
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/330916641

Concepts before coding: non-programming interactives to advance learning

of introductory programming concepts in middle school

Article in Computer Science Education · February 2019

DOI: 10.1080/08993408.2019.1568955

CITATIONS

36
READS

4,972

3 authors:

Shuchi Grover

94 PUBLICATIONS 4,277 CITATIONS

SEE PROFILE

Nicholas Jackiw

SRI International

22 PUBLICATIONS 577 CITATIONS

SEE PROFILE

Patrik Lundh

SRI International

15 PUBLICATIONS 87 CITATIONS

SEE PROFILE

All content following this page was uploaded by Shuchi Grover on 21 July 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/330916641_Concepts_before_coding_non-programming_interactives_to_advance_learning_of_introductory_programming_concepts_in_middle_school?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/330916641_Concepts_before_coding_non-programming_interactives_to_advance_learning_of_introductory_programming_concepts_in_middle_school?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shuchi-Grover-2?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shuchi-Grover-2?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shuchi-Grover-2?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicholas-Jackiw-2?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicholas-Jackiw-2?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/SRI_International?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicholas-Jackiw-2?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patrik-Lundh?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patrik-Lundh?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/SRI_International?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patrik-Lundh?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shuchi-Grover-2?enrichId=rgreq-0b4fa9447a72d94ec4d037ea6ee715b7-XXX&enrichSource=Y292ZXJQYWdlOzMzMDkxNjY0MTtBUzo5MTU1ODU3MTQxMDIyNzJAMTU5NTMwNDA1MzIzMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ncse20

Computer Science Education

ISSN: 0899-3408 (Print) 1744-5175 (Online) Journal homepage: https://www.tandfonline.com/loi/ncse20

Concepts before coding: non-programming
interactives to advance learning of introductory
programming concepts in middle school

Shuchi Grover, Nicholas Jackiw & Patrik Lundh

To cite this article: Shuchi Grover, Nicholas Jackiw & Patrik Lundh (2019): Concepts before
coding: non-programming interactives to advance learning of introductory programming concepts in
middle school, Computer Science Education, DOI: 10.1080/08993408.2019.1568955

To link to this article: https://doi.org/10.1080/08993408.2019.1568955

Published online: 06 Feb 2019.

Submit your article to this journal

Article views: 13

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ncse20
https://www.tandfonline.com/loi/ncse20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2019.1568955
https://doi.org/10.1080/08993408.2019.1568955
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2019.1568955&domain=pdf&date_stamp=2019-02-06
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2019.1568955&domain=pdf&date_stamp=2019-02-06

ARTICLE

Concepts before coding: non-programming interactives
to advance learning of introductory programming
concepts in middle school
Shuchi Grover a, Nicholas Jackiwb and Patrik Lundhb

aLooking Glass Ventures, Palo Alto, CA, USA; bSRI International, Menlo Park, CA, USA

ABSTRACT
Background and Context: Learners struggle with concep-
tual understanding of introductory programming concepts
such as variables, expressions, and loops.
Objective: We examine whether and how designed activities
for conceptual exploration support preliminary engagement
with and learning of foundational and often hard-to-grasp
programming concepts for students in grades 6–8.
Method: Drawing on principles from dynamic mathematics,
we developed a suite of non-programming digital and
unplugged activities embedded in a curriculum before stu-
dents engage in Scratch block-based programming. We
conducted empirical research in three middle school class-
rooms in diverse urban US schools and examined student
performance through mixed qualitative and quantitative
methods.
Findings: Learning gains were significant and not predicted
by grade, gender or prior academic preparation. Free-choice
projects of students showed statistically greater (correct) use
of key concepts compared to those not in the study.
Implications: Our work demonstrates the promise of novel
approaches such as interactive non-programming activities
for deeper understanding of programming concepts.

ARTICLE HISTORY
Received 5 August 2018
Accepted 9 January 2019

KEYWORDS
Computer science
education; CS concepts;
introducing programming;
novice programmer;
curriculum design; K-12 CS
education; variables;
expressions; Boolean logic;
abstraction

Introduction

Policy and educational leaders see computer science (CS) skills as necessary for
all citizens, not just computer scientists, in order to build a strong STEM and
computing pipeline and to develop future citizens with the problem-solving
abilities needed to thrive and innovate in a world driven by computing and
digital devices (The White House, 2016). Learning to program is a key ingre-
dient of introductory CS curricula in K-12 classrooms. Learners today are
typically introduced to programming in block-based programming environ-
ments designed to provide engaging features and syntactical supports for
novice learners (Bau et al., 2017). However, programming is a complex activity

CONTACT Shuchi Grover shuchig@cs.stanford.edu Chief Learning Scientist, Looking Glass Ventures,
202 Sequoia Avenue, Palo Alto, CA 94306, USA

COMPUTER SCIENCE EDUCATION
https://doi.org/10.1080/08993408.2019.1568955

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0001-6633-8862

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2019.1568955&domain=pdf

that novices of all ages find difficult regardless of the introductory program-
ming environment (e.g. Robins, Rountree, & Rountree, 2003). Weak mental
models and conceptual understandings prevent deeper learning of founda-
tional CS concepts (Mayer, 2004; Robins et al., 2003). Franklin et al. (2017) and
Grover, Pea, and Cooper (2015, 2016) report that students struggle more with
certain introductory concepts than others in the context of programming. As
middle school students learn to reason abstractly in the Piagetian formal
operational stage, they need pedagogically robust experiences that provide
a foundation for key concepts in CS and programming.

To address the need to expand teaching and learning of programming and
CS, we explore new pedagogical approaches that support deeper conceptual
understanding. Our research explores the impact of interactive, non-
programming activities and technology-based microworlds on middle school
students’ conceptions of variables, expressions, loops and abstraction. We see
a rich and dynamic understanding of variables as a cornerstone of students’
encounters with all of these “VELA” concepts: variables (V) are the edifice of
expressions (E); which in turn are critical linguistic drivers of iterative and
looping (L) control structures; and variables are seen in CS education as the
gateway to broader understandings of computational abstraction (A) and
generalization (Figure 1). Recognizing the correlations between mathematics
and programming understanding (as seen in Grover et al., 2015; Lewis & Shah,
2012; Shute, 1991), we draw inspiration from mathematics education research,
where a pioneering curricular technology – the dynamic mathematics repre-
sentation, has demonstrated positive effects in conceptual mathematics learn-
ing. For example, research on the use of SimCalc (an interactive mathematics
software that employs a dynamic representational approach) in three large-
scale studies with students in diverse demographic settings, established strong
benefits to student conceptual understanding when dynamic representations
are integrated into the plan for a curricular lesson sequence, and teachers have
received related teacher professional development (Roschelle et al., 2010).

Figure 1. How abstraction builds on variables, expressions, and loops.

2 S. GROVER ET AL.

This paper first briefly describes five of the six activities of our VELA project:
Story Variables, Cats and Ladders, Graphical Looping, Three Switches, and Alarm
Clock that were designed, piloted and refined through a design-based research
process (Wang & Hannafin, 2005). We then describe the empirical research
conducted to examine the effectiveness of our intervention within an intro-
ductory CS course in three public middle school classrooms in a diverse urban
school district in the US. We end with a discussion of our findings and plans for
future work.

Literature review and theoretical framework guiding pedagogical
designs

Our focus on the VELA concept trajectory is based on the large body of
research devoted both to the difficulties of learning programming generally
(for example, Du Boulay, 1986; Lahtinen, Ala-Mutka, & Järvinen, 2005; Pea &
Kurland, 1984; Robins et al., 2003), and to students’ specific difficulties with our
focal concepts (for example, misconceptions around variables, or pervasive
difficulties with variables in loops and abstraction). Today, block-based pro-
gramming environments – such as Scratch, Alice, or Snap! – designed to
address syntactical difficulties, are typical vehicles for introducing novice lear-
ners in K-12 to computational thinking and programming. Yet research shows
that even though students find these visual environments easier to navigate,
their conceptual difficulties pertaining to the semantics of coding still persist
(Franklin et al., 2017; Grover & Basu, 2017; Grover et al., 2015).

Research documents difficulties with the concept of a variable in introduc-
tory programmer experiences, especially around initialization and misinterpre-
tations of the common “box” or “drawer” didactic metaphor for storage (Du
Boulay, 1986; Samurcay, 1989). Novices struggle with naïve notions about
variable assignment (assuming variables can have multiple values at the
same time); distinguishing between what goes inside a loop and what pre-
cedes or follows a loop (Du Boulay, 1986); and designing mathematical and
logical expressions and naming variables (Gobil, Shukor, & Mohtar, 2009).
While providing tools for inspecting variables as the program executes has
been helpful in debugging code as well as understanding control and program
state (Pears et al., 2007), such tools do not always help learners grasp how
variables, expressions, and loops mutually interact to solve (or understand)
a complex problem. Grover et al. (2015) found that seventh- and eighth-
graders who had typical value-in-a-box variable visualization tools available
(as in Scratch) still had trouble conceptualizing variables and how to use them
in code, especially in constructing terminating conditions for loops involving
variables and Boolean expressions (Grover et al., 2015). This echoes earlier
research that problems pertaining to the understanding of conditionals are
attributed to a lack of understanding of Boolean operators (Ebrahimi, 1994).

COMPUTER SCIENCE EDUCATION 3

More recently, Grover and Basu (2017) also found that some students believe
a variable must be a letter that is used as a short form for an unknown number
(a carry-over from algebraic treatments of variable in math class), and students
often assume multiple commands in a loop are repeated not as a unit but
rather individually one after the other.

Past research also faults the possible lack of more pedagogic attention to –
and engagement with – conceptual ideas for the problems novices face on
their road to a robust understanding of programming (Pea & Kurland, 1984).
Most K-12 programming classrooms are committed to student-centered activ-
ity and hands-on engagement with programming. But these activities are
often centered on open-ended programming with minimal guidance, resulting
in a lack of deeper or explicit engagement with, and understanding of,
programming concepts and patterns (Mayer, 2004).

Pedagogical approach#1: constructivist engagement with concepts before
coding

Our pedagogic approach in designing student-centered conceptually focused
microworlds is influenced by constructivism with its twin emphases on knowl-
edge as constructed (as opposed to transmitted) and on material engagement
and manipulation as effective activity in such knowledge production
(Ackerman, 2001).

We believe conceptually focused, constructivist experiences offer class-
rooms a path out of the minimally guided approaches critiqued above,
through designed opportunities for students to acquaint themselves with
conceptual knowledge through intentional student activity that also accommo-
dates exploration. Our digital microworlds thus focus on concepts rather than
constructs. This contrasts with much of the innovation that has occurred in the
design of programming environments themselves (like Scratch, App Inventor,
Blockly, PencilCode, Snap!, etc.), where students actually code and run pro-
grams. We design non-programming learning activities that allow students to
explore and construct ideas for themselves, while also encountering powerful
ideas embedded within the activities, thus balancing exploration and gui-
dance – before they employ them in code (in a programming environment).
This also draws on learning theory emphasizing that encountering concepts in
multiple contexts helps learners to abstract the relevant features of concepts
and hence promote deeper conceptual understanding (Bransford, Brown, &
Cocking, 2000). Also, constructivist approaches to learning point to providing
learners opportunities to actively construct knowledge by using their intuition
and prior knowledge and refining their micro-theories as they interact with
artifacts before being provided explanations (Schwartz & Bransford, 1998).
Additionally, since contextualizing computational concepts makes it easier to
learn programming (Papert, 1991), all our activity designs (as well as

4 S. GROVER ET AL.

accompanying ideas for discussions and examples) are situated in relatable
real-world contexts. We also strive to explicitly bridge non-programming activ-
ities and subsequent introductory programming activities in Scratch for med-
iating transfer between the two contexts (Grover et al., 2014).

Pedagogical approach#2: design principles drawn from dynamic geometry

Our technology environment design draws on the innovations of dynamic
geometry software in mathematics education over the past 30 years, as typified
by The Geometer’s Sketchpad (Jackiw, 1991–2009) and Cabri Géometre (Laborde
& Strässer, 1990) – two tools that have had global impact on mathematics
instruction. Considerable research has explored the potential of dynamic
geometry software in mathematical and curricular areas beyond its traditional
home in high-school geometry (e.g. Schattschneider & King, 1997), often
through connections predicated upon geometry’s traditional status as the
home of “mathematical insight” and upon dynamism’s particularly effective
relationship to mathematical ideas of the real continuum and the variable. We
see dynamic representations as a potentially powerful vehicle for conceptual
engagement among diverse learners in CS classrooms given its success in
mathematics classrooms in large urban school districts (Roschelle et al., 2010).

From our synthesis of dynamic geometry software (across a spectrum of math-
ematical applications and variety of age levels), we developed design principles for
the construction of introductory VELA activities andmicroworlds. These include the
principles of: (1) ubiquitous consistency, whereby at any instant in time, a system of
relationships is always entirely self-consistent: components of that system always
accurately reflect their fundamental definitions or relationships to other compo-
nents of the system, and there is no “uninitialized value”; (2) dynamic variation,
whereby time is used as the principle axis of interrogation for both graphical and
numerical parameters; varying these parameters offers tremendous potential for
insight into the behavior of the system across inputs; (3) graphical presentation,
whereby diagrams and visualizations are treated as primary representations and
manipulatives in knowledge production, thus emphasizing the insightful value of
the illustrative dimension of images and diagrams, as well as evolve them – through
interactivity – into engines of knowledge production rather than just presentation;
and, finally (4) incremental abstraction, where these first three principles contribute
to learning trajectories in which abstraction is achieved incrementally through
structured temporal variation. We believe these principles offer promise as an
approach to balancing the tensions between an overly-material hands-on program-
ming-first approach (that misses the opportunities for engaging with abstract
concepts) and an overly theoretical or foundational approach to “essential defini-
tions” (that misses the chance for experiential learning from the behavior of objects
and systems). For more details on these principles and their manifestations in VELA
activity designs, see Grover, Jackiw, and Lundh (n.d.).

COMPUTER SCIENCE EDUCATION 5

VELA activities design

In this section, we describe five of the VELA activities (four digital and one
unplugged) that we conceptualized and iteratively refined as part of the larger
suite of both digital and non-digital activities for use in introductory CS class-
rooms to support early exploration and understanding of the VELA concepts in
middle school (Table 1).

Wiggins & Tighe (2005)’s Understanding by Design framework guided our
activity design process that began with an articulation of the precise target
learning goals for our activities and companion curriculum (Table 2). Our
digital activities were developed using a combination of Web Sketchpad and
Javascript, and were deployed on the web (http://csforall.sri.com). Over a 15-
month period, our multi-disciplinary research team comprising CS education
and math education researchers, learning scientists, and a software developer
iteratively designed and refined the activities based on inputs from teachers
and students. Initial activity concepts were designed with classroom teachers
from a large, urban school district in Western USA using a participatory design
model.

Although each activity is intended to be modular and standalone so that it
can be embedded in any introductory programming curriculum, we suggest
a sequence. Our activities on looping and variables require no prior frame of
reference, but activities on expressions draw on prior work with variables.
Abstraction, as the capstone of our curricular materials, can be seen to draw
on both looping activities’ introduction of execution flow and “blocks” or
“chunks” of functionality, as well as on the variable-and-expression activities’
introduction of derived and compound data types. In the former context, we
focus on control abstraction and in the latter on data abstraction.

Designed as a short and preliminary exploration and introduction to key ideas of
foundational concepts (rather than introductory programming constructs) these
activities do not attempt to deliver comprehensive treatments and are designed
for one (or two) class periods. All digital activities begin with students exploring
the basic phenomenology of the microworld. They are designed for exploration
among student pairs interspersed with whole-class discussions.

Specifically, VELA activities introduce

Table 1. Suite of VELA activities [gray row indicates activity not discussed in this paper].
Name Type Introductory Computing Concept(s)
Graphical Looping Digital Repeating pattern, Looping, Modeling
Story Variables (lead-in to Cats and
Ladders)

Unplugged Variables (basic idea of variation, naming, datatypes)

Cats and Ladders Digital Variables, Arithmetic Expressions

Dice Conditionals Unplugged Conditionals, Boolean outcomes (TRUE/FALSE)

Three Toggles (VEA Microworld
activity)

Digital Boolean Logic, Boolean Expressions

Alarm Clock (VEA Microworld
Activity)

Digital Arithmetic and Boolean Expressions, Data Types, String
Data, Modeling

6 S. GROVER ET AL.

http://csforall.sri.com

● Variables as named quantities that can change value
● Expressions as defining new changing values by applying value-
appropriate operations to existing variables

● Looping as repetitions of some identifiable “repeating unit”
● Abstraction as the process of giving a name to a specific collection of
details as a way of referencing its purpose without quoting or enumerat-
ing its detail.

We describe the activities and lesson sequence in brief in the remainder of this
section.

Variables and arithmetic expressions: Story Variables (unplugged) and Cats
and Ladders (digital)

The Cats and Ladders activity engages students with the concept of variables. It
follows an unplugged (off-line) activity, Story Variables. In Story Variables
students work collaboratively in pairs to investigate a series of short “stories”
containing quantities that vary (Figures 2 and 3)). For example, “Excuse me –
last week I bought one of these pens here for $1.50. Are you really telling me
they now cost $3?”; “I watched the basketball game last night. At halftime we
were tied, but in the end, they beat us 94–90”. Through discussions, students

Table 2. VELA learning goals.
Students will learn how programs are executed sequentially
Students will learn how simple loops work (fixed, predetermined number of repetitions)
Students will learn how to create different pathways in programs using conditional statements
Students will learn algorithmic flow of control–how instructions are executed in sequence even when there
are loops, except that the set of instructions within a loop are repeated

Students will understand that in control structures (like loops and conditionals), a collection of an arbitrary
number of statements can be declared to act as a single statement by grouping them

Students will understand what Initialization (in general and of variables, specifically) is and why it is needed
Students will understand that variables can only hold one value at a time
Students will learn how types define the set of values a variable can have, and the set of operators that can
be used

Students will learn how variables are created, used, assigned values and updated
Students will learn how variable values change within loops
Student will learn what initialization is and why it is important
Students will learn how to use expressions to make new variables from old ones
Boolean variables, operators and expressions
Students will learn the idea of controlling loops and conditionals using Boolean conditions (that may or may
not involve variables and expressions)

Boolean as a data type
Students will practice identifying and articulating patterns in real-world phenomena and problems, and
abstracting them into structural components of a program (preconditions, repeating logic in a loop, any
postcondition)

Students will learn how variables are an abstraction or representation of data in the program and the real
world

Students will learn the importance of planning before programming
Students will learn the need for breaking down problems into smaller manageable tasks
Students will learn computational solutions are abstractions; and that these abstractions can be represented
in different ways

COMPUTER SCIENCE EDUCATION 7

come up with a definition of “variable,” practice identifying and naming
variables meaningfully, and analyze a variable’s changing values to determine
its specific types and expected ranges. Students articulate their own real-world
scenarios that involve “variables”. As a final activity, they watch a video clip of
a video game (e.g. Pacman) and list the different variables they observe, their
values in the course of the video clip, and the logical ranges of values for each.

Cats and Ladders formalizes this understanding of variables as named quantities
with specific values that can change. In the Cats and Ladders digital activity (Figure 4),

Figure 2. Short everyday narratives in “story variables”.

Figure 3. Identifying variables, meaningful naming, and values in “story variables”.

8 S. GROVER ET AL.

students rescue distraught cats from the various floors of buildings by determining
the length of the ladder required to reach them. The activity is divided into stages.
Startingwith an exploration of the basic behavior of themicroworld, new stages are
“unlocked” as the student proceeds through the activities. Students move from
working with one (blue) ladder, to two stacked ladders (one orange and one blue)
when the blue ladder height is insufficient to rescue cats on higher floors. Learners
discuss appropriate names for variables (e.g. “height” or “LadderHeight” is not
sufficiently discriminating for the two ladders). They also discuss the range of
possible values (often determined by context), and that different variables may
naturally reference different (data) types. Finally, they engage in abstraction through
a preliminary exploration of arithmetic expressions and that new variables can be
synthesized from existing ones (e.g. TotalLadderHeight = BlueLadderHeight +
OrangeLadderHeight).

The game’s final stage includes multiple buildings with alphabetic labels
(Figure 4(d)) aimed at helping students interact with a two-dimensional coor-
dinate system. In comparing this third variable – whose values are letters,
rather than numbers – to the other two, students encounter an early example
of non-numeric and compound data types. From here they discuss possible
further generalizations of the scenario.

Looping (repetition): Graphical Looping (digital)

The Graphical Looping activity sequence (Figure 5) introduces students to
iterated repetitions of a block of actions within a sequence of events, and
develops the idea that we efficiently express such a flow of events in terms of
a more compact specification of that repetition. Students engage with the idea
of action sequences that occur before and/or after a repeating chunk of
actions (“repeating unit”). Graphical Looping uses comic panels as a proxy for

(a)

(b)

(c)

(d)

Figure 4. Screenshots of cats and ladders activity.

COMPUTER SCIENCE EDUCATION 9

source code in a pre-programming context. Comic strips are atextual (and thus
do not disadvantage ELL students) and contain a formal, and block-structured,
grammar for describing action sequences familiar to students.

First, in Swimming Pool Story Arrangement, students arrange comic panels to
tell a “logical story”. Then, they proceed From Arranging to Generating – think-
ing about how panels to the story could describe longer swims and identify
the “inner story” or “repeating unit”. Students answer questions such as: What
happens when the inner story is repeated zero times in the results? Once? If
the repeat count is 10, how many pool lengths will the swimmer swim? How
many panels will be in the result? How might the total length swum increase
and the swimmer’s energy decrease with each lap? These ideas are later
revisited as examples in bridging VELA activities to Scratch.

Boolean operators and expressions, and abstraction: Three Switches
(digital) and Alarm Clock (digital)

The last two digital activities in the VELA sequence introduce learners to
Boolean operators and expressions, and, finally, abstraction through the con-
crete trope of naming a complex phenomenon in order to hide its details and
complexity behind a simple name. Although distinct activities, both Three
Switches and Alarm Clock are built on the same underlying expression–author-
ing microworld. In keeping with the VELA design philosophy, both activities
are situated in real-world scenarios.

In Three Switches (Figure 6), the goal is twofold: (1) to explore the basicmechanics
of the expression-authoring features of the microworld, and (2) to provide learners
with a first introduction to Boolean values, operators, and expressions. Students
explore how Boolean operators (AND, OR, NOT) work, and what the resulting
expressions evaluate to using an example of three switches that toggle between

Figure 5. Screenshots of graphical looping activity.

10 S. GROVER ET AL.

two states (ON and OFF/TRUE and FALSE). They start with a series of four explora-
tory “challenges” that explain the types of Boolean operations. In Challenge #1,
students discover through exploration that the bulb is controlled only by switch
A. When A is on, the bulb is “on”. In Challenge #2 Students find out that the bulb
turns on when either Switch A is on, or Switch C is on, or both switches A and C are
on. (Switch B does not control the bulb). In Challenge #3, the bulb turns on only
when both switches B and C are on; and in Challenge #4, when Switch A is on, the
bulb is off; and when Switch A is off, the bulb is on. The next step of the activity
reveals to students that the expressions that control the bulb in challenges 1–4 are:
A, A OR C, B AND C, and NOT A, respectively. Students then fill out truth tables for
expressions A OR C, B AND C, and NOT A, and explain the behavior of the OR, AND,
and NOT operators in words.

Students subsequently extend the ideas to create and evaluate Boolean
expressions that use these operators either as simple expressions or

Figure 6. Screenshots of three switches activity.

COMPUTER SCIENCE EDUCATION 11

compound expressions that combine one or more operators. The activity ends
with an exploration of connections between variables and Boolean expressions
in real-world scenarios through discussions that involve articulating the out-
come variable, the controlling variables, the Boolean operators used, and the
Boolean expression. For example –

(1) Travis’ parents say that he can go out and play with his friends if he has
done both – finished his homework and made his bed in the morning

(2) Maya will go on a hike if it is not raining.
(3) Keisha can watch a movie if she finishes either her math homework or

her computer science project.
(4) A car gives a warning beep if –

● Driver’s seat-belt is not locked
● Passenger’s seat-belt is not locked
● Car is being driven

In the culminating VELA activity, Alarm Clock (Figure 7), students construct a family
of arithmetic and logical expressions using a variety of data types and starting from
a variety of variables that characterize conditions under which an alarm clock
should ring to wake them for school (when IsAlarmTime is True). Beginning,
again, with phenomenological investigation, work in Alarm Clock is conducted in
an expression-building microworld, in which a dynamic simulation – a graphical
alarm clock – may be probed (analyzed, measured, mathematically modeled) by
interrogating the values of several key variables, and by combining them with
various operators into dynamic expressions. By assigning names to these new
expressions, and by incorporating those new names (rather than the full symbolic
expressions defining them) into new expressions that reference those intermediate
results, students develop a hierarchy of abstractions to manage the burgeoning
symbolic and conceptual complexity of a family of equations expressed only in
terms of foundational variables.

Through this iterative revisiting, the modeling context is open to a variety of
definitions of success depending on the interests and ability of the students. Some
go on to aspire to only be woken for schools on weekdays, and extend their
expressions further. In such a model, an expression such as (isTimeForSchool AND
isSchoolDay) becomes a highly abstract proposition, encoding (and hiding) a non-
trivial amount of decision-making involving times, clock mechanics, and day-
calendars.

12 S. GROVER ET AL.

Empirical study: methods, data measures and analyses

Organizing the VELA curricular intervention

Working with classroom teachers, the VELA activities were incorporated into
a 20-day intervention (Table 3) to be embedded within an introductory pro-
gramming middle school curriculum. The VELA intervention comprised the
following –

VELA activities
These included six VELA activities (the five described above and Dice
Conditionals, an unplugged dice game activity to introduce students to true/
false logic and conditional thinking, described in Grover, Lundh, & Jackiw,
2019), along with accompanying teacher lesson plans, student worksheets
(to be completed in pairs in conjunction with the activities), and “review
sheets” for formative assessment.

Scratch lessons
In addition to the VELA activities, we designed lesson plans to introduce students
to basic Scratch constructs and programming concepts. The Scratch lesson plans
also made connections to relevant ideas in VELA activities in an effort to mediate
transfer. For example, the Scratch activities related to loops with variables made
explicit connections to Graphical Looping. Learners are introduced to the idea of

(a)

 (c)

(b)

(d)

(e)

(f)

Figure 7. Screenshots of alarm clock activity.

COMPUTER SCIENCE EDUCATION 13

using a “Repeat” block to swim three laps, change the (swimmer’s) Energy value,
and also “watch” this value decrease (using the “Say” block) with each lap (or
iteration of the loop). They then progressed to the idea of a generalized solution
where the number of laps was based on an input from the user to be used as
a variable in the Repeat block (Figure 8).

The bulk of Scratch programming involved hands-on work in Scratch –
completing partially coded programs using the relevant construct being intro-
duced, creating complete programs to achieve a goal, and/or open-ended
programs of choice. We also devoted attention to the construction and use
of Boolean expressions and their use in conditional statements and the
“Repeat Until” loop block – a non-deterministic loop construct that makes
the loop repeat until some criterion is met. It requires the construction of
a Boolean expression to determine when it ends, and the expression could use
a variable that gets updated in the loop. This is conceptually more sophisti-
cated than the simpler (and more commonly taught) form of looping taught in

Table 3. 20-day VELA intervention to be embedded in an introductory CS class.
VELA activities Descriptions

Day-0 Pre-assessment and Pre-survey
Day-1 Graphical Looping (Digital Activity) –

Swimming comic strip and other real
world examples

Identifying repeating patterns and conceptualizing
before/during/after of loops

Day-2 Simple Loops (Scratch) Scaffolded and open-ended Scratch activities using
simple “Repeat”, Drawing in Scratch, basic shapes.

Day-3 Nested Loops – Flowers and music (Scratch) Scaffolded and open-ended Scratch activities using
nested ‘Repeat’s

Day-4 Simple Conditionals – (Scratch) Scratch activities (sensing and conditional in Maze
activities)

Day-5 Story Variables (Unplugged Activity) Introducing idea of changing quantities in the real
world and giving them meaningful names

Day-6 Cats and Ladders (Digital Activity) Naming variables and creating expressions in non-
programming context.

Day-7 Creating and Updating Variables (Scratch) Creating variables in Scratch; understanding how to
initialize and update values

Day-8 Unplugged “Dice” game Arithmetic epressions and conditionals based on
epressions

Day-9 Conditionals with Arithmetic Expressions
(Scratch)

Scaffolded and open-ended Scratch activities using
variables, expressions and conditionals.

Day-10 Loops with Varialbles (Scratch) Scaffolded and open-ended Scratch activities using
variables, and loops

Day-11 Loops, Variables and Conditionals (Scratch) Scaffolded and open-ended Scratch activities using
variables, loops and conditionals

Day-12 VEA 3 Switches (Digital Modelling Activities) Booleans, boolean operators and abstractions
Day-13 Games with Booleans (Scratch) Scaffolded and open-ended Scratch activities using

boolean logic
Day-14 VEA Alarm Clock (Digital Modelling

Activities)
Modelling real world Alarm Clock situtions using
variables, arithmetic and logical expressions and
abstractions.

Day-15 Games using Repeat-Unitls (Scratch) Scaffolded and open-ended Scratch activities using
Repeat-Unitls loops, variables, expressions and
conditionals.

Days-16-
20

Games in Scratch Make games more exciting by using all concepts
learned

Day-21 Post-assessment and post-survey

14 S. GROVER ET AL.

Scratch – “Forever” loops with an IF-block conditional check within them – that
is at odds with accepted practice of CS (Meerbaum-Salant, Armoni, & Ben-Ari,
2011). As with VELA activities, worksheets guided students work during Scratch
programming.

Formative assessments
Every VELA activity and Scratch programming lesson included review questions to
be completed by students individually. These extended students’ thinking beyond
the examples encountered in the lesson, provided feedback to teachers on student
understanding, and informed subsequent whole-class reviews and discussions.

Pre-post assessment
We also designed, piloted and developed an assessment instrument using
Evidence-Centered Design (Mislevy, Almond, & Lukas, 2003), a principled
assessment design framework, to be used as a pre-post measure. The targeted
skills were drawn from VELA learning goals as well as the K-12 CS framework
(k12cs.org), and CSTA CS standards (2017, draft version at the time) so that the
instrument could be usable more broadly for assessing introductory programming
skills in middle school CS. The assessment was refined based on data from pilots
in middle school classrooms teaching introductory Scratch programming
(~200 students over 2 pilots), teacher feedback, student cognitive think-
alouds and language simplification by an English Language Learner (ELL)
expert. The 9 items, with 29 individually scorable sub-items, were
a combination of multiple-choice and open response types; and used Scratch
code snippets or non-programming, real-world scenarios. One sample ques-
tion is shown in the Appendix. The entire assessment, along with difficulty,
reliability and validity analyses, is described in Grover (2019).

(a) Rewrite this code

snippet using a simple

loop. The swimmer starts

with an energy of 1500

calories. You should “say”

how many calories are left

at each iteration of the

loop.

(b) Now, you do not know beforehand how many laps the swimmer will swim.

Open the starter program. You will see code (below) that asks the user to enter how many

laps the swimmer will swim (a number between 1 and 10).

Complete the program so that based on the number the user enters, the program will

show how the swimmer’s energy decreases. Show how many calories are left at each

iteration of the loop.

Figure 8. Example of programming activities in the scratch that bridge to VELA.

COMPUTER SCIENCE EDUCATION 15

Classroom research

We partnered with a large urban school district in Western USA for this
research. IRB permissions were sought from teachers and students (and par-
ents of students) involved in this research.

Beta versions of the VELA activities were piloted in controlled settings at
three different time points before they were used in a classroom research
study – (1) within our research lab during early prototyping, (2) at a local
summer camp in Northern California in 1–1 and small group sessions with six
middle school children and (3) with 16 students with varied levels of prior
math preparation from two different middle schools in our partner district.
Data from these pilots helped refine the design of the activities before the full
classroom intervention.

The VELA curricular intervention was implemented in the partner district by
three middle school CS teachers in sixth, seventh and eighth grades (each in
a different school) with a total of 74 students. (Three students were dropped
from data analyses due to missing permissions or pre-posttest data for a final
N = 71 students). While the seventh grade was in a high-performing school,
the other two schools were low performing. Grade 7 also had statistically
higher prior math and ELA scores than Grades 6 and 8. Table 4–5 describes
the sample by gender, grade and ethnicity, and the school descriptions.

Before implementing the VELA curriculum, the teachers participated in two
days of professional development. Teachers learned about the VELA rationale
and the principles guiding the curriculum design. They participated in role-
playing during curriculum enactment, engaged in hands-on activities to
experience using the curriculum and reviewed lesson plans. They were encour-
aged to modify any lesson plan as well as tweak the pace and timeline of the
curriculum, if necessary.

We conducted mixed-method (including quasi-experimental) research to
determine (a) whether and how well students learned through the VELA curri-
cular intervention, and (b) how student learning was linked to students’ demo-
graphic factors (such as prior math and English preparation, gender, ethnicity and
grade level). These research questions were also aimed at understanding the

Table 4. Student sample and demographics.
Grade 6 Grade 7 Grade 8

Male 17 15 11
Female 9 16 3
Asian 17 22 7
American Indian 1 0 0
White 1 2 0
Declined to State 0 5 0
Multiracial 2 1 1
Filipino 0 1 3
Hispanic/Latino 4 0 3
African American 2 0 0

16 S. GROVER ET AL.

design modification needs of the VELA activities as guided by DBR’s iterative
approach. A third, broader thread of inquiry not covered in this paper involves
conducting and analyzing case studies of the classroom activity system (including
student and teacher cases) in order to address the question: What factors and
conditions should be highlighted in a theory of action for engaging diverse
middle school CS classrooms, including factors related to students, to teachers,
to resources and to the environment?

Data sources and analysis

We collected qualitative and quantitative data to inform our analyses of
student learning and experiences with VELA activities. Data measures included:

● Pre-post assessment: a paper–pencil assessment completed in one class
period.

● Student Interviews: of four students from each class conducted twice –
during and after the intervention.

● Individual Teacher Interviews and Focus Group sessions: with the three
teachers piloting the VELA curricular intervention (for us to receive feed-
back on the VELA activities)

● Post-VELA Surveys: with Likert-scale items addressing engagement with
VELA activities and understanding of VELA concepts.

● Prior Math and English Scores: from the standardized state tests were
provided by the district for each student in our sample.

● Final, free-choice (open-ended) projects in Scratch (VELA Students): from the
three classrooms, done (individually or in pairs) as a culminating activity of
the CS course in which the VELA intervention was embedded. As this was
completed at the end of the 9-week CS course (well after the end of the
VELA intervention), we received a total of only 54 projects across the three
grades.

● Final, free-choice (open-ended) projects in Scratch (non-VELA Students): as
a comparison, we also examined 60 final Scratch projects provided by 20
teachers from middle school classrooms across the same district that were
not part of this study. These students completed the middle school CS

Table 5. School (grade) characteristics.
School 1 (Grade 6) School 2 (Grade 7) School 3 (Grade 8)

Low SES 85% 40% 87%
Math Proficiency 55% 79% 34%
English Proficiency 54% 80% 41%
Science Proficiency 62% 84% 34%
Disabilities 12.8% 3.5% 15%
Facility Condition Good Exemplary Good

COMPUTER SCIENCE EDUCATION 17

course adapted from Harvey Mudd’s MyCS curriculum (Schofield, Erlinger,
& Dodds, 2014) as part of the district’s ongoing CS expansion efforts.
These projects were randomly selected by teachers and similarly done by
individuals or pairs of students as a culminating activity.

This paper reports on analyses of data from the pre-posttest, post-VELA
surveys and interviews, and mixed-methods analyses of students’ open-
ended Scratch projects. We conducted paired t-tests of pre- and post-test
scores, statistical comparisons and correlational analyses (Pearson correlations,
regressions) of posttest scores and learning gain (learning gain = posttest –
pretest score) by gender, grade, and prior math and English scores.

Scoring of open-ended projects
We scored students’ open-ended free-choice Scratch projects using an exten-
sive rubric from Grover, Basu, and Schank (2018) publicly available at https://
goo.gl/SEpY51. The rubric, adapted from Grover (2014), was created mainly for
evaluating Scratch projects rather than providing students a project score
based on a traditional student-facing rubric. It also included assessments of
program complexity, creativity and correctness. Figure 9 shows the main
dimensions of the Scratch rubric – “general factors”, “mechanics of design”,
“user experience”, “basic coding constructs”, and “advanced coding con-
structs”, and what each of them measures. The separation of “user experience”
and “design mechanics” is useful as it separates design mechanics (“design
pattern”-like code) such as using random motion, collision detection, and
keyboard input from the elements of creativity students use in Scratch as
part of engagement and user experience. “General Factors” assess overall
proficiency such as novelty, correctness (or bugginess), and complexity.
“Advanced Coding Constructs” includes the types of constructs that suggest
more sophisticated program structures, for example, “Repeat-Until” loops, Wait

Figure 9. Rubric dimensions for analysis of scratch projects, and examples of criteria within
each rubric dimension.

18 S. GROVER ET AL.

https://goo.gl/SEpY51
https://goo.gl/SEpY51

Until, methods, and cloning. These two category scores are weighted higher
than other categories in the overall score as they are reflective of higher
program sophistication (and by extension, deeper conceptual understanding).
Additionally, since frequency of a construct is not necessarily indicative of
program sophistication, the rubric-based coding/scoring was based on one
of the following: (1) determinations about the existence or not (1/0) of a given
criterion (e.g. Does the program terminate at some point? Are instructions
provided for interactive elements? Do variables have meaningful names?), (2)
count of the number of times a construct was correctly used (most were
capped at 10 to account since code segments in Scratch are often repetitive),
(3) score along a 3-point scale (e.g. many bugs, few bugs, no bugs). In projects
that included several sprites with identical or near-identical code, code asso-
ciated with only one sprite was considered.

We ran two-sample t-tests to compare these scores and sub-scores to those
in the comparison dataset (both sets were scored using the same rubric) along
the rubric dimensions. We also specifically compared the use (frequency and
correctness) of variables, Boolean and relational operators and various types of
loops (especially “Repeat-Until” loops). We analyzed the post-VELA surveys as
well as student and teacher interviews for quantitative and narrative feedback
on the VELA activities.

Empirical results and discussion

We report on the quantitative analyses related to the pre-post assessment and
qualitative scoring of final Scratch projects.

Pre-to-post scores

This section presents salient findings from statistical analyses of posttest scores
and learning gain.

All three classrooms showed statistically significant gains on average on the
pre-post assessment (See Table 6). Grade 7 students had a statistically higher
average pre-score than Grade 6 (t(55) = −5.83); p < 0.001). Grade 8 students
also had a statistically higher average pre-score than Grade 6 (t(38) = −2.59);
p = 0.01). However, there was no statistical difference between Grades 7 and 8
average pre-scores (t(43) = 1.91; p = 0.06). Grade 6 had a statistically lower
post-score than both Grade 7 (t(55) = −5.72); p < 0.001) and Grade 8

Table 6. Student pre-post results on VELA assessment.
pre Mean (SD) post Mean (SD) t p-value Cohen’s d

Grade 6 (n = 26) 41.3 (17.6) 53.2 (20.7) −3.55 0.00 0.65
Grade 7 (n = 31) 65.5 (13.8) 80.0 (14.0) −6.13 0.00 1.02
Grade 8 (n = 14) 56.3 (17.4) 68.5 (18.9) −4.27 0.00 0.67

COMPUTER SCIENCE EDUCATION 19

(t(38) = −2.28; p = 0.03). Grade 8 also had a statistically lower average post-
score than Grade 7 (t(43) = 2.22; p = 0.03).

Although all our analyses presented in this paper include all items of the pre-
post assessment, it is worth pointing out that one item on the pre-posttest
(Item#2) was found to be problematic as the language of the question was
ambiguous. This occurred due to a last-minute change to the question which
resulted in the item being used for the VELA intervention without being tested in
classrooms prior to its use. The pre- and post-scores for the item for all three
grades were very low, and the difficulty level was 0.35 (the highest difficulty
among all the items in the assessment). Item#2 scores normalized as
a percentage (out of 100) were as follows: Grade 6 pre-score: M = 16.2,
SD = 18.8 and post-score: M = 20.8, SD = 29.1; Grade 7 pre-score: M = 44.5,
SD = 30.0 and post-score: M = 46.5, SD = 35.2; Grade 8 pre-score: M = 34.3,
SD = 28.7 and post-score: M = 40.0, SD = 40.0. The item has since undergone
revisions and is currently being field-tested with various student populations
studying introductory programming in Scratch.

There was no statistically significant difference in average pre-score
between females (M = 58.7; SD = 18.3) and males (M = 52.3; SD = 19.5); t
(69) = 1.38; p = 0.17. Though females scored higher than males on average in
the posttest, there was no statistically significant difference in the average
post-score either between females (M = 73.5; SD = 20.3) and males (M = 64.0;
SD = 21.0); t(69) = 1.88; p = 0.06. Similarly, average learning gains were not
statistically different for females (M = 14.8; SD = 12.3) and males (M = 11.7;
SD = 15.1); t(69) = 0.91; p = 0.37.

Prior math score was a significant predictor of pre-score; English was not
(Table 7). However, when controlling for pre-score, neither math nor ELA were
significant predictors of post-score (Table 8). Since the distribution of students
by ethnicity was uneven and sample sizes very small for most groups, we could
not perform any meaningful analyses by ethnicity. Learning gain was not
statistically different by or predicted by gender (as mentioned above), grade
(F(2, 68) = 0.20; p = 0.12), or prior math or English score (Table 9) – i.e. the

Table 7. Regression to test predictors of pre-score (N = 71; R2 = 0.51).
Coeff. Std. Err. t P > t

Prior English Score 2.58 2.79 0.93 0.36
Prior Math Score 9.02 2.49 3.63 0.00
Intercept 20.17 6.49 3.11 0.00

Table 8. Regression to test predictors of post-score (N = 71; R2 = 0.66).
Coeff. Std. Err. t P > t

Pre-score 0.57 0.10 5.42 0.00
Prior English Score 4.22 2.34 1.80 0.08
Prior Math Score 3.44 2.33 1.48 0.14
Intercept 13.73 5.02 2.74 0.01

20 S. GROVER ET AL.

intervention showed no statistically significant difference in learning gains in
students by gender or prior academic preparation, and all grades showed
statistically similar learning gains.

We find this last finding to be very significant in that it suggests that learning gains
were not linked to specific grades or reported student characteristics. It demonstrates
the promise of the VELA approach and curriculum to reach all students regardless
of prior preparation. Also, prior math scores losing significance as predictor of
post-score when controlling for pre-score is a departure from the Grover (2014)
finding where prior math was a significant predictor of the post-score even when
controlling for the pre-score. While one would have expected Grade 8 to perform
better than Grade 7 (who would be expected to outperform Grade 6), our
selections of schools and classrooms (teachers) made our results seem less
surprising. Grades 6 and 8 were low performing schools, and as a result, started
out lower and ended up lower than Grade 7 even though all three grades showed
significant gains. The pace of the curriculum, as well as lack of strategies and
curricular materials for differentiation across grades and abilities also meant that
the pre-posttest as well as the curriculum may have been an unduly heavy lift for
younger students and those with poor prior academic preparation in low-
performing schools. This is discussed further in the Survey and Interviews analysis
below.

Scratch projects

Qualitative analyses of 54 open-ended Scratch projects by VELA students and
comparisons with the dataset (of N = 60 projects) from other district class-
rooms revealed that learners in our intervention clearly demonstrated better
facility with the introductory programming concepts in their Scratch projects –
their programs were more complex as compared to the comparison sample of
projects collected from non-VELA study students and demonstrated better use
of VELA constructs. Our salient findings from the comparison of Scratch
projects are as follows.

As seen in Table 10, students’ average total scores were significantly higher
for VELA students’ projects. Although average scores for “general factors”,
“mechanics of design”, and “user experience” were not statistically different
across the two groups, VELA students’ projects scored statistically significantly
higher on “basic coding constructs” and “advanced constructs”. VELA students’

Table 9. Regression to test predictors of learning gain (difference from pre-
score to post-score) (N = 71; R2 = 0.04).

Coeff. Std. Err. t P > t
Prior English Score 3.06 2.59 1.18 0.24
Prior Math Score −0.44 2.37 −0.19 0.85
Intercept 5.27 5.09 1.04 0.30

COMPUTER SCIENCE EDUCATION 21

average use of Boolean operators in their free-choice projects was also statisti-
cally significantly higher than that of non-VELA students. This is a significant
finding, as our work consciously introduced this key concept that is often
given little to no attention in middle school (Grover et al., 2018). “Variables”,
“Repeat-until” loops, and “Relational operators”, also showed higher use on
average in VELA projects than non-VELA projects, however, the difference was
not statistically significant. Another interesting finding was the spread of
projects that used “Variables”, “Repeat-until” loops, “Relational operators” and
“Boolean Operators”. The number of VELA projects (as a percentage of N = 54)
was significantly higher than the number of non-VELA projects (as
a percentage of N = 60) for the use of each of those foundational constructs
and relevant focal VELA concepts (Table 11). Lastly, grade-wise comparisons
(Table 12) showed that, in general, grade 7 projects significantly outperformed
the non-VELA projects. Also, grade 6 VELA projects showed significantly more
use of “Basic coding constructs” and “Boolean Operators” than non-VELA grade
6 projects.

VELA students’ results on this comparative evaluation of final Scratch projects are
very encouraging, and especially their use of constructs related to our focal con-
cepts. We realize that examining open-ended projects have their pros and cons.
Open-ended projects do not always tell the whole story of student learning as
students’ free-choice projects may not showcase all that they have learned, or
students may have received help and used code/constructs that they do not

Table 10. Two-sample t-tests of average scores on VELA and the non-VELA comparison final,
open-ended projects of choice (gray rows indicate statistically significant differences).

VELA
Mean (SD)
(N = 54)

Non-VELA Mean (SD)
(N = 60) t p-value Cohen’s d

Total Score 96.0 (53.1) 71.8 (40.0) −2.8 0.01 0.52
General Factors 31.4 (6.3) 29.2 (10.9) −1.2 0.22 0.23
Mechanics of Design 17.5 (14.1) 16.4 (14.2) −0.4 0.67 0.08
User Experience 4.6 (4.8) 3.4 (3.5) −1.5 0.93 0.29
Basic Coding Constructs 31.83 (25.2) 18.17 (15.2) −3.5 0.00 0.67
Advanced Constructs 10.72 (16.9) 4.6 (8) −2.5 0.01 0.47
Variables 1.3 (2.9) 0.9 (1.0) −1.6 0.10 0.31
Boolean Operators 2.8 (4.9) 0.9 (2.5) −2.6 0.01 0.50
Relational Operators 4.3 (4.4) 2.7 (4.4) −1.9 0.06 0.36
Repeat-Until Loops 1.7 () 1.1 (2.1) −1.3 0.21 0.24

Table 11. Percentage of VELA and non-VELA projects that used VELA constructs.
VELA Projects that used

these constructs
Non-VELA Projects that used

these constructs
VELA % (out

of 54)
Non-VELA %
(out of 60)

Variables 40 29 74% 48%
Boolean
Operators

22 14 41% 23%

Relational
Operators

40 30 74% 50%

Repeat-Until
Loops

20 17 37% 28%

22 S. GROVER ET AL.

understand well (Kurland & Pea, 1985). Finished projects, as Grover et al. (2017)
explain, also do not show important aspects of learning that can be understood
only from in-process evidence, for example how student debugged or approached
the construction of a computational solution. On the flip side, a free-choice project
showcases the complexity of construct use and programming structure that
a student chooses to incorporate when no constraints have been imposed. Open-
ended projects are considered important measures of learning and constitute an
authentic form of assessment since children learn deeply when they create pro-
ducts with personal meaning that require understanding and application of knowl-
edge (Barron & Darling-Hammond, 2008). Also, design activity involves stages of
revisions as students define, create, assess, and redesign their products, and it often
benefits from collaboration between students (Grover et al., 2015). Examining these
artifacts thus bears the potential of providing valuable insight into the student
learning experiences in introductory programming that can also point the way
toward areas for improvement in introductory programming curricula (Grover et al.,
2018). Additionally, our evaluation of the projects was very exhaustive. Even though
construct frequency as a measure is not always adequate (Meerbaum-Salant et al.,
2011), the rubric accommodates for duplication of code, and caps frequency count
for most constructs in addition to accounting for several constructs only through
presence or absence (1 or 0).

Lastly, grade-wise comparisons of the projects between the VELA and non-
VELA sample groups provided insight into specific topics that VELA students
learned better. Given our choice of schools and classrooms, grade 7 outperform-
ing the non-VELA group was not entirely unexpected. However, it is significant
that grade 6 VELA students had significantly higher scores for “basic coding
constructs” as well as use of “Boolean operators” compared to the non-VELA
grade 6 group given that grade 6 (and grade 8) VELA classrooms comprised
several struggling learners compared to the average grade 6 or 8 classroom in
the district.

Table 12. Grade-wise comparison of VELA and non-VELA projects.
Grade 6
Mean
(SD)

n = 18

Grade 7
Mean
(SD)

n = 21

Grade 8
Mean
(SD)

n = 15

Grade 6
Mean
(SD)

n = 34

Grade 7
Mean
(SD)

n = 18

Grade 8
Mean
(SD)
n = 8

VELA Sample (N = 54) Non-VELA Sample (N = 60)
Total Score 75.4 (35.0) 137.0*** (54.8) 63.4 (26.6) 70.9 (46.0) 75.9 (36.0) 66.8 (16.6)
General Factors 30.6 (6.8) 34.5* (6.1) 27.9 (3.4) 29.9 (12.8) 28.7 (9.1) 28.0 (3.8)
Mechanics of Design 10.9 (7.8) 28.9** (15.5) 9.5 (4.4) 17.8 (17.6) 15.4 (7.8) 12.2 (8.0)
User Experience 1.8 (2.2) 9.3*** (4.0) 1.4 (1.7) 3.0 (3.5) 4.3 (3.7) 3.3 (3.0)
Basic Coding Constructs 25.3* (15.3) 46.3** (30.9) 19.4 (14.8) 16.1 (16.2) 21.4 (14.9) 19.5 (10.6)
Advanced Constructs 6.8 (9.1) 18.0* (23.2) 5.2 (9.3) 4.0 (7.2) 6.2 (10.3) 3.8 (6.2)
Variables 1.3 (0.8) 1.3 (2.1) 1.1 (1.0) 1.0 (1.1) 0.61 (1.0) 1.0 (1.1)
Boolean Operators 2.6 (4.7) 4.7 (6.0) 0.2 (0.4) .44 (1.7) 2.0 (3.8) 0.1 (0.4)
Relational Operators 3.4 (3.9) 6.5 (4.8) 2.3 (2.8) 2.0 (3.8) 4.4 (5.5) 2.0 (3.7)
Repeat-Until Loops 1.4* (2.1) 1.9 (3.6) 1.7 (2.9) 0.8 (1.8) 1.5 (2.8) 1.0 (1.8)

Note: Asterisks indicate significant difference between the score of VELA versus non-VELA group in the same
grade (* p < .05; ** p < .01; *** p < .001)

COMPUTER SCIENCE EDUCATION 23

Surveys and interviews

These aforementioned findings notwithstanding, the range of students’ readi-
ness to engage and learn, their instructional needs, and individual student
reactions, varied considerably both within and across the three classrooms.
The 6th-grade students had the most challenges, whereas the high-achieving
7th-grade class demonstrated most engagement with VELA ideas and
curriculum.

This was evidenced in students’ post-survey feedback on the digital activ-
ities (Table 13 and Figure 10). Overall, students found Cats and Ladders to be
most engaging and fun. Graphical Looping was found to be too simple and

Table 13. Teacher and student reactions to some of the VELA digital activities.
Reactions to Cats and
Ladders

(Teacher): “maybe it is having that tool that reaches the student on so many levels
being that it is animated, there is sort of an emotional interest, all of that, so that
story sticks out better. And so it may not really have huge payoff in that it shows
you how to build an expression, but as the teacher emphasizes over and over
again now that expressions are made from variables and operators and how that
comes up later, it refers back to cats and ladders it is like oh yeah, cats and
ladders, the two ladders, the two ladders. So the power becomes more on how
the teacher refers back to the tool in later discussion in referencing the story
plots”.

(7th grade student): “I thought it was interesting because this happens in real life,
and I like cats, and I like the idea of saving them..I thought it was more
challenging and interesting because you would have to not only type in the blue
ladder height and orange ladder height, but also which building it was in. It
made it more connected to realize because in the city that I live in, there’s a lot
of buildings”.

(8th grade student):”It’s. . . to show us about height. And like the variables change.
Because like you could change the numbers. . .It shows us variables. Like how
high the ladder could go, like how we could change it.”

(6th grade student): “Cats & Ladders was fun and cool” (a few other students had
similar reactions)

(7th grade student): “I liked cats and ladders because it was like a real game”.
Reactions to Graphical
Looping

(8th grade student): “It’s sort of like a puzzle. . .It teaches you the purpose of what
loops do. . .It reminded like if we go to a grocery store and we could come back
and get more food from there and then come back. . .Like each day like you
like. . . it can be from like school, you go back home. And from the home you go
back to school”

(7th grade): “Graphical Looping was too easy and boring” (a few other students
had similar reactions)

Reactions to Alarm
Clock

(6th grade student): “I did not really understand it” (a few students had similar
reactions)

(8th grade student): “I liked alarm clock the most because it was most challenging”
(8th grade student):”It was most interesting”
(6th grade student): “It took too long”
(Teacher): “And then the Boolean switch and the alarm clock one, I think are too

big for the kids, as an activity to handle on their own. And so they become very
teacher directed, and along that way you lose a lot of kids”.

(Teacher): “The interface is confusing, in particular with regard to drawing attention
to which features are more important than others. . . Some kids might get it and
understand what to ignore and what to work with, but it’s not clear at first. And
so even some of the naming schemes for what the boxes are, what the tables
are, this table is how you’re going to use this, and this table is how you’re going
to use that“.

(Teacher): “I mean I think it’s a really cool project idea, but I think maybe just
changing up the way kids enter in variables and expressions and stuff”.

24 S. GROVER ET AL.

lacking in challenge. Some students found a few aspects of Alarm Clock to be
confusing, although others indicated they learned from it.

Additionally, while students engaged well with variables, arithmetic expres-
sions, and loops, there was relatively a greater struggle with abstraction and
with Boolean variables and expressions (Figure 10). Some of these struggles
appear to be related to experiences with the activities. Teachers noted in
interviews, for example, that the expression-authoring features in the Alarm
Clock and Three Switches microworld was complex and confusing for some
students. However, one teacher also commented that although she found
good bridging in Scratch lessons to VELA activities on variables, looping and
conditionals, the connections to the expression abstraction work in Alarm
Clock were not sufficiently revisited or reinforced in the subsequent Scratch
programming activities. That said, one teacher commented on the deep value
she saw in the VELA curriculum –

Well for me, I felt like it really educatedme quite a bit, deeply and powerfully. And so it was
a huge learning process for me, not quite on the level of how to be a teacher in the
classroom, but the content itself. So it developed my content knowledge really well. And
I’mexcited to now kind of apply it in the classroom, and try tomarry our current curriculum
to some of these ideas and flesh it out more. . . . I feel that this group learned programming
deeper, by about 50% ormore, if I could put a value on it, than previous groups I’ve taught,
and so that their understanding of programming environments and Scratch is more robust
than previous groups. And it’s just an intuition of seeing it.(VELA Teacher)

Figure 10. Survey feedback from students on their understanding of VELA concepts.

COMPUTER SCIENCE EDUCATION 25

Conclusion and next steps

Our current work in the context of middle school introductory programming draws
on an approach in mathematics education that has succeeded in achieving better
conceptual learning in middle school for diverse students. We created and exam-
ined dynamic digital interactives and microworlds that engage students with hard-
to-learn programming concepts, finding particularly pedagogic value of dynamic
representations to variability and abstraction in computing. We also drew from
learning sciences research to scaffold novice learners’ guided inquiry and explora-
tion of programming concepts in a context separate from programming before
they employ them in programs. Our empirical research suggests that these theories
pertaining to conceptual learning (drawn from research outside of CS) can be put to
work with success to aid the novice programmers’ engagement with – and learning
of – hard-to-learn concepts foundational to programming.

Our activity designs reflect several themes. For example, the importance of
naming – of choosing names that are both meaningful to the problem context in
which they are relevant, and productive in whatever logical or symbolic or verbal
grammar will be used to reference and manipulate them – is one such essential
theme, and recurs in our activities on variables and expressions (where names stand
for changing quantities and for relationships between changing quantities), as well
as on abstraction (where names stand as summaries for exhaustive definitions and
detail). Another is that story is a productive and universally accessiblemetaphor and
proxy forprogramcode in a context inwhich learners are not yet able tograpplewith
code explicitly. Stories conveyed orally, through comic strips, or in writing –mirror
typical code in having well-defined execution flows which are primarily sequential
but occasionally undertake repetitive loops, and other control flows. Finally,
dynamic representation design principles offer a ladder to abstract ideas and
concepts emerging from concrete and manipulable representations that students
find compelling.

Our results demonstrate the promise of introductory experiences with
dynamic representations and relevant “story” examples and contexts for con-
ceptual exploration. Overall, our students demonstrated learning gains in
understanding of the VELA concepts as evidenced by pre-post assessment
data analyses and an examination of final free-choice Scratch projects. More
importantly, these learning gains were not significantly different by prior math
preparation or gender or ethnicity. Our students’ open-ended, free-choice
projects scored significantly better on key dimensions (those more closely
related to our focal foundational programming concepts) than projects from
a comparison group.

This empirical research demonstrates the promise of our novel approach and
curriculum for providing conceptual supports to novice programmers. Student and
teacher feedback on the VELA activities as well as deeper item analyses of the
assessment suggest areas for improvement in the next iteration of this DBR. Our

26 S. GROVER ET AL.

next steps also involve improving the activity designs and building more robust
curricular bridges between VELA and Scratch activities. Additionally, the role of the
classroom teachers in the enactment of this curriculum (based on their own
expertise and experience in teaching as well as conceptual understanding of CS)
also plays an important role in the impact of a curriculum on student learning.
Related ongoing research is examining individual student and teacher cases to
better understand the learning process and the impact of diverse backgrounds and
classroom environments. Future research will examine how specific elements of
VELA activities contribute to student understandings for amore complete picture of
themechanics of learning in our novel approach to teaching introductory program-
ming. We are also developing teacher professional development modules around
the VELA curriculum to support deeper conceptual understanding of introductory
programming concepts for teachers.

Acknowledgments

We thank the National Science Foundation for grant funding support (NSF #1543062). We
are grateful to Jeremy Roschelle, Satabdi Basu, Matthias Hauswirth, and Bryan Twarek for
their assistance and intellectual contributions, and to research staff at SRI International as
well as teachers and students for their participation in this research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Science Foundation, USA, under Grant 1543062.

Notes on contributors

Shuchi Grover, Ph.D., a computer scientist and learning sciences researcher by training, is
Chief Learning Scientist at Looking Glass Ventures in Palo Alto, California. Formerly senior
research scientist at SRI International, Dr. Grover’s current research focuses on computer
science education especially introductory programming and the development of computa-
tional thinking skills in preK-12 learners.

Nicholas Jackiw is a senior research scientist at the Center for Education Research and
Innovation, SRI International working in mathematics and computer science education. He
also designs and develops software for learners of mathematics, where his work includes
The Geometer’s Sketchpad and TouchCounts.

Patrik Lundh, Ph.D., is a senior education researcher at the Center for Education Research
and Innovation, SRI International. Dr. Lundh conducts research in K-12 science, mathematics,
and computer science education in school and afterschool settings. He has extensive

COMPUTER SCIENCE EDUCATION 27

experience in qualitative research methods, design research, curriculum implementation
and evaluation research.

ORCID

Shuchi Grover http://orcid.org/0000-0001-6633-8862

References

Ackermann, E. (2001). Piaget’s constructivism, papert’s constructionism: What’s the differ-
ence. Future of Learning Group Publication, 5(3), 438.

Barron, B., & Daring-Hammond, L. (2008). How can we teach for meaningful learning? In
L. Daring-Hammond, B. Barron, P. D. Pearson, A. H. Schoenfeld, E. K. Stage,
T. D. Zimmerman, . . . J. L. Tilson (Eds.), Powerful learning: What we know about teaching
for understanding (pp. 1-10). San Francisco: Jossey-Bass.

Bransford, J. D., Brown, A., & Cocking, R. (2000). How people learn: Mind, brain, experience,
and school. Washington, DC: National Research Council.

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable programming: blocks
and beyond. Communications of the ACM, 60(6), 72–80.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational
Computing Research, 2(1), 57–73.

Ebrahimi, A. (1994). Novice programmer errors: Language constructs and plan composition.
International Journal of Human-Computer Studies, 41(4), 457–480.

Franklin, D., Skifstad, G., Rolock, R., Mehrotra, I., Ding, V., Hansen, A., . . . Harlow, D. (2017,
March). Using upper-elementary student performance to understand conceptual sequen-
cing in a blocks-based curriculum. In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education (pp. 231–236), Seattle, WA, USA. ACM.

Gobil, A. R. M., Shukor, Z., & Mohtar, I. A. (2009). Novice difficulties in selection structure. In
International Conference on Electrical Engineering and Informatics, 2, 351–356. New
Jersey, USA: IEEE.

Gray, D., Kelleher, J., Sheldon, C., & Turbak, F. (2017). Learnable programming: Blocks and
beyond. Communications of the Acm, 60(6), 72–80.

Grover, S. (2014). Foundations for advancing computational thinking: balanced designs for
deeper learning in an online computer science course for middle school students. Stanford:
Stanford University

Grover, S. (2019). An assessment for introductory programming concepts in middle school
computer science. In Proceedings of the 2019 Annual Meeting of the National Council on
Measurement in Education (NCME), Toronto, CA.

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-based
programming: examining misconceptions of loops, variables, and boolean logic. In
Proceedings of the 48th ACM Technical Symposium on Computer Science Education
(SIGCSE ’17). Seattle, WA: ACM.

Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana, N., & Stamper, J. (2017). A framework for
using hypothesis-driven approaches to support data-driven learning analytics in measur-
ing computational thinking in block-based programming environments. ACM
Transactions on Computing Education (TOCE), 17(3), 14.

Grover, S., Basu, S., & Schank, P. (2018). What we can learn about student learning from
open-ended programming projects in middle school computer science. In Proceedings of

28 S. GROVER ET AL.

the 49th ACM Technical Symposium on Computer Science Education (pp. 999–1004),
Baltimore, MD, USA. ACM.

Grover, S., Jackiw, N., & Lundh, P. (n.d.). Non-programming digital interactives to advance
learning of introductory computing concepts for diverse student populations. Interactive
Learning Environments.

Grover, S., Lundh, P., & Jackiw, N. (2019). Non-programming activities for engagement with
foundational concepts in introductory programming. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, Minneapolis, MN, USA. ACM.

Grover, S., & Pea, R. (2014). Expansive framing and preparation for future learning in
middle-school computer science. In International Conference of the Learning Sciences
Conference, Boulder, CO, USA. ISLS.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer
science course for middle school students. Computer Science Education, 25(2), 199–237.

Grover, S., Pea, R., & Cooper, S. (2016). Factors influencing computer science learning in
middle school. In Proceedings of the 47th ACM Technical Symposium on Computer Science
Education. Memphis, TN: ACM.

Jackiw, N. (1991–2009). The geometer’s sketchpad (computer software V1, V5). Emeryville, CA:
Key Curriculum Press.

Kurland, D., & Pea, R. (1985). Children’s mental models of recursive LOGO programs. Journal
of Educational Computing Research, 1(2), 235–243.

Laborde, J. M., & Strässer, R. (1990). Cabri-géomètre: A microworld of geometry for guided
discovery learning. Zentralblatt für didaktik der athematic, 90(5), 171–177.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005). A study of the difficulties of novice
programmers. ACM SIGCSE Bulletin, 37(3), 14–18.

Lewis, C. M., & Shah, N. (2012). Building upon and enriching grade four mathematics
standards with programming curriculum. In Proceedings of the 43rd Technical
Symposium on CS Education. Raleigh, NC: ACM.

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning?
American Psychologist, 59(1), 14–19.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011, June). Habits of programming in
scratch. In Proceedings of the 16th annual joint conference on Innovation and technology in
computer science education (pp. 168–172), Darmstadt, Germany. ACM.

Mislevy, R. J., Almond, R. G., & Lukas, J. F. (2003). A brief introduction to evidence-centered
design. ETS Research Report Series, 2003(1), i-29.

Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism (pp.
1-11). Ablex Publishing.

Pea, R., & Kurland, D. (1984). On the cognitive effects of learning computer programming.
New Ideas in Psychology, 2, 137–168.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., ., . . . Paterson, J. (2007).
A survey of literature on the teaching of introductory programming. In Proceedings of the
38th Technical Symposium on CS Education, Covington, KY, USA. ACM.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming:
A review and discussion. Computer Science Education, 13(2), 137–172.

Roschelle, J., Shechtman, N., Tatar, D., Hegedus, S., Hopkins, B., Empson, S., . . . Gallagher, L. P.
(2010). Integration of technology, curriculum, and professional development for advan-
cing middle school mathematics: Three large-scale studies. American Educational Research
Journal, 47(4), 833–878.

Samurcay, R. (1989). The concept of variable in programming: Its meaning and use in
problem-solving by novice programmers. In E. Soloway & J. C. Spohrer (Eds.), Studying
the novice programmer (pp. 161–178). Psychology Press.

COMPUTER SCIENCE EDUCATION 29

Schattschneider, D., & King, J. (1997). Geometry turned on: Dynamic software in learning,
teaching, and research. Washington: MAA.

Schofield, E., Erlinger, M., & Dodds, Z. (2014). MyCS: CS for middle-years students and their
teachers. In Proceedings of the 45th ACM technical symposium on Computer science
education, Atlanta, GA, USA (pp. 337–342). ACM.

Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and Instruction, 16(4),
475–5223.

Shute, V. J. (1991). Who is likely to acquire programming skills? Journal of Educational
Computing Research, 7(1), 1–24.

The White House. (2016). Computer science for all. Retrieved from http://bit.ly/2tcPrAj
Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced learn-

ing environments. Educational Technology Research and Development, 53(4), 5–23.
Wiggins, G. P., & McTighe, J. (2005). Understanding by design. Association for Supervision &

Curriculum Development.

Appendix.

Sample item from design VELA pre-post assessment

30 S. GROVER ET AL.

View publication stats

http://bit.ly/2tcPrAj
https://www.researchgate.net/publication/330916641

	Abstract
	Introduction
	Literature review and theoretical framework guiding pedagogical designs
	Pedagogical approach#1: constructivist engagement with concepts before coding
	Pedagogical approach#2: design principles drawn from dynamic geometry

	VELA activities design
	Variables and arithmetic expressions: Story Variables (unplugged) and Cats and Ladders (digital)
	Looping (repetition): Graphical Looping (digital)
	Boolean operators and expressions, and abstraction: Three Switches (digital) and Alarm Clock (digital)

	Empirical study: methods, data measures and analyses
	Organizing the VELA curricular intervention
	VELA activities
	Scratch lessons
	Formative assessments
	Pre-post assessment

	Classroom research
	Data sources and analysis
	Scoring of open-ended projects

	Empirical results and discussion
	Pre-to-post scores
	Scratch projects
	Surveys and interviews

	Conclusion and next steps
	Acknowledgments
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	References
	Appendix. Sample item from design VELA pre-post assessment

