needed instruction but also information of the preferred
material usage situations.

The web-based questionnaire had three different sections: back-
ground, course contents and learning aspects. The questions can be
seen in Table 1. The same questions were asked on another form
from the teachers as their perceptions on students’ difficulties. The
goal was to compare the differences in the conceptions of students
and teachers.

The first section contained the general information of the respon-
dent (year of studies, experience in programming before university,
computer skills, programming languages used). The purpose of
this section was to be able to compare whether the background has
impact on the learning difficulties. It was known in advance that
most of the respondents had been studying programming either in
C++ or Java so we expected a possibility to study the impact of the
programming language.

The goal of the second section was to find out difficulties in
learning the course contents. It was divided in two parts: the is-
sues in program construction (e.g., using the program development
environment or dividing the functionality into procedures) and the
programming concepts. The questions asked the respondents to
grade programming aspects and concepts on a five-point scale from
very easy to learn(1) tovery difficult(5). In addition, there was an
optiondon’t know.

The third section contained questions about learning program-
ming. The goal was to find out what kind of learning situations
and materials the students find most effective. The scale for re-
sponses was the same as before, from 1 to 5, varying from the stu-
dent feeling that he/she waslearning never in that kind of situations
to learning always. In the questions about the materials 1 stood for
practically uselessand 5 forvery useful.

The questionnaire was presented for students who had experi-
ence of 1-2 programming courses of their BSc and MSc programs
in 6 universities. It was advertised also to the teachers of the same
courses. Responses were received from Fachhochschule Furtwan-
gen (FHF, Germany), Reykjavik University (RU, Iceland), Tampere
Polytechnic (TPU, Finland), Tampere University of Technology
(TUT, Finland), Bucharest University of Technology (UTCB, Ro-
mania), and Ventspils University of Technology (VENTA, Latvia).
The questionnaire was available for 10 days.

Figure 1: Number of students’ responses by university.

Figure 2: Proportions of different languages in the survey.

4. RESULT ANALYSIS
In total, 559 students and 34 teachers answered the survey. The

number of students’ responses from different universities are shown
in Figure 1. The results of the sections Course contents and Learn-
ing and teaching programming are presented in Table 1. The Back-
ground information section is analyzed in the following.

More than half (58,6%) of the students taking part in the sur-
vey already had experience in programming before studying at the
university. Almost half (40,6%) of the ones that had experience in
programming, believed that their programming skills were at least
moderate. This shows that students in a programming class often
may have very different experience levels, which makes it difficult
to design the teaching so that it would be challenging and interest-
ing for everyone.

Majority of the students had been learning the basics of program-
ming using C++ as the programming language. There were also
some students who had used Java, and a small minority had used
Pascal or other languages. The percentages of different languages
being used are presented in Figure 2.

15



Table 1: Results on sections course contents and learning and teaching.
Question Code Students Teachers

N Avg Std N Avg Std

THE COURSE CONTENTS
What kind of issues you feel difficult in learning programming?
Using program development environment I1 553 2,43 0,99 33 2,61 0,90
Gaining access to computers/networks I2 536 2,11 0,95 32 1,97 0,78
Understanding programming structures I3 556 2,92 1,02 33 3,27 0,67
Learning the programming language syntax I4 555 2,75 1,01 33 2,70 0,73
Designing a program to solve a certain task I5 555 3,12 0,98 33 3,97 0,73
Dividing functionality into procedures I6 543 3,10 1,09 31 4,06 0,63
Finding bugs from my own program I7 549 3,28 1,03 33 3,91 0,77

Which programming concepts have been difficult for you to learn?
Variables (lifetime, scope) C1 541 2,10 0,97 34 2,41 0,70
Selection structures C2 552 1,98 0,90 34 2,38 0,70
Loop structures C3 551 2,09 0,97 34 2,79 0,91
Recursion C4 512 3,22 1,03 31 4,06 0,96
Arrays C5 526 2,79 1,15 33 3,24 0,71
Pointers, references C6 518 3,59 1,04 32 4,44 0,56
Parameters C7 513 2,60 1,09 32 3,47 0,76
Structured data types C8 496 2,90 1,03 31 3,45 0,81
Abstract data types C9 499 3,02 1,10 31 4,06 0,81
Input/output handling C10 519 2,96 1,04 32 3,75 0,88
Error handling C11 481 3,33 1,01 32 4,13 0,79
Using language libraries C12 465 3,04 1,09 32 3,88 0,71

LEARNING AND TEACHING PROGRAMMING
When do you feel that you learn issues about programming?
In lectures S1 543 3,01 1,01 33 3,21 1,02
In exercise sessions in small groups S2 510 3,44 1,10 32 3,84 0,99
In practical sessions S3 514 3,77 1,03 31 4,35 0,75
While studying alone S4 546 3,79 1,06 31 3,42 0,72
While working alone on programming coursework S5 539 3,98 1,09 33 4,00 0,79

What kind of materials have helped/would help you in learning programming?
Programming course book M1 515 3,35 1,03 33 3,30 0,88
Lecture notes/copies of transparencies M2 539 3,39 1,05 34 3,47 0,71
Exercise questions and answers M3 523 3,33 1,07 34 3,62 1,02
Example programs M4 551 4,19 0,86 34 4,24 0,65
Still pictures of programming structures M5 490 3,15 1,00 30 3,70 0,75
Interactive visualizations M6 315 3,33 1,03 27 4,07 0,87

4.1 Course contents
The respondents perceived as the most difficult issues in pro-

grammingunderstanding how to design a program to solve a cer-
tain task(I5), dividing functionality into procedures(I6) andfind-
ing bugs from their own programs(I7). These are all issues where
the student needs to understand larger entities of the program in-
stead of just some details about it.

The most difficult programming concepts wererecursion(C4),
pointers and references(C6), abstract data types(C9), error han-
dling (C11) andusing the language libraries(C12). Again, error
handling requires understanding the program comprehensively. Us-
ing the language libraries requires independent searching of the in-
formation, which can make it difficult for the novices. Recursion,
pointers and references, and abstract data types are abstract con-
cepts and thus cognitively complex to understand without a similar
phenomenon in the daily life for comparison.

The teachers’ opinions on the most difficult course contents were
almost the same as the students’. In addition, the teachers perceived
understanding programming structures(I3) difficult in issues about
programming. In programming concepts, almost all the questions

had the mean value above 3, and the most difficult issues were the
same according to teachers and students. Teachers perceived sys-
tematically everything in the course contents more difficult to learn
than the students. Figure 3 shows the differences on programming
concepts.

4.2 Learning situations and materials
The students seem to be very self-confident, because they rated

studying alone (S4) more useful than lectures (S1), and working
alone on programming coursework (S5) more useful than excer-
cise sessions (S2) and practical session (S3). Learning by doing
was considered to be effective too, becauseexercise sessions(S2)
were rated more useful thanlectures(S1), andpractical sessions
in computer rooms(S3) even higher. Similarly,programming by
themselves(S5) was rated more useful thanstudying by themselves
(S4).

Example programs(M4) were considered as the most useful type
of material both by the students and the teachers. The rest of the
material forms were considered equally useful by the students. The
teachers valued interactive visualizations more than the rest of the

16



Figure 3: Difference of students’ and teachers’ responses con-
cerning the programming concepts.

materials, but it can derive from the fact that the survey was carried
out among teachers that are interested in developing visualizations.

The learning situations were seen differently among the teachers
than among students. The teachers thought that the most effec-
tive learning situations werepractical sessions in computer rooms
(S3),exercise sessions in small groups(S2) andworking alone on
coursework(S5). Either the teachers seem to think that the students
need guidance more than the students themselves or the teachers
consider their teaching more effective than it actually is, because
they rated all the guided learning situations higher than the stu-
dents.

4.3 Correlations
When analyzing the correlations of different programming is-

sues and programming concepts from the students’ responses, it
was found that the issues relating tounderstanding programming
structures(I3), learning the programming language syntax(I4), un-
derstanding how to design a program to solve a certain task(I5),
anddividing functionality into procedures, functions and/or classes
(I6) all have a strong positive correlation with each other (0.534<
r < 0.637, p = 0.01). The student either learns all of these easily or
has problems with all.

These four aspects seem to form some kind of a core of under-
standing programming, because they also correlate strongly (0.406
< r < 0.600, p = 0.01) with understanding most of the program-
ming concepts (C1-C9). The other programming issues had clearly
weaker correlations with learning the programming concepts.

The core programming issues correlate also with the rest of the
programming concepts, but not as strongly. These concepts include
handling input and output(C10),error handling(C11), andusing
language libraries(C12), i.e. issues that are usually not part of the
core of the programming language. These concepts do not typically
belong to the main topics on a programming course.

There were no significant correlations between the learning sit-
uations or materials and the course contents. The correlations in
teachers’ results were also not significant.

4.4 Comparison between different languages
There were some significant statistical differences between the

languages in the course contents. The teaching language did not
seem to affect the learning situations. However, because different
universities used different programming languages, it is possible,
that the circumstances in the universities also affect the differences
of the languages.

C++ was found to be more difficult than Java.Selection struc-

tures(C2),arrays(C5),pointers and references(C6), andparame-
ters(C7) were perceived significantly more difficult when learning
in C++ than in Java (p=0.05).

Understanding the programming structures(I3) was significantly
(p=0.05) more difficult in other languages than in C++, Java or Pas-
cal. However, there was no field in the questionnaire to reveal
which other languages were meant here.Using the language li-
braries(C12) was easier in Java than in Pascal.

5. DISCUSSION
When interpreting the results, it is important to bear in mind that

the responses are subjective opinions of the people who answered.
The students do not always see their difficulties completelyq. How-
ever, the number of responses is so large that the respondent group
can be seen to represent the programming students and teachers of
these universities well.

The survey results concerning the programming concepts con-
firm that the most difficult concepts to learn are the ones that re-
quire understanding larger entities of the program instead of just
details, as also found in several articles in Soloway and Spohrer
[8]. The results support also the notions made by Milne and Rowe
[5]; abstract concepts like pointers and memory handling are diffi-
cult to learn. The results also showed a group of topics (e.g. input
and output, language libraries) that should probably have more at-
tention, since understanding them was not related to understanding
the recognized ”core” of programming.

However, the biggest problem of novice programmers does not
seem to be the understanding of basic concepts but rather learning
to apply them. Robins et al. [7] suggest that teachers should focus
more on combination and use of these features, especially on the
underlying issues of basic program design. In the results of the
survey both students and teachers agreed that the practical learning
situations were the most useful. Even if the theory is very important
in learning programming, students also need practical experience
to understand the concepts. The more practical and concrete the
learning situations and materials are, the more learning takes place.
Learning by doing should be a part of the studies all the time.

One of the problems in teaching programming seems to be that
the students overestimate their understanding. The teachers think
that the course contents are more difficult for the students than the
students themselves. The reason for the different perceptions can
be that the students do not realize all the difficulties they have, but
the teachers do, for example, when assessing exams. Also, the
teachers know the concepts deeper and they are able to see that
the students do not have a full understanding of the issues students
themselves think they understand completely [5]. Thus the stu-
dents and the teachers see the need for different kinds of learning
situations and materials differently. This can be seen as a possible
source for problems in students’ motivation.

Since learning problems are often connected to more advanced
issues than individual concepts, learning materials could be di-
rected to develop program generation, modification and debugging
skills. If small examples, emphasizing few concepts at a time,
could be developed to support students’ active programming skills,
they would also better engage the student in the learning situa-
tion. Since success in creating a functional program is a major
positive force on students’ traditional programming work, materi-
als should have more problem-solving nature instead of only repre-
senting concepts.

For future work, the questionnaire could be designed so that it
would be possible to study the impact of the programming language
and the environment used. In this survey it was only possible to see
that the different languages have impact on learning some of the

17



programming concepts. Following the development of the difficul-
ties on the same group of students or individuals in a long-term
research could reveal more detailed information.

6. CONCLUSIONS
Programming is not difficult only because of the abstract con-

cepts. Students have also problems in different issues related to
program construction. It is important for the learning that the stu-
dents do programming by themselves. With carefully designed ma-
terials and approaches teachers can guide students knowledge and
skill construction.

The survey studied the students’ and teachers’ perceptions of the
difficulties in learning programming. The results provide an exten-
sive amount of data on perceived difficulties related to program-
ming concepts and program construction. The survey gives also
information on students’ perceptions of the most useful material
types and learning situations. These results can be used when de-
signing materials and approaches for basic programming courses.

7. ACKNOWLEDGMENTS
We would like to thank Minerva (Codewitz) project for fund-

ing. We would also like to thank Fachhochschule Furtwangen,
Reykjavik University, Tampere Polytechnic, Bucharest University
of Technology, and Ventspils University of Technology for helping
with collecting the information.

8. REFERENCES
[1] S. Fincher. What are we doing when we teach programming?

In Proc. of the 29th ASEE/IEEE Frontiers in Education
Conference, pages 12a4–1–12a4–5, November 1999.

[2] C. Hu. Rethinking of teaching objects-first.Education and
Information technologies, 9(3):209–218, 2004.

[3] M. K ölling. The problem of teaching object-oriented
programming.Journal of Object-Oriented Programming,
11(8):8–15, 1999.

[4] A. Korhonen and L. Malmi. Algorithm simulation with
automatic assessment. InProceedings of the 5th annual
ITiCSE conference, pages 160–163, 2000.

[5] I. Milne and G. Rowe. Difficulties in learning and teaching
programming - views of students and tutors.Education and
Information Technologies, 7(1):55–66, 2002.

[6] J. Pane and B. Myers. Usability issues in the design of novice
programming systems.School of Computer Science Technical
Reports, Carnegie Mellon University, CMU-CS-96-132, 1996.

[7] A. Robins, J. Rountree, and N. Rountree. Learning and
teaching programming: A review and discussion.Computer
Science Education, 13(2):137–172, 2003.

[8] E. Soloway and J. Spohrer.Studying the Novice Programmer.
Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1989.

[9] L. E. Winslow. Programming pedagogy – a psychological
overview.SIGCSE Bulletin, 28(3), September 1996.

18


