
Bloom’s for Computing:
Enhancing Bloom's Revised Taxonomy
with Verbs for Computing Disciplines

IronDog Draft
27 February 2022

Association for Computing Machinery (ACM)
Committee for Computing Education in Community Colleges (CCECC)

Copyright © 2022 by ACM CCECC. All rights reserved.

Bloom’s for Computing:
Enhancing Bloom's Revised Taxonomy
with Verbs for Computing Disciplines

Adeleye Bamkole, Passaic County Community College, NJ

Markus Geissler, Ph.D., Cosumnes River College, CA

Koudjo Koumadi, Ph.D., Prince George’s Community College, MD

Christian Servin, Ph.D., El Paso Community College, TX

Cara Tang, Ph.D., Portland Community College, OR *

Cindy S. Tucker, Bluegrass Community and Technical College, KY

* Task Force Chair

Table of Contents

Table of Contents 3

Introduction 4

Bloom’s Revised Taxonomy 4
Assessment at Educational Institutions 4
Bloom’s Cognitive Domain 5

Limitations of Bloom’s 7

Bloom’s Verbs for Computing 8
New Verbs (Proposed) 8
Verb Explanations and Sample Learning Outcomes 9

Remembering 9
Understanding 9
Applying 10
Analyzing 13
Evaluating 15
Creating 17

Reformulating Learning Outcomes in Existing ACM Curriculum Guidelines Using Proposed
Verbs 18
Original Plus Enhanced Verbs 20

Guidance for Writing Learning Outcomes and Competencies 22

Endorsements 25

Acknowledgements 25

References 26

Introduction
The ACM Committee for Computing Education in Community Colleges (CCECC) has long been
using Bloom’s Revised Taxonomy in composing learning outcomes and competencies for
curricular guidance published for associate degree programs. The six levels in the taxonomy
represent the varying levels of cognitive depth a student is expected to demonstrate. The
CCECC learning outcomes have been carefully crafted using verbs from standard lists
associated with each of the six levels. Through this experience, curriculum project members
have often struggled with finding the right verb from the verb list to best express the desired
learning outcome. A common case in which this struggle occurs concerns technical tasks for
which a technical verb would be appropriate but is not available on the verb list. This repeated
experience, across projects and across task group members, provided the initial motivation for
taking on the project of suggesting computing-specific verbs to supplement the standard lists.
Positive response from the community to the first draft of this report offered feedback that this is
something the community is interested in and provided further motivation. The verbs found in
this report are not limited to technical computing verbs, but are more generally verbs that could
be useful for learning outcomes and competencies in computing programs and curricular
guidance.

The Bloom’s for Computing project began in July of 2020, and a first draft of about 90 potential
new verbs was disseminated in March - April of 2021 via a poster at SIGCSE 2021 and sent out
on various mailing lists. A survey was used to gather feedback on the verbs, with 46 responses.
This feedback has been incorporated into the current report containing 77 proposed verbs. This
IronDog report also offers an explanation for each verb along with at least two sample learning
outcomes showing how the verb could be used.

The target audience for this report is anyone who drafts competencies or learning outcomes for
computing disciplines - whether programs, courses, individual modules, or curriculum guideline
reports; whether two-year, four-year, graduate, or K-12 level; whether educators, instructional
designers, or program coordinators.

We look forward to further community input on this draft, which will be incorporated into an
expected final report around the end of 2022.

Bloom’s Revised Taxonomy

Assessment at Educational Institutions
Institutions must ensure an ongoing and effective process for assessing student learning. In
particular, computing courses and programs of study must incorporate clearly defined,
measurable student outcomes which demonstrate that student achievement at the course level
promotes successful attainment of program goals. Competencies and learning outcomes, which

indicate a student's ability to do something successfully or efficiently, may also be used to
measure achievement of objectives within a curricular module or unit.

This relationship is commonly demonstrated when:
● For each program of study a collection of program outcomes is identified;
● For each course in the program a collection of student learning outcomes is identified;
● For each course, topics of study and learning activities are selected and designed to

support the course student outcomes;
● Each course student outcome supports one or more program outcomes; and
● Each program outcome is supported by one or more course outcomes.

Effective assessment provides valuable feedback to faculty and academic leaders for
continuous improvement of pedagogy, course content, and program outcomes, in order to better
prepare students for future studies and careers. In addition, effective assessment fosters
articulation between institutions and promotes student transfer, and documents employment
readiness and facilitates job placement. Accreditation requirements, performance-based funding
and public demands for accountability also make effective educational assessment a necessity.

Bloom’s Cognitive Domain
The foundational Taxonomy of Educational Objectives: A Classification of Educational Goals
was established in 1956 by Dr. Benjamin Bloom, an educational psychologist, and is often
referred to as Bloom's Taxonomy [b56]. This classification divided educational objectives into
three learning domains: Cognitive (knowledge), Affective (attitude) and Psychomotor (skills). In
2000, Lorin Anderson and David Krathwohl updated Bloom’s seminal framework to create
Bloom’s Revised Taxonomy, focusing on the Cognitive and Affective Domains [a01].

In computing curricula, the Cognitive domain is often used to assess student mastery of learning
outcomes. There are six levels in the taxonomy for the Cognitive domain, progressing from the
lowest order processes to the highest:

● Remembering - Retrieving, recalling, or recognizing information from memory. Students
can recall or remember information. Note: This process is the most basic thinking skill.

● Understanding - Constructing meaning or explaining material from written, spoken or
graphic sources. Students can explain ideas or concepts.

● Applying - Using learned materials or implementing materials in new situations. Students
can use/apply information in a new way.

● Analyzing - Breaking material or concepts into parts, determining how the parts relate or
interrelate to one another or to an overall structure or purpose. Students can distinguish
between different parts.

● Evaluating - Assessing, making judgments and drawing conclusions from ideas,
information, or data. Students can justify a stand or decision.

● Creating - Putting elements together or reorganizing them into a new way, form or
product. Students can create a new product. Note: This process is the most difficult
mental function.

In the framework of Bloom’s Revised Taxonomy learners need not start at the lowest taxonomic
level and work up; rather, the learning process can be initiated at any point, and the lower
taxonomic levels will be subsumed within the learning scaffold. To wit:

● Before we can understand a concept we have to remember it;
● Before we can apply the concept we must understand it;
● Before we analyze it we must be able to apply it;
● Before we can evaluate its impact we must have analyzed it; and
● Before we can create, we must have remembered, understood, applied, analyzed and

evaluated.

When using Bloom’s Revised Taxonomy in crafting competencies and learning outcomes, lists
of verbs associated with each level in the taxonomy are often used. These verb lists may vary
slightly depending on the source but many of the same verbs are commonly found at particular
levels. For example, Define at the Remembering leve, Describe at the Understanding level, etc.
The table below presents one such verb list, this one being the standard in use by the ACM
CCECC (see ccecc.acm.org/assessment/blooms).

Assessment Verbs by Bloom’s Level

Lower Order Higher order
Thinking Skills Thinking Skills

Remembering Understanding Applying Analyzing Evaluating Creating

Define Classify Apply Analyze Appraise Assemble

Duplicate Convert Calculate Attribute Argue Construct

Find Demonstrate Carry out Categorize Assess Create

Identify Describe Edit Compare Choose Design

Label Differentiate Diagram Contrast Critique Develop

Locate Exemplify Illustrate Deconstruct Defend Formulate

Memorize Explain Implement Deduce Estimate Hypothesize

Name Infer Investigate Discriminate Evaluate Invent

Recall Interpret Manipulate Distinguish Judge Make

Recognize Paraphrase Modify Examine Justify Plan

Retrieve Report Operate Integrate Support

Select Summarize Perform Organize Test

State Translate Produce Outline Value

Solve Structure Verify

Use

Write

Limitations of Bloom’s
While it provides a useful framework which applies to many disciplines, Bloom’s Revised
Taxonomy is not without limitations. Though its linear arrangement into six levels adds simplicity
and thus makes the framework more usable, one of its major criticisms is that some verbs could
be applied at several cognitive levels, and this can lead to the design of learning outcomes or
competencies which may not accurately indicate the cognitive level. As the English language
evolves, sometimes even regionally, the meaning and usage of some verbs will change and
may eventually require a revision of the Taxonomy.

Those who create learning outcomes are increasingly also looking to include elements from the
Affective Domain, which “includes the manner in which we deal with things emotionally, such as
feelings, values, appreciation, enthusiasms, motivations, and attitudes” [c15]. For this reason,
Bloom’s Taxonomy Cognitive Domain may no longer suffice to serve, as it does for many
curriculum committees, as the sole source of verbs for defining learning outcomes or
competencies which are increasingly expected to allow for the assessment of dispositions as
well as skills.

Other work with learning taxonomies for computing disciplines includes [f07,s17].

Bloom’s Verbs for Computing

New Verbs (Proposed)
The following are 77 proposed verbs, at the cognitive levels shown, to be offered as an
enhancement to the standard verb list presented earlier.

Remembering Understanding Applying Analyzing Evaluating Creating

Enumerate
Reference

Annotate
Comment
Follow

Backup
Build
Code
Compile
Compute
Configure
Connect
Decrypt
Deploy
Document
Encourage
Encrypt
Experiment
Graph
Hash
Install
Interview
Iterate
Map
Measure
Patch
Provision
Randomize
Recover
Remove
Restore
Schedule
Store
Train
Unit-test
Virtualize

Articulate
Automate
Contextualize
Correlate
Detect
Facilitate
Generalize
Model
Monitor
Parallelize
Predict
Promote
Simulate
Trace
Translate
Update

Adapt
Administer
Balance
Debug
Decide
Defend
Delegate
Derive
Hack
Moderate
Optimize
Prioritize
Propose
Prove
Transform
Validate

Collaborate
Compose
Generate
Program
Reengineer
Refactor
Script
Secure
Visualize

As one may note in reviewing the list above, it includes verbs that can be used for technical
computing tasks (such as Code, Compile, Encrypt, Parallelize, Hack, Script), verbs that can be
used for dispositional or soft skills (such as Encourage, Articulate, Collaborate), as well as verbs
for more general use (such as Measure, Translate, Decide). All of these verbs can be used to
write learning outcomes and competencies that students in computing programs may be
expected to achieve.

It should be noted that the task force does not expect the final version of this report to contain
77 verbs. We hope to use feedback from the community on this present draft to remove those
verbs that will be of little use and to offer a set of verbs that best enhance the standard verb lists
without making the combined list too unwieldy. Your feedback is thus very important to this
project.

Verb Explanations and Sample Learning Outcomes
When considering how a verb might be used in a competency or learning outcome, it is helpful
to see examples. Below we share at least two examples for each verb to demonstrate how they
might be used in a curriculum framework for a computing discipline. The verbs’ usage should
not be seen as being limited to the meanings expressed in these examples. As mentioned
earlier, we acknowledge that a particular verb could represent varying levels of cognitive depth,
but our usage of each verb is intended to represent the cognitive depth of the Bloom’s level it
has been placed in. In addition to the sample competencies and learning outcomes we provide
a brief explanation / rationale for the inclusion of each verb.

The tables below include, for each level of Bloom’s, the list of proposed verbs at that level, with
an explanation for why each was included, and numbered sample learning outcomes for each
verb.

Remembering

Verb Explanation and Sample Learning Outcomes

Enumerate Similar to List in non-computing uses, and also has computing uses
1. Enumerate the essential steps of the cybersecurity kill-chain process.
2. Enumerate the steps in the software development lifecycle (SDLC).
3. Enumerate the values of a collection in a data collection set.

Reference Adds a skill not included directly in the original Bloom's list
1. Reference multiple NIST Special Publications in a cyber-risk analysis

report.
2. Reference sources of borrowed codes as comments within a computer

program.

Understanding

Verb Explanation and Sample Learning Outcomes

Annotate Drawing and clearly annotating diagrams is required in computing tasks such

as designing system and network flows
1. Annotate an attack graph in the context of cybersecurity threat modeling.
2. Annotate a network diagram with names of the components.

Comment Commenting codes is a recommended practice
1. Comment a given segment of a program or script.
2. Comment on a network design presented on a diagram.

Follow Common when translating designs into code, and can be used more generally
1. Follow a flowchart to write a program that solves a real-life problem.
2. Follow instructions in a user guide to set up a cybersecurity appliance.

Applying

Verb Explanation and Sample Learning Outcomes

Backup Common computing task, especially in system administration and data
security
1. Backup multiple local or remote files and folders to a backup volume.
2. Backup marked data to a remote location using an automation script.

Build Commonly used in many computing areas, such as operating systems, IT,
systems programming
1. Build a machine learning model to detect network intrusions.
2. Build a working multi-router network using an automation script.

Code Required task in many aspects of computing, including building virtualized
infrastructure
1. Code a Python program from a given flowchart.
2. Code a cloud infrastructure orchestration using a scripting language.

Compile Common software development task, especially when coding in compiled
languages such as C and C++
1. Compile a program using the command line interface.
2. Compile a low level code for a specific operating system.

Compute Common task in computer science
1. Compute conditional probabilities.
2. Compute message digest of saved files using various hashing algorithms.

Configure Common real-word task in system administration, networking, and
cybersecurity
1. Configure a UNIX-based operating system in order to harden it.
2. Configure a firewall to block or allow traffic based on IP addresses and

port numbers.

Connect Required in networking, system configuration, and other information exchange

environments
1. Connect two remote sites using a tunneling technology.
2. Connect multiple branch routers to a headquarters' router using virtual

private networks.
3. Connect a workstation to a router to configure the router.

Decrypt Commonly required for information security objectives
1. Decrypt a ciphertext using various cryptographic techniques.
2. Decrypt a received email using a private key.

Deploy Common computing task
1. Deploy a machine learning pipeline to achieve a successful algorithm.
2. Deploy multiple instances of a template virtual machine.

Document Common computing task, includes source code documentation as well as
system documentation
1. Document the processes of an information system at multiple levels of

detail.
2. Document a project for version control by keeping track of the software

environment.

Encourage Verb used in computing tasks and disposition for soft skills context
1. Encourage cyber hygiene among peers.
2. Encourage computational thinking for a given problem.

Encrypt Common computing task with emphasis in cybersecurity
1. Encrypt files or folders using an appropriate system utility.
2. Encrypt computer users data with RSA algorithm.

Experiment Verb commonly used in programming methodology and in computational
thinking areas
1. Experiment with program inputs to find vulnerability to control hijacking.
2. Experiment with what-if scenarios on given data.

Graph Verb used in data structures and algorithms as well as data science and
analytics
1. Graph a data set using an appropriate chart type.
2. Graph traverse a set of vertices using depth-first and breadth-first search.

Hash Common computing task in cybersecurity area and data structures
1. Hash a password using an appropriate hash function.
2. Hash given data values into a hash table.

Install Common computing task
1. Install a given software patch.
2. Install a docker engine in a given operating system.

Interview Verb used in computing projects, particularly in software engineering; also a
disposition for soft skills context
1. Interview users to elicit feature requirements for an application.
2. Interview a computing professional and recognize industry competencies

required in the field.

Iterate Common computing task in programming and data science areas
1. Iterate through a list in a given program language.
2. Iterate a machine learning algorithm and indicate the number of times the

algorithm's parameters are updated.

Map Common computing verb in IT and programming
1. Map an entity relationship diagram to tables in a relational database.
2. Map a shared folder by assigning a drive letter

Measure Common computing verb in IT and computer science
1. Measure performance of algorithms on dimensions of time and space.
2. Measure the round trip time (RTT) between two servers.

Patch Verb used in computing particularly in IT and cybersecurity
1. Patch the expected or verified vulnerabilities in an object so that the

related risks are mitigated in support of business continuity.
2. Patch an existing vulnerability by improving the functionality, usability, or

performance of a given program.

Provision Common computing task in cloud computing areas
1. Provision resources in a virtual environment.
2. Provision cloud equipment, software or services to users/clients.

Randomize Common verb in algorithms, data sciences, and cybersecurity areas
1. Randomize numbers in an algorithm to simulate random behavior.
2. Randomize an encryption algorithm by using a degree of randomness in

its logic or within a procedure.

Recover Common computing task
1. Recover files from an operating system as a forensics application.
2. Recover data, based upon a given search term, from an imaged system.

Remove Common computing task
1. Remove sensitive data that is no longer needed.
2. Remove common software vulnerabilities for a given piece of code.

Restore Common computing task
1. Restore files and folders from a backup volume to a local or remote

drive/folder.
2. Restore code for a program or application from an earlier copy of the

software using version control.

Schedule Common computing task, especially in IT
1. Schedule backups to meet data management policies in an organization.
2. Schedule steps in a cybersecurity assessment for a given scenario.

Store Common computing task
1. Store data securely in the cloud.
2. Store data and software securely at an offsite location.

Train Used in machine learning and data science
1. Train a prediction model by using online data to improve its accuracy.
2. Train a machine learning model with stored data.

Unit-test Common task especially in computer science
1. Unit-test a given program and specification for correctness.
2. Unit-test a function for correctness using both a manual and automated

approach.

Virtualize Action verb in lieu of "use virtualization"
1. Virtualize components/resources at the server and client levels for a given

scenario.
2. Virtualize an application deployment for a given scenario.

Analyzing

Verb Explanation and Sample Learning Outcomes

Articulate Allows for a deeper cognitive level when compared to other Bloom's
synonyms such as Explain and Describe
1. Articulate a testing strategy for a given function.
2. Articulate legal issues, authorities, and processes related to digital

evidence.

Automate Common task in computing disciplines, requiring prior analysis
1. Automate a user function, such as generating an electronic invoice or

generating an error message/alert.
2. Automate an initial incident response for a security breach for a given

scenario.

Contextualize Allows a deeper insight into computing concepts by studying the context
which surround given scenarios
1. Contextualize security vulnerabilities for a given piece of software within

a given scenario.
2. Contextualize social and professional aspects of computing with respect

to ethical codes of conduct.

Correlate Analyzes the relationship between multiple computing concepts and the
impact they have on one another
1. Correlate the cost of computing resources with improved security.
2. Correlate privacy, security and trust for a given scenario.

Detect Common task, especially in cybersecurity
1. Detect a potential vulnerability in given source code.
2. Detect an instance of false sharing.

Facilitate Improving or making an action easier is a common computing task

1. Facilitate a discussion on security requirements.
2. Facilitate dynamic file expansion using hashing.

Generalize Allows a deeper cognitive level when compared to other Bloom's synonyms
such as Summarize and Explain
1. Generalize the specific tasks completed by a point-of-sale system.
2. Generalize security vulnerabilities in various data structures.

Model Common computing task and uses an action verb in lieu of "use modeling"
1. Model a business problem mathematically or with an algorithm.
2. Model a real-world problem using graphs and trees, such as representing

a network topology or the organization of a hierarchical file system.

Monitor Common anomalies deterrence and uncovering error task in computing
disciplines
1. Monitor network traffic for security vulnerabilities.
2. Monitor input controls into an end-point to prevent invalid or erroneous

data from entering the system.
3. Monitor the identity of users or groups who request access to sensitive

resources.

Parallelize Variety of uses, such as in programming and during changeover phases in
computing disciplines
1. Parallelize a given algorithm/program.
2. Parallelize the design features of two operating systems.
3. Parallelize an old system with its replacement system until users are

assured that the replacement functions correctly.

Predict Common analysis and decision making task applicable to many computing
and technology projects
1. Predict the output of an algorithm after it has been trained on a historical

dataset and applied to new data.
2. Predict the cost and benefits trade-off that may be associated with a

system recovery plan process.
3. Predict for an organization what management, organization, and

technology factors are responsible for the difficulties in building electronic
medical records systems.

Promote Common task in communication and presentation skills when interacting with
upper management and stakeholders
1. Promote an efficient technical solution to upper management.
2. Promote the impact and/or benefit of open source vs. proprietary

software for a given task.
3. Promote consideration of the ethical challenges in a new technology.

Simulate Common verb applicable to planning, analysis and testing in computing
disciplines
1. Simulate a disaster recovery response.
2. Simulate the role of personnel in a given business group working

environment.
3. Simulate mobile device usage during web application testing and

prototyping.

Trace Common task applicable to many computing, system administration,
networking, and cybersecurity tasks
1. Trace a variable's value as it changes throughout a code module.
2. Trace a list attached or linked to personnel who are not allowed access

to any part or function of the system.
3. Trace an activity to detect the condition that creates a deadlock.

Translate Common task in programming, information systems, networking and
security
1. Translate a business problem into an artificial intelligence and data

science solution.
2. Translate a given system design specification into software program

code.
3. Translate written communication to oral communication.

Update Common computing task
1. Update a data-based model for a given scenario.
2. Update the features of a website to match the information requirements

of an organization or user needs.
3. Update software to include new features.

Evaluating

Verb Explanation and Sample Learning Outcomes

Adapt Common computing task in computing disciplines
1. Adapt a given network defense strategy to a new network configuration.
2. Adapt a script feature to suit a specific function or task.
3. Adapt software to changing industry standards.

Administer Common task in information systems, networking and security
1. Administer virtual machines serving a wide user base.
2. Administer an information system for a local business such as a doctors

office, grocery store or a fast-food restaurant.
3. Administer a web server.
4. Administer tools and techniques to design and implement a technical

solution for a system process.

Balance Common analysis and decision making task applicable to many computing
and technology projects
1. Balance security and usability in a given scenario.
2. Balance individual activity with group activity in a working environment.
3. Balance energy savings and performance settings for a hardware power

plan.
4. Balance between efficient code and well designed applications.

Debug Verb used in troubleshooting and error checking task; common task across
computing disciplines
1. Debug a given segment of code.
2. Debug a common printing problem.
3. Debug an entity relationship diagram of a database for anomalies.
4. Debug software by utilizing appropriate techniques.

Decide Common verb used in evaluation of best practices in any computing areas
1. Decide between several appropriate methods for securing a wireless

network.
2. Decide on the appropriate resolution to a help desk request.
3. Decide the best practices for safety when working with networks and end

points.
4. Decide on the best data structure for a particular scenario.

Defend Common task in information systems, cybersecurity and networking domains
1. Defend a scenario that exposes a potential security weakness.
2. Defend an information system from security threats.
3. Defend the need for faster backbone for a data center.
4. Defend an information system design proposed to an organization

Delegate Common verb used in networking and technology activities
1. Delegate tasks to team members with the expertise necessary to

accomplish them.
2. Delegate management of shared resources to users.
3. Delegate permissions in an Active Directory.

Derive Useful skill for analysts in most computing disciplines
1. Derive potential causes for a system failure from log file entries.
2. Derive system specifications from information gained in end user

interviews.

Hack Common computing task
1. Hack a client's local area network to determine its resiliency against

brute-force attacks.
2. Hack user account passwords under varying password policies using

common attacker tools.

Moderate Useful soft skill when interacting with computing colleagues and end users
1. Moderate an electronic discussion on a computing topic within an

educational forum.
2. Moderate corporate communications from management to employees.

Optimize Common computing goal
1. Optimize a segment of code by using fast functions.
2. Optimize network flow by configuring Access Control Lists on firewall

ports.

Prioritize Multiple possible uses in computing as well as soft skills
1. Prioritize a search algorithm using a data structure such as binary heaps.
2. Prioritize network traffic by enabling quality of service functionality.

3. Prioritize daily and weekly tasks to accomplish critical work and meet
deadlines.

Propose Useful soft skill when interacting with computing colleagues and end users;
similar to design, but added communication aspect of proposing to an
audience
1. Propose a network cable plan capable of transmitting large video files at

high speed.
2. Propose system requirements revisions to stakeholders.

Prove Useful in mathematical and forensic environments
1. Prove elementary theorems on probability.
2. Prove the presence of a security vulnerability in endpoint devices.

Transform Similar to Translate but at a deeper cognitive level
1. Transform a recursive method into an iterative method.
2. Transform a legacy report into a turnaround document by adding QR

codes.

Validate Useful skill in several computing disciplines
1. Validate software security within a given test plan.
2. Validate a server cluster using an appropriate system utility.

Creating

Verb Explanation and Sample Learning Outcomes

Collaborate Useful soft skill when interacting with computing colleagues and end users
1. Collaborate with team members to produce a given computer artifact.
2. Collaborate with fellow teammates to conduct a needs analysis for a

point-of-sale system.

Compose Useful integrative skill; more flexible than Program
1. Compose a new class using principles of object-orientation to support a

new feature in a software system.
2. Compose shell scripts that run without direct interaction.

Generate Useful skill for developing content from existing data or tools
1. Generate meaningful reports from various data sets.
2. Generate revealing statistics from spreadsheet data by using appropriate

Microsoft Excel functions.

Program Common computing task
1. Program a routine that starts code segments on multiple devices when a

certain condition is met.
2. Program an automated routine that will pause the smart sprinkler

controller when local rainfall exceeds a given threshold.

Reengineer Useful skill in some computing disciplines
1. Reengineer an iterative-based algorithm using recursion.
2. Reengineer a business process based on new hardware capabilities.

Refactor Useful skill across several computing disciplines
1. Refactor a computer program using well-known design patterns.
2. Refactor legacy code to reduce its vulnerability against modern

cyberattacks.

Script Common computing task; more specific than Program
1. Script an algorithm to perform form verification using pattern matching and

regular expressions.
2. Script commands to instantiate virtual resources.

Secure Common computing task across all computing disciplines
1. Secure a transaction between a browser and a web server.
2. Secure a local area network against denial-of-service attacks.

Visualize Useful integrative skill with certain computing tools
1. Visualize a data model using well-known libraries for data analysis.
2. Visualize a project schedule via a Gantt chart.

Reformulating Learning Outcomes in Existing ACM Curriculum
Guidelines Using Proposed Verbs
To further demonstrate how the proposed verbs could be used, we have taken some
competencies and learning outcomes (LOs) from the below listed ACM curriculum guidelines
and reformulated them using a new verb from the proposed verbs list.

● CCDS2021 - Computing Competencies for Undergraduate Data Science Curricula [a21]
● CSEC2017 - Curriculum Guidelines for Post-Secondary Degree Programs in

Cybersecurity [j17]
● IT2017 - Curriculum Guidelines for Baccalaureate Degree Programs in Information

Technology [t17]
● CS2013 - Curriculum Guidelines for Undergraduate Programs in Computer Science [j13]

These examples in the table below show how a formulation can be improved, made more direct,
or targeted at a more appropriate cognitive level.

ACM Guideline Existing Competency / LO Possible Competency / LO with
New Verb

CCDS2021 Demonstrate contexts in which
Bayesian networks can be useful

Contextualize effective Bayesian
networks (e.g., diagnostic

(e.g., diagnostic problems). problems). Analyzing

CCDS2021 Justify the need for probabilistic
reasoning.

Simulate a data model using
probabilistic reasoning. Analyzing

CCDS2021 State what a Markov Decision
Process is, giving a small or medium
sized example.

Trace a Markov Decision Process
with a small or medium sized
example. Analyzing

CSEC2017 Demonstrate the ability to implement
approaches for detection and
mitigation of social engineering
attacks.

Detect social engineering attacks.
Analyzing

NOTE: Mitigation would need to be
incorporated separately.

CSEC2017 Explain the various authentication
techniques and their strengths and
weaknesses.

Monitor various authentication
techniques. Analyzing

CSEC2017 Describe a buffer overflow and why it
is a potential security problem.

Patch a buffer overflow security
problem in a given program.
Applying

IT2017 Implement virtualization for
applications, desktops, servers, and
network platforms.

Virtualize applications, desktops,
servers, and network platforms for
a given scenario. Applying

IT2017 Illustrate the goals of secure coding,
and show how to use these goals as
guideposts in dealing with preventing
buffer overflow, wrapper code, and
securing method access.

Secure a given piece of software
with respect to buffer overflow,
wrapper code, and method access.
Creating

IT2017 Perform simulations and describe
security and performance issues
related to wireless networks.

Simulate various security and
performance issues related to
wireless networks. Analyzing

CS2013 Use refactoring in the process of
modifying a software component.

Refactor a software component.
Creating

CS2013 Explain what is meant by “best”,
“expected”, and “worst” case
behavior of an algorithm.

Measure “best”, “expected”, and
“worst” case behavior of a given
algorithm. Applying

CS2013 Give examples that illustrate
time-space trade-offs of algorithms.

Compute run-time analysis and
Big-O notation including time and
space for an algorithm. Applying

There are also cases in past ACM curriculum guidelines where a competency or learning
outcome uses one of the new proposed verbs, demonstrating the usefulness of that verb
already. Examples include the following:

● In IT2017: Collaborate in the creation of an interesting and relevant app (mobile or web)
based on user experience design, functionality, and security analysis and build the app’s
program using standard libraries, unit testing tools, and collaborative version control.

● In CS2013: Refactor a program by identifying opportunities to apply procedural
abstraction.

● In CS2013: Parallelize an algorithm by applying task-based decomposition.
● In CS2013: Parallelize an algorithm by applying data-parallel decomposition.

Original Plus Enhanced Verbs
The tables below present the original list of verbs plus the new proposed verbs. We welcome
input on which presentation is the most useful.

Original verbs with proposed verbs in bold:

Remembering Understanding Applying Analyzing Evaluating Creating
Define Annotate Apply Interview Analyze Adapt Assemble
Duplicate Classify Backup Investigate Articulate Administer Collaborate
Enumerate Comment Build Iterate Attribute Appraise Compose
Find Convert Calculate Manipulate Automate Argue Construct
Identify Demonstrate Carry out Map Categorize Assess Create
Label Describe Code Measure Compare Balance Design
List Differentiate Compile Modify Contextualize Choose Develop
Locate Discuss Compute Operate Contrast Critique Devise
Memorize Exemplify Configure Patch Correlate Debate Formulate
Name Explain Connect Perform Decompose Debug Generate
Recall Follow Decrypt Produce Deconstruct Decide Hypothesize
Recognize Infer Deploy Provision Deduce Defend Invent
Reference Interpret Diagram Randomize Detect Defend Make
Retrieve Paraphrase Document Recover Discriminate Delegate Plan
Select Report Edit Remove Distinguish Derive Program
State Summarize Encourage Restore Examine Estimate Reengineer

Translate Encrypt Schedule Facilitate Evaluate Refactor
Execute Solve Generalize Hack Script
Experiment Store Integrate Judge Secure
Graph Train Model Justify Visualize
Hash Unit-test Monitor Moderate
Illustrate Use Organize Optimize
Implement Virtualize Outline Prioritize
Install Write Parallelize Propose

Predict Prove
Promote Support
Simulate Test
Structure Transform
Trace Validate
Translate Value
Update Verify

Original verbs plus proposed verbs in bold at the end of each section:

Remembering Understanding Applying Analyzing Evaluating Creating
Define Classify Apply Decrypt Analyze Appraise Assemble
Duplicate Convert Calculate Deploy Attribute Argue Construct
Find Demonstrate Carry out Document Categorize Assess Create
Identify Describe Edit Encourage Compare Choose Design
Label Differentiate Diagram Encrypt Contrast Critique Develop
List Discuss Execute Experiment Decompose Debate Devise
Locate Exemplify Illustrate Graph Deconstruct Defend Formulate
Memorize Explain Implement Hash Deduce Estimate Hypothesize
Name Infer Investigate Install Discriminate Evaluate Invent
Recall Interpret Manipulate Interview Distinguish Judge Make
Recognize Paraphrase Modify Iterate Examine Justify Plan
Retrieve Report Operate Map Integrate Support Collaborate
Select Summarize Perform Measure Organize Test Compose
State Translate Produce Patch Outline Value Generate
Enumerate Annotate Solve Provision Structure Verify Program
Reference Comment Use Randomize Articulate Adapt Reengineer

Follow Write Recover Automate Administer Refactor
Backup Remove Contextualize Balance Script
Build Restore Correlate Debug Secure
Code Schedule Detect Decide Visualize
Compile Store Facilitate Defend
Compute Train Generalize Delegate
Configure Unit-test Model Derive
Connect Virtualize Monitor Hack

Parallelize Moderate
Predict Optimize
Promote Prioritize
Simulate Propose
Trace Prove
Translate Transform
Update Validate

Original verbs plus proposed verbs in bold in a separate section:

Remembering Understanding Applying Analyzing Evaluating Creating
Define Classify Apply Analyze Appraise Assemble
Duplicate Convert Calculate Attribute Argue Construct
Find Demonstrate Carry out Categorize Assess Create
Identify Describe Edit Compare Choose Design
Label Differentiate Diagram Contrast Critique Develop
List Discuss Execute Decompose Debate Devise
Locate Exemplify Illustrate Deconstruct Defend Formulate
Memorize Explain Implement Deduce Estimate Hypothesize
Name Infer Investigate Discriminate Evaluate Invent
Recall Interpret Manipulate Distinguish Judge Make
Recognize Paraphrase Modify Examine Justify Plan
Retrieve Report Operate Integrate Support
Select Summarize Perform Organize Test
State Translate Produce Outline Value

Solve Structure Verify
Use
Write

Remembering Understanding Applying Analyzing Evaluating Creating
Enumerate Annotate Backup Interview Articulate Adapt Collaborate
Reference Comment Build Iterate Automate Administer Compose

Follow Code Map Contextualize Balance Generate
Compile Measure Correlate Debug Program
Compute Patch Detect Decide Reengineer
Configure Provision Facilitate Defend Refactor
Connect Randomize Generalize Delegate Script
Decrypt Recover Model Derive Secure
Deploy Remove Monitor Hack Visualize
Document Restore Parallelize Moderate
Encourage Schedule Predict Optimize
Encrypt Store Promote Prioritize
Experiment Train Simulate Propose
Graph Unit-test Trace Prove
Hash Virtualize Translate Transform
Install Update Validate

Guidance for Writing Learning Outcomes and
Competencies
Bloom’s verbs are commonly used to write program, course, and lesson competencies and
student learning outcomes. For our purposes, competencies follow the definition presented in
Modelling Competencies for Computing Education beyond 2020: A Research Based Approach
to Defining Competencies in the Computing Disciplines [f18]: “Competency integrates
knowledge, skills, and dispositions and is context-situated.” Knowledge (“know-that”) refers to
“mastery of core concepts and content knowledge.” Skills (“know-how”) are “qualities that

people develop and learn over time with practice and through interactions with others.”
Dispositions (“know-why” and “know-yourself”) include “attitudinal, behavioral, and
socio-emotional qualities of how disposed people are to apply knowledge and skills to solve
problems.” Context is the setting in which competencies manifest, the “authentic situations
related to problems/issues and aspects of work.” [f18]

Learning outcomes focus on achievement, what students can do in some measurable way,
rather than what students know. They are used to develop lesson and course outcomes.
Student learning outcomes are more detailed than competencies and are often accompanied
with outcome metrics, such as rubrics. It is not unusual to define multiple learning outcomes for
a given competency. Learning outcomes contribute to achievement of course competencies
which in turn contribute to program competencies.

In summary, competencies are written as general statements that describe desired knowledge,
skills, and dispositions of students within an academic program or course while learning
outcomes express, in a measurable detailed manner, what a student can do at the end of the
lesson, course or program.

Learning Outcomes = Measurable Achievement

Using the six (6) cognitive levels in Bloom’s Revised Taxonomy, each of the proposed enhanced
computing verbs has an assigned cognitive level. Below are a few examples.

Bloom’s Level Sample Computing Verbs

Remembering Enumerate, Reference

Understanding Annotate, Comment

Applying Code, Encrypt, Decrypt

Analyzing Detect, Trace, Translate

Evaluating Debug, Defend, Hack

Creating Script, Refactor, Visualize

A variety of computing concepts are taught and learned at a lower cognitive level initially and
progress to a higher cognitive level over time. The enhanced computing verbs provide select
“families” of verbs to facilitate writing competencies and learning outcomes which illustrate
student achievement and growth from lower to higher cognitive levels. For example,

1. Code, Script, and Program are similar concepts. However, Code is at the Applying
level whereas Script and Program are at the Creating level. Students may begin their
learning at an Applying level but ultimately demonstrate what they know and can do at
the Creating level. Learning outcomes can be written to demonstrate this progress.

2. Design, Develop and Build are also similar. Design and Develop are verbs from
Bloom’s Revised Taxonomy at the Creating level. Build is a proposed new computing
verb at the Applying Level. Again, this provides a way for students to provide a
computing solution to a problem but at different cognitive levels.

3. Unit-test, Test, and Validate can be used to illustrate a growth in how students test and
validate software. Unit-test is at the Applying level, Test and Validate are at the
Evaluating level.

4. Convert, Translate, and Transform can be used to illustrate changes to computing
artifacts at three different cognitive levels (Understanding, Analyzing, and Evaluating
respectively).

At present, ACM recognizes seven (7) computing disciplines [a20]:

1. Computer Engineering
2. Computer Science
3. Cybersecurity
4. Information Systems
5. Information Technology
6. Software Engineering
7. Data Science

Each of these disciplines has its own unique field of study and computing vocabulary. As such,
the new computing verbs to enhance Bloom’s Revised Taxonomy are inclusive of all computing
disciplines. Some verbs may be applicable for all disciplines while others may only apply to one
or two disciplines. For example,

● Encrypt and Decrypt work well for Cybersecurity, Information Technology, and
Computer Science.

● Patch, Install, and Schedule are common tasks in Information Technology.
● Experiment, Update, and Collaborate are used across all computing disciplines.

When using these new computing verbs to develop or revise a computing curriculum or course,
it is important to remember each verb implies a specific cognitive level of learning. When writing
competencies and learning outcomes, authors should carefully select a verb at the appropriate
cognitive level for the intended outcome. Use one verb per competency or learning outcome
and compose the statement in a measurable, clear, and concise manner. It is recommended
that this enhanced list of computing verbs and the associated list of national and regional
endorsements be shared with local curriculum committees and other groups who are reviewing
curriculum proposals.

Endorsements
We will be seeking endorsements of the final report from various groups. If you represent a
group that may be interested in endorsing the final version of this report, please contact the task
force chair at cara.tang@pcc.edu.

Acknowledgements
Melissa Stange, Ph.D. of Lord Fairfax Community College, VA provided invaluable input as a
team member during the early stages of the project.

The following individuals offered feedback on the first draft of verbs:

Aaron Willcock
Alan Hayes
Anderson
Ashish Aggarwal
Bill Kerney
Brian Rague
Chris Bourke
David G. Kay
Deborah Boisvert
Diana Merkel
Dr. Yousif Mustafa
Frank Appunn
Greg Gagne
Gunnar Wolf
Heather Miles

Heidi Ellis
Jakob Barnard
James Davenport
Jeff Merhout
Jeffrey Paone
Jennifer Wong-Ma
Jessen Havill
Jim Kiper
Joe Paris
John A. Trono
Josh Archer
José Carlos Metrôlho
Klaas Stoker
Kristin Stephens-Martinez
Michael Bauer

Michael S. Kirkpatrick
Mihaela Sabin
Nathalie Guebels
Nicholas Pierce
R. Venkatesh
Raina Mason
Randy Britto
Richard Bramante
Rukiye Altın
Sally Schaffner
Shana Ponelis
Susanna Brown
Svetlana Peltsverger
Theresa Schmitt
Tim Preuss

mailto:cara.tang@pcc.edu

References
[a20] ACM and IEEE Computer Society. 2020. Computing Curricula 2020 (CC2020): Paradigms
for Global Computing Education. ACM, New York, NY, USA. DOI:
http://dx.doi.org/10.1145/3467967

[a21] ACM Data Science Task Force. 2021. Computing Competencies for Undergraduate Data
Science Curricula. ACM, New York, NY, USA. DOI: http://dx.doi.org/10.1145/3453538

[a01] Lorin Anderson, David Krathwohl, et al. 2001. A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Addison Wesley
Longman, Inc.

[b56] Benjamin Bloom. 1956. Taxonomy of Educational Objectives: The Classification of
Educational Goals. Longmans, Green.

[c15] Donald Clark. Bloom's Taxonomy: The Affective Domain. 2015
https://knowledgejump.com/hrd/Bloom/affective_domain.html. Accessed February 2022.

[f18] Stephen Frezza, Mats Daniels, Arnold Pears, Åsa Cajander, Viggo Kann, Amanpreet
Kapoor, Roger McDermott, Anne-Kathrin Peters, Mihaela Sabin, and Charles Wallace. 2018.
Modelling Competencies for Computing Education beyond 2020: A Research Based Approach
to Defining Competencies in the Computing Disciplines. In Proceedings Companion of the 23rd
Annual ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’18 Companion), July 2-4, 2018, Larnaca, Cyprus. ACM, New York, NY, USA, 27 pages.
https://doi.org/10.1145/3293881.3295782

[f07] Ursula Fuller, Colin G. Johnson, Tuukka Ahoniemi, Diana Cukierman, Isidoro
Hernán-Losada, Jana Jackova, Essi Lahtinen, Tracy L. Lewis, Donna McGee Thompson,
Charles Riedesel, and Errol Thompson. 2007. Developing a computer science-specific learning
taxonomy. In Working group reports on ITiCSE on Innovation and technology in computer
science education (ITiCSE-WGR '07). ACM, New York, NY, USA, 152–170.
DOI:https://doi.org/10.1145/1345443.1345438

[j13] Joint Task Force on Computing Curricula ACM and IEEE-CS. 2013. Computer Science
2013: Curriculum Guidelines for Undergraduate Programs in Computer Science. ACM, New
York, NY, USA. DOI: http://dx.doi.org/10.1145/2534860

[j17] Joint Task Force on Cybersecurity Education. 2017. Cybersecurity Curricula 2017:
Curriculum Guidelines for Post-Secondary Degree Programs in Cybersecurity. ACM, New York,
NY, USA. DOI: https://dx.doi.org/10.1145/3184594.

[s17] Klaas Stoker. 2017. A New Cognitive Hierarchy Model for Applied Computer Science.
Journal of Education Research Vol 10 Issue 4.

[t17] Task Group on Information Technology Curricula. 2017. Information Technology Curricula
2017: Curriculum Guidelines for Baccalaureate Degree Programs in Information Technology.
ACM, New York, NY, USA. DOI: http://dx.doi.org/10.1145/3173161.

