
CD2 Study Guide

CD2 addresses topics from Chapters 3-5 in your textbook which were studied over
weeks 5-10. It covers three topics/outcome sets in the course:

Topic 3 - Linear Data Structures

• Trace, identify and explain common "linear" data structures constructed using
"arrays" (i.e., contiguous block of memory) and "linked nodes" as appropriate:
stack, queue, and list. [added deque]

Topic 4 - Searching and Sorting Algorithms

• Trace, explain, and analyze common search/sort techniques such as linear
search, binary search, closed-address hashing.

• Explain and analyze simple and advanced sorts such as bubble, selection,
insertion, merge, and quick sorts.

Topic 5 - Recursive Algorithms

• Define recursion and identify the components of a recursive function, including
the base case and the recursive case.

• Trace the execution of a recursive function, demonstrating understanding by
outlining the calls and return values step-by-step.

If you go back through the “Outcomes” sections of weeks 5-10 you will see these ideas
broken down into more specific detail.

Week Five and Six (Topic 3)

• Explain the main operators of a stack (understand and discuss the ADT
description). push()

o peek()
o size()
o is_empty()
o pop()

• Explain the main operators of a queue (understand and discuss the ADT
description).

o enqueue()
o dequeue()
o size()

o is_empty()
• Explain the main operators of a deque (understand and discuss the ADT

description). add_front()
o add_rear()
o remove_front()
o remove_rear()
o size()
o is_empty()

• Explain the pseudocode for the operators of a [stack | queue | deque]
• Identify the Big-Oh notation for the operators of a [stack | queue | deque]
• Explain how a Python list-based implementation of a [stack | queue | deque]

fulfills the operators (ADT) of the stack.
o [Newly added] Consider how a change to the implementation of a [stack |

queue | deque] might change the performance (Big-oh) of the operators.
• Provide [or consider, or recognize] an example of where a [stack | queue | deque]

could be used in programming
• [Newly added] Given a sequence of actions on a [stack | queue | deque]

determine the result(s).

Weeks 7, 9, and 10 (Topic 4)

• Describe the algorithm for a linear search
• Describe the algorithm for a binary search
• Recognize/identify the code for a linear or binary search.
• Identify the [best-case | worst-case | average-case] Big-oh runtime analysis for a

linear or binary search.
• Explain where O(log n) fits into the "rankings" of O(1), O(n) and O(n^2)
•
• Describe the algorithm for a bubble sort
• Describe the algorithm for an insertion sort
• Describe the algorithm for a selection sort
• Explain why the runtime for each of the previous sorts is O(n^2)
• Explain why, even though each of the previous sorts is O(n^2), that the bubble

sort is still considered the worst of the three.
•
• Describe the algorithm for a merge sort
• Describe the algorithm for a quck sort
• Explain why the runtime for each of the previous sorts is O(n log n)
• Include O(n log n) in discussion about Big-Oh notation (including

o where it falls in the rankings of other categories

o what it means compared to O(n) and O(n^2) (the two categories that come
before and after it)

• Read existing Python code and connect it to corresponding pseudocode [We
begin the process and continue over the next few weeks]

Weeks 8 and 10 (Recursion)

• Describe the three "laws" of recursion.
• Identify where each of the three "laws" of recursion are observed in a recursive

algorithm. [Both what triggers them and what actions they perform]
• Identify the Big-oh runtime analysis for a recursive algorithm.
• Explain how recursion is used in the merge and quick sorts
• [New] Calculate the result of a simple recursive algorithm
• [New] Discuss why we use recursion (vs. just iteration)
• [New] Consider what happens if one of the three “laws” of recursion isn’t

fulfilled in an algorithm

