Competency #4 and #5 Study Guide

Competencies #4 and 5 will be assessed at the same time since they were presented as
combined topics and there is overlap in their topic coverage. These address material
from chapters 4 and 5 which | present slightly out of order over weeks 7-10

Competency #4 - Searching and Sorting Algorithms

Trace, explain, and analyze common search/sort techniques such as linear
search, binary search

Explain and analyze simple and advanced sorts such as bubble, selection,
insertion, merge, and quick sorts.

Competency #5 - Recursive Algorithms

Define recursion and identify the components of a recursive function, including
the base case and the recursive case.

Trace the execution of a recursive function, demonstrating understanding by
outlining the calls and return values step-by-step.

If you go back through the “Outcomes” sections of weeks 7-10 you will see these ideas
broken down into more specific detail.

Weeks 7,9, and 10 (Topic 4)

Describe the algorithm for a linear search

Describe the algorithm for a binary search

Recognize/identify the code for a linear or binary search.

Identify the [best-case | worst-case | average-case] Big-oh runtime analysis for a
linear or binary search.

Explain where O(log n) fits into the "rankings" of O(1), O(n) and O(n*2)

Describe the algorithm for a bubble sort

Describe the algorithm for an insertion sort

Describe the algorithm for a selection sort

Explain why the runtime for each of the previous sorts is O(n*2)

Explain why, even though each of the previous sorts is O(n*2), that the bubble
sort is still considered the worst of the three.

e Describe the algorithm for a merge sort
e Describe the algorithm for a quck sort
e Explain why the runtime for each of the previous sorts is O(n log n)
e Include O(n log n) in discussion about Big-Oh notation (including
o where it falls in the rankings of other categories
o what it means compared to O(n) and O(n*2) (the two categories that come
before and after it)
e Read existing Python code and connect it to corresponding pseudocode [We
begin the process and continue over the next few weeks]

Weeks 8 and 10 (Recursion)

e Describe the three "laws" of recursion.

e Identify where each of the three "laws" of recursion are observed in a recursive
algorithm. [Both what triggers them and what actions they perform]

e Identify the Big-oh runtime analysis for a recursive algorithm.

e Describe the algorithm for a merge sort
e Describe the algorithm for a quick sort
e Explain how recursion is used in the two previous sorts
e Explain why the runtime for each of the previous sorts is O(n log n)
e Include O(n log n) in discussion about Big-Oh notation (including
o Wwhere it falls in the rankings of other categories
o what it means compared to O(n) and O(n*2) (the two categories that come
before and after it)
e Calculate the result of a simple recursive algorithm
e Discuss why we use recursion (vs. just iteration)
e Consider what happens if one of the three “laws” of recursion isn't fulfilled in an
algorithm

