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ABSTRACT 

 
We present a study of the sensitivity of trajectories of pool balls to initial conditions.  In the first 
component of the study our simulations include all sixteen balls.   Variables include cue ball initial 
velocity and position on the “table”.  We find that in a certain regime of initial conditions the 
system seems to show self-similarity, but as the range of initial cue ball angle and initial velocity is 
restricted, the system exhibits an interesting evolution towards a single point in parameter space, 
with the ball landing in only one pocket. We also examine the effects of varying the number of 
balls on the table, and how their dynamics may be interpreted using various plots and maps. 
Finally, the trajectory of a single cue ball is examined while it moves through the table space. 
Starting with the cue ball placed in the middle of the right wall of the table (traditional and 
rectangular in shape) and fired directly downward the system exhibits a two-cycle pattern. Then 
as the angle of fire is increased the system exhibits a four cycle, a three cycle and finally a two 
cycle all separated by noisy patterns. Effects of numerical artificialities are briefly discussed.    
 
 
I. INTRODUCTION 
 
Chaos is derived from the Greek word for 
“abyss” and may be translated to mean 
“where chance is supreme”. In fact, popular 
notions equate chaos with randomness, 
which is not at all the true physical and 
mathematical definition. Chaos (often 
“deterministic chaos”) is the physical 
manifestation of sensitivity of a particular set 
of system outcomes to another set of its 
initial conditions1. Since the introduction of 
chaos into the field of physics many systems 
have been studied in order to understand 
disorder: e.g., cloud formation, weather 
patterns, and the stock market.  The game 
of pool has also been studied on a number 
of levels for geometrical, physical, and 
chaos-related reasons. There are a wide 
variety of pool simulators2-5 whose chief 
purpose is to entertain. Such simulators 
strive, with varying degrees of accuracy, to 
be as realistic as possible, including the 
effects of friction, spin, and non-ideal ball 
and bumper collisions. Although intricately 
programmed, enjoyable and in many cases 

customizable, such simulators lend 
themselves quite poorly to innovative 
scientific study due to the inability of a user 
to vary the model parameters and adjust the 
numerical output in novel ways. There are 
algorithms6,7 which model the behavior of 
one ball on tables whose boundaries have 
varying geometries and, in both visual and 
numerical settings, follow the balls through 
phase space and track the divergence of   
paths for initial conditions that could, in 
principle, start out arbitrarily close.    
 The purpose of this study is to 
formulate a reasonably realistic model of 
pool balls on a typical table and to have the 
ability to study the sensitivity of the system 
to initial conditions over a wide range of 
system parameters. By utilizing different 
output representations we may easily vary 
the algorithm to incorporate many different 
scenarios.  The task at hand is largely 
theoretical, while relying on experimental 
results for correspondence with actual data.  
Since much of the results are found by 
computation, we are also concerned with 
how the results depend on numerical 
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artificialities and how much are real physics.  
Such considerations are paramount in 
interpreting our results.  

for a horizontal wall (top or bottom of the 
table) and  

iiyy Svvv ˆˆ' ×+= β   (2c) 
 

 II. THEORY AND COMPUTATIONAL 
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Our model is classical in that Newton’s laws 
of motion govern its time evolution. As such, 
our double-precision FORTRAN algorithm 
steps the system through time, and 
therefore determination of the forces acting 
on the balls is central to the success of our 
endeavor. We can easily ignore gravitational 
interactions between the balls but three 
categories of interactions are identified as 
playing key roles: ball-table, ball-air and ball-
ball.  
 Ball-table interactions include 
friction, spin dampening and reflection at 
boundaries. The type of friction considered 
is not the static friction that results in rotation 
but an effective kinetic friction that results in 
damping of rectilinear center-of-mass 
motion: .ˆiiki vgmf µ−=

v
 Here mi is the 

mass of the ball, g is the acceleration of 
gravity and v̂ i is a unit vector in the direction 
of the velocity of ball (i). The coefficient of 
friction is measured experimentally and 
taken to be the same for all balls; important 
parameters used in this study are shown in 
Table 1. Balls may also be assigned spin 
angular momentum directed perpendicular 
to the table: 

for a vertical wall (left or right boundaries) 
and both conditions simultaneously if the 
ball hits a corner. Here the constant β 
reflects to what degree the ball’s spin 
couples with the edges of the table and, like 
α, can be measured experimentally by fitting 
equations (2a) and (2c) to the trajectories of 
real pool balls impacting the table walls with 
known spins. Using arguments of ball and 
table uniformity β (when included) may be 
taken to be the same for all balls. The 
program was tested with a value of 0.1 but 
this parameter was not used in the 
simulations presented here. The primed 
velocities represent those after the 
encounter and the unprimed ones are pre-
encounter velocities.   

The only ball-air interaction is taken 
to be drag resistance, 
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Here ρ is the density of the air, ri is the 
radius of the ball, CD is the drag coefficient, 
vi is the speed of the ball and v̂ i is a unit 
vector if the direction of the ball’s velocity 
which, when coupled with the negative sign 
in the equation, indicates that this force 
always acts in opposition to the ball’s 
motion.  
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Equation 1 reflects the fact that the spin of a 
particular ball damps with time due to 
dissipative forces. The constant α may be 
measured experimentally when it is to be 
included in a simulation by fitting a curve of 
the form in eqn. (1) to the rotational motion 
of real pool balls. No spin is used for the 
simulations presented in this paper.  This 
spin does not cause changes in the center-
of-mass motion of a particular ball unless it 
either reflects off a boundary or collides with 
another ball. For reflection of ball (i) we have 

After the forces on all N particles are 
calculated, the system is advanced in time 
utilizing a simple forward-difference scheme: r
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iiixix Svvv ˆˆ' ×+= β  The time step ∆t in the simulation is chosen 
such that any physical overlap of two pool 
balls is small compared to either of their 
dimensions. After the system has advanced, 
the algorithm considers ball-ball interactions.  
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Parameter 

 

 
Symbol 

 
Value 

 
Cue ball mass 

 
m1 

 
1.6x10-1 kg 

 
Cue ball radius 

 
r1 

 
2.79x10-2m 

 
Ball mass 

 
m2-m16 

 
1.7x10-1 kg 

 
Ball radii 

 
r2-r16 

 
2.86x10-2 m 

 
Coefficient of friction 

 
µk 

 
0.027 

 
Horizontal table dimension 

 
A 

 
2.6 m 

 
Vertical table dimension 

 
B 

 
1.3 m 

 
Drag coefficient 

 
CD 

 
0.5 

 
Acceleration of gravity 

 
g 

 
9.8 m/sec2 

 
Time step 

 
∆t 

 
10-3 sec 

 
Density of air 

 
ρ 

 
1.29 kg/m3 

 
Table 1. Important parameters used in the simulation. All measurements were made by the 
authors on a pool table in the student union at the University of Northern Iowa, and the 
dimensions of the table are not referenced explicitly in any of the equations. 

 
 

It sorts through all balls and determines 
which groups of balls were not initially 
touching and are now overlapping because 
of true collisions. A ball may collide with a 
group of balls already touching. In that case, 
the algorithm expands all the ball pairs (i,j) 

that are touching along ijr
v

 (to eliminate 
overlap) and then treats the collision as a 
series of virtual collisions which propagates 
by involving consecutive pairs of masses (i,j) 
overlapping in that group in a sequence: 
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Here ijv

v
 is the velocity of ball (j) relative to 

that of (i) and e is the elasticity of the 
collision, which can be taken to range 
anywhere from e=1 to e=0.1; e=1 is used in 
the work presented here (enabling us 
conduct runs with rather long simulated 
times) but e<1 was used to test the 
program. The parameter γ is an 

experimentally measured constant that 
describes the strength of the spin-spin 
coupling. The system is not allowed to 
advance in time unless a configuration is 
reached where a virtual collision does not 
result in particle overlap; this configuration is 
taken to be the real outcome of the collision. 
It is well known that uncertainty in the 
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outcome of the simulation may arise when 
more than two balls collide and touch at 
once8, which could also be the case. Since 
the algorithm searches for touching pairs, 
virtual collisions still proceed at different 
times when three or more balls collide at 
once. Such artificial delay introduces 
uncertainty in the outcome of the simulation 
and this effect must be alleviated. The post-
collision velocities are therefore calculated 
as averages of the velocities obtained when 
the algorithm searches once in forward 
order and once in reverse order. The 
method used was validated by testing it in 
situations involving simple geometries where 
the results are known: one- and two- 
dimensional arrays of interacting and non-
interacting masses undergoing collisions of 
varying elasticity – a mass colliding with two 
masses already touching for example. 

Various methods are undertaken to 
rule out unimportant variables but still have 
the theory reflect what is encountered in the 
real world.  For example, the simulation is 
run including all the types of interactions 
described earlier. However, for much of the 
computation even a very small friction 
coefficient or air resistance reduces the 
velocity of the pool balls enough to stop 
motion before conclusive results can be 
reached.  Due to this, air resistance and 
friction are eliminated for much of the study.  
In addition, our efforts to attempt an 
understanding of the system’s long-time 
behavior preclude the use of any spin for the 
time being.  It is important at this point to 
mention that we typically would run the 
program for hundreds of thousands to tens 
of millions of time steps, corresponding to a 
simulated time ranging between about 100 
seconds and 28 hours which take anywhere 
from 5 minutes to 16 hours using an 866 
MHz Pentium III processor. Thus, even a 
minute friction coefficient  (µ = .05, for 
example, similar to a smooth ski on ice) 
easily brings the system to a halt by 
depleting its kinetic energy. 

We conducted simulations with 
varying numbers of balls (N=16 and N=3), 
as well as with only the cue ball. In the 
former type of simulations there are six 
pockets placed at the positions of real 
pockets on traditional pool tables. The 
simulated pockets are semicircles of radius 
5cm and are numbered from 1 to 6. A ball 
“falls into a pocket” when reflecting from the 

wall such that its geometrical center lies 
within the pocket semicircle. Initial 
conditions include cue ball speeds in a 
range centered about 3m/sec and velocity 
angles centered about ϑ0 = 0o. The 
simulations with multiple balls are run out to 
108 time steps to ensure that most of the 
balls ended up in pockets. For simulations 
involving only the cue ball, however, the 
pool table perimeter is divided up into 300 
“pockets” of equal size, beginning with 1 at 
the upper left-hand corner and running 
clockwise to 300. In the simulations 
involving only the cue ball, the ball was not 
allowed to fall in any of the pockets. Our 
simulations involving only the cue ball were 
run out to 3x107 time steps. The ball is 
placed in the middle of the right side of the 
table with an initial speed of 3 m/sec and a 
velocity angle that varied from the ball being 
hit straight down to it being hit directly to the 
left.  

 
III. RESULTS 
 

Figures 1 and 2 show Kelly plots for 
ball 13 with various initial cue ball speeds 
and angles. Inspired by the artwork of 
Ellsworh Kelly, they can serve as a 
reasonable visual test for such physical 
processes as intermittency, Gaussian/uni-
form randomness, and Brownian motion to 
name a few.  Kelly plots show a sequence of 
parameters that are binned and sub-
sequently assigned numbers, which are then 
plotted as different colors. For our work we 
assigned a shade of gray to the number of 
the pocket a particular ball lands in (ball 13 
in this case) after 3x106 time steps versus 
the angle at which the cue ball approaches 
the rack (x-axis) and the velocity at which it 
initially travels (y-axis).   

Figure 3 shows return maps as well 
as histograms for the cue ball in simulations 
involving only three balls (top two plots) and 
all 16 balls (bottom two plots) for a 
simulation ran for 107 steps. For a certain 
parameter of the system taking on values 
{x1,x2,x3,…} the return map has points 
(x1,x2),(x2,x3), etc. In our case, the variable x 
is the point along the perimeter of the table 
where the ball reflects. Since the return map 
involves one position and the one 
immediately subsequent, it gives an 
indication as to the memory of the system. If 
the return map lies along the graph of a 
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Figure 1.  Kelly plots for ball 13 with various initial cue ball velocities and angles. The vertical 
axes are (v0-3m/sec) and the horizontal axes are initial cue ball velocity angle in degrees. All six 
pockets have different numbers, and the grayscale varies according to the pocket that the ball 
ultimately lands in. Note that the range of initial conditions tend to be restricted from upper left to 
lower right, over a wide range of initial conditions.  
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function then the parameter at each point 
depends only on the one before it and only 
one step is involved in determining the 
future of the system; more elaborate return 
maps suggest longer system memories. For 
histograms, a certain parameter is divided 
into bins and every time that parameter 
takes on a certain bin value, the counter for 
that bin is increased by one. Our histograms 
record the frequency of occurrence of 
reflection of the cue ball from a given point 
along the perimeter of the table. Histograms 
are designed to give an idea of the amount 
of time the system spends in certain regions 
of phase space – points along the table 
perimeter in our case. Histograms are also 
useful in determining if the system exhibits 
any n-fold periodic motion in phase space: a 
perfect n-cycle (n being an integer greater 
than zero) or possibly in a noisy n-cycle. 
Figures 4-6 show return maps (left) and 
histograms (right) for the cue ball in 
simulations involving only the cue ball for 
various initial conditions.  
 Bifurcation occurs when the 
behavior of a system changes suddenly for 
a small change in some parameter, and is a 
hallmark of chaotic behavior. Figure 7 is a 
bifurcation diagram for simulations involving 
only the cue ball. Bifurcation diagrams plot 
the certain position values (on the y-axis) 
versus a chosen parameter (on the x-axis). 
Our bifurcation diagrams plot the position 
along the perimeter of the table the cue ball 
reflects from along the y-axis vs. its initial 
velocity angle on the x-axis. So if a 
bifurcation diagram is scanned vertically, a 
histogram is recovered, only lacking 
information about relative peak intensity. 
Bifurcation diagrams are useful in 
understanding how the system dynamics 
changes with x-axis parameter value.   
 
IV. DISCUSSION  
 
a. Simulations with 16 balls 

 
After running the program numerous 

times and examining the results of each of 
the runs we conclude that there is indeed a 
profound effect of initial conditions on the 
final outcome of the system.  Of all our 
results, the most basic and information-rich 
analysis tools are Kelly plots.  In Figure 1 it 
appears that they show signatures of some 
type of randomness. In addition, they appear 

to exhibit self-similarity, a hallmark of chaotic 
systems—appearing the same over a wide 
range of parameter space. Figure 2 shows 
that as the phase space range of initial 
conditions constricts, the system shows a 
complicated evolution from an apparently 
random, noisy pattern to a single color 
(single pocket) plot.   

An anomaly occurred during the 
computational process that warrants some 
attention.  After studying the Kelly plots it 
became clear that a pattern was present in 
the form of vertical demarcations (seen in 
Figure 2).  Much debate went into the 
question of whether this vertical structure is 
due to artificialities of computation or due to 
real physics.  Eventually, the answer was 
found, and the results worth mentioning 
here. For small angles ϑ in radians the sine 
function can be approximated by θθ ≈sin  

and the cosine function by 
2

1
2θ

−≈cos . 

So, even in double precision, a point is 
reached at small enough initial cue ball 
velocity angles where the sine function is 
correctly computed but the cosine function is 
not because the actual angular dependence 
on the angle is so small compared to unity 
that round-off error occurs. Hence, the 
cosine function does not continuously vary 
with theta but behaves rather like a step 
function in regions of very small angle. At 
any rate the system seems to exhibit strong 
sensitivity to initial conditions up until the 
point at which the ball lands in only one 
pocket (when the range of initial conditions 
is very restricted). 

θ

 
b. Simulations with varying numbers of balls
  
The histograms in Figure 3 do not seem to 
be very useful, with the exception that they 
confirm that it is highly unlikely that any balls 
will strike the corners of the table. The return 
maps, on the other hand, tell much about 
the dynamics of the system. Note, for 
example, that the plot for N = 3 is much 
denser than that for N = 16. This is a direct 
result of the fact that there are more ball-ball 
collisions for N = 16 and hence less chance 
for the ball to strike a “pocket” directly after 
having hit another pocket.  Note also that 
there are vertical and horizontal lines that 
are un-populated; such lines correspond to
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Figure 2. Kelly plots for ball 13 in the same format as in Figure 1, only with a further restricted 
range of initial conditions. Note the presence of vertical demarcations in the first two plots. The 
initial conditions ultimately restrict so that the plots show one uniform shade of gray, 
corresponding to the ball’s landing in only one pocket. 
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Figure 3.  Return maps and histograms for N = 3 (top plots) and N = 16 (bottom plots).  In the
return maps, both axes are “pocket” number on the table perimeter; for the histograms, the
vertical axis is reflection frequency and the horizontal axis is “pocket” number. 
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Figure 4.  Return maps (left) and histograms (right) for simulations involving only the cue
ball.  The ball is directed straight downward, 0.001° left of downward, 0.0001° right of the
middle of the bottom wall, and directly at the middle of the bottom wall (from top to bottom in
the figure). Axis formats are the same as for those in Figure 3). 
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corners and are consistent with the 
histograms.  It is also apparent that, taking 
the plot densities into account, the diagonal 
for N = 3 is much less populated compared 
to that for N = 16. This is the case because 
the diagonal represents those collisions in 
which a ball strikes a pocket, reflects off 
another ball and hits the same pocket again. 
Clearly such an event is much less likely for 
N = 3 than for N = 16.  From all the return 
maps we conclude that long-time memory 
(history) is important for the systems 
examined. 
 
c. Simulating only the cue ball 

 
Figures 4-6 provide detailed 

information about the dynamics of the cue 
ball in the absence of any others. Both the 
return map and histogram show that when 
hit straight down the ball is in a 2-cycle. In 
this case, the coordinate (125,275) for the 
return map means the ball started at point 
125 and moved in a straight line across the 
table to point 275.  It then moved from point 
275 back to point 125. The figure is of one 
ball moving back and forth alone on the 
table. Then, when the angle of its initial 
velocity is changed slightly it would appear 
that the system exhibits noisy four-cycles of 
various types, even when hit just short of the 
middle of the bottom table wall. When hit 
directly at the middle of the table bottom the 
ball is then locked in a 4-cycle. Then, 
sensitivity to initial conditions once again 
comes into play as the ball exhibits noisy 
four-cycles until it is hit directly to the lower 
left corner of the table, where it shows a 
three-cycle. One must be very careful to 
interpret the plots, however, bearing in mind 
that each corner is comprised of two table 
segments, or “pockets”. So each corner 
registers two points and the side registers 
only one. Then, strong sensitivity to initial 
conditions is exhibited as the pattern of the 
ball becomes noisy until it is hit directly to 
the middle of the left wall of the table, 
undergoing a 2-cycle again. Based upon the 
appearance of the return maps we conclude 
that long-term memory is much less 
important for the cue ball alone than for 
cases where multiple balls are present. 

The bifurcation plot in Figure 7 
shows not only that the cue ball dynamics 
depend strongly on initial angle but that the 
greatest sensitivity occurs for angles closest 

to ϑ0 = 0o. This makes sense because at ϑ0 
= 0o the system is locked in a two-cycle and 
immediately changes behavior to a noisy 
two-cycle, even for the smallest values of ϑ0 
we use.   

Although it is desirable to further 
analyze the return maps and certain Fourier 
transforms of other plots to understand the 
frequency behavior of the systems in 
question we certainly see that apparently the 
dynamics of even a one-ball system are 
extremely sensitive to initial conditions. In 
addition, our studies with only one ball prove 
very useful in validating the return maps and 
provide evidence that our algorithm for 
collisions does not produce significant 
numerical round off in the timescale of 
interest. We emphasize, however, that finite 
simulation time is a strong hindrance to 
proper (let alone absolute) interpretation of 
computer simulation results, and a finite time 
effects analysis would be most useful in 
determining, for example, if the system is 
really showing noisy 4-cycles or will 
ultimately show other types of behavior. 
Conclusion 
 As mentioned in detail and 
enumerated previously, we conclude that 
the systems presented in this paper show 
chaotic behavior. The results and 
interpretations of our study agree with the 
work of Giordano, who conducts billiard 
simulations with the intent of detecting 
chaos.9 Several different table shapes are 
examined, including circles, squares and 
“stadium”. The stadium shape is formed by 
two semicircles joined by straight segments 
of varying length. Phase space plots and 
divergence of the trajectories of two balls 
started out very close to one another are 
used to conclude that only for highly 
symmetric table shapes (square and circle 
for example) is the motion of a billiard non-
chaotic. Even for tables that are stadium-
shaped to the smallest degree, and certainly 
for those shapes that approximate traditional 
pool tables as used in our simulations, 
chaotic behavior is observed. 
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Figure 5.  Return maps (left) and histograms (right) for simulations involving only the cue
ball.  The ball is directed 0.001° to the left of the middle of the bottom wall, 0.0001° to the
right of the lower left corner, and directly at the lower left corner (from top to bottom in the
figure).  Axis formats are the same as for those in Figure 3. 
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Figure 6.  Return plots (left) and histograms (right) for simulations involving only the cue ball.
The ball is directed 0.001° above lower left corner, 0.0001° below the middle of the left wall
and directly at the middle of the left wall (from top to bottom in the figure). Axis formats are
the same as for those in Figure 3. 
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