
Competency #4 and #5 Study Guide

Competencies #4 and 5 will be assessed at the same time since they were presented as
combined topics and there is overlap in their topic coverage. These address material
from chapters 4 and 5 which I present slightly out of order over weeks 7-10

Competency #4 - Searching and Sorting Algorithms

• Trace, explain, and analyze common search/sort techniques such as linear
search, binary search

• Explain and analyze simple and advanced sorts such as bubble, selection,
insertion, merge, and quick sorts.

Competency #5 - Recursive Algorithms

• Define recursion and identify the components of a recursive function, including
the base case and the recursive case.

• Trace the execution of a recursive function, demonstrating understanding by
outlining the calls and return values step-by-step.

If you go back through the “Outcomes” sections of weeks 7-10 you will see these ideas
broken down into more specific detail.

Weeks 7, 9, and 10 (Topic 4)

• Describe the algorithm for a linear search
• Describe the algorithm for a binary search
• Recognize/identify the code for a linear or binary search.
• Identify the [best-case | worst-case | average-case] Big-oh runtime analysis for a

linear or binary search.
• Explain where O(log n) fits into the "rankings" of O(1), O(n) and O(n^2)
•
• Describe the algorithm for a bubble sort
• Describe the algorithm for an insertion sort
• Describe the algorithm for a selection sort
• Explain why the runtime for each of the previous sorts is O(n^2)
• Explain why, even though each of the previous sorts is O(n^2), that the bubble

sort is still considered the worst of the three.

•
• Describe the algorithm for a merge sort
• Describe the algorithm for a quck sort
• Explain why the runtime for each of the previous sorts is O(n log n)
• Include O(n log n) in discussion about Big-Oh notation (including

o where it falls in the rankings of other categories
o what it means compared to O(n) and O(n^2) (the two categories that come

before and after it)
• Read existing Python code and connect it to corresponding pseudocode [We

begin the process and continue over the next few weeks]

Weeks 8 and 10 (Recursion)

• Describe the three "laws" of recursion.
• Identify where each of the three "laws" of recursion are observed in a recursive

algorithm. [Both what triggers them and what actions they perform]
• Identify the Big-oh runtime analysis for a recursive algorithm.
•
• Describe the algorithm for a merge sort
• Describe the algorithm for a quick sort
• Explain how recursion is used in the two previous sorts
• Explain why the runtime for each of the previous sorts is O(n log n)
• Include O(n log n) in discussion about Big-Oh notation (including

o where it falls in the rankings of other categories
o what it means compared to O(n) and O(n^2) (the two categories that come

before and after it)
• Calculate the result of a simple recursive algorithm
• Discuss why we use recursion (vs. just iteration)
• Consider what happens if one of the three “laws” of recursion isn’t fulfilled in an

algorithm

