
SAND REPORT
SAND2002-0482
Unlimited Release
Printed February 2002

An Evaluation of the Material Point
Method

Zhen Chen and Rebecca Brannon

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico  87185 and Livermore, California  94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE:  This report was prepared as an account of work sponsored by an agency of
the United States Government.  Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume
any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represent that its use would
not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their contractors or
subcontractors.  The views and opinions expressed herein do not necessarily state or
reflect those of the United States Government, any agency thereof, or any of their
contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN  37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering:  http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA  22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order:  http://www.ntis.gov/ordering.htm



SAND2002-0482
Unlimited Release

Printed February 2002

An Evaluation of the Material Point Method

Zhen Chen
Department of Civil and Environmental Engineering

University of Missouri-Columbia
Columbia, MO 65211-2200

Rebecca Brannon
Department of Materials Mechanics

Sandia National Laboratories
PO Box 5800

Albuquerque, NM 87185-0893

Abstract

The theory and algorithm for the Material Point Method (MPM) are documented,

with a detailed discussion on the treatments of boundary conditions and shock wave

problems. A step-by-step solution scheme is written based on direct inspection of the

two-dimensional MPM code currently used at the University of Missouri-Columbia

(which is, in turn, a legacy of the University of New Mexico code). To test the

completeness of the solution scheme and to demonstrate certain features of the MPM, a

one-dimensional MPM code is programmed to solve one-dimensional wave and impact

problems, with both linear elasticity and elastoplasticity models. The advantages and

disadvantages of the MPM are investigated as compared with competing mesh-free

methods. Based on the current work, future research directions are discussed to better

simulate complex physical problems such as impact/contact, localization, crack

propagation, penetration, perforation, fragmentation, and interactions among different

material phases. In particular, the potential use of a boundary layer to enforce the traction

boundary conditions is discussed within the framework of the MPM.
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1.  Introduction

Throughout the last few decades, several kinds of “meshless” methods for spatial

discretization have been proposed in the computational mechanics community. Because

these “meshless” methods do not use a rigid mesh connectivity as compared with the

conventional mesh-based methods such as FEM, FDM and BEM, they have been applied

to some complex problems of current interests such as impact/contact, localization, crack

propagation, penetration, perforation and fragmentation. Although academic exercises

have demonstrated the robustness and potential of these “meshless” methods, they have

not found their way successfully into general practical applications due to some unsolved

problems such as boundary treatments, large rotation, and interactions among different

material phases. The fact that no consensus has been made on the formal name of this

type of method reflects the controversy involved in the development of any innovative

approach for simulating the above-mentioned complex problems.

As one of the most straightforward spatial discretization methods, the Material

Point Method (MPM) is an extension to solid mechanics problems of a hydrodynamics

code called FLIP which, in turn, evolved from the Particle-in-Cell Method dating back to

the pioneering work of Harlow [1964]. The motivation of the development was to

simulate problems such as impact/contact, penetration and perforation with history-

dependent internal state variables, as advocated in several important publications about

the MPM [Sulsky et al., 1994 and 1995; Sulsky and Schreyer, 1996]. The essential idea is

to take advantage of both the Eulerian and Lagrangian methods, which can be

summarized as follows.

1.1 Governing Equations of Continuum
For a continuum under purely mechanical loading, the governing differential

equations can be derived from the conservation equation for mass,

0
dt

d
���� v�

� (1-1)

and the conservation equation for momentum,

bsa �� ���� (1-2)
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supplemented with a suitable constitutive equation, and kinematic relation between strain

and displacement. In Eqs. (1-1) and (1-2), � �t,x�  is the mass density, � �t,xv  is the

velocity, � �t,xa  is the acceleration, � �t,xs  is Cauchy stress tensor, and � �t,xb  is the

specific body force. The vector x is the current position at time t of any material point in

the continuum. For given boundary and initial data, the governing differential equations

can be solved either analytically or numerically, if they are well-posed. The key

difference among different spatial discretization methods is the way in which the gradient

and divergence terms are calculated.

1.2   Discrete Forms of the Governing Equations
The MPM discretizes a continuum body with the use of a finite set of pN material

points in the original configuration that are tracked throughout the deformation process.

Let t
px  ( pN,...,2,1p � ) denote the current position of material point p at time t. Each

material point at time t has an associated mass pM , density t
p� , velocity t

pv , Cauchy

stress tensor t
ps , strain t

pe , and any other internal state variables necessary for the

constitutive model. Thus, these material points provide a Lagrangian description of the

continuum body. Since each material point contains a fixed amount of mass for all time,

Eq. (1-1) is automatically satisfied. At each time step, the information from the material

points is mapped to a background computational mesh (grid). This mesh covers the

computational domain of interest, and is chosen for computational convenience. After the

information is mapped from the material points to the mesh nodes, the discrete

formulation of Eq. (1-2) can be obtained on the mesh nodes, as described below.

The weak form of Eq. (1-2) can be found, based on the standard procedure used in

the FEM [see, for example, Sulsky et al., 1994 and 1995; Sulsky and Schreyer, 1996], to

be

�� �� ��������
���

������� ddSd:d cS
s bwwcwsaw s (1-3)

in which w denotes the test function, ss  is the specific stress (i.e., stress divided by mass

density, �/ss s
� ), �  is the current configuration of the continuum, cS  is that part of

the boundary with a prescribed traction, and w is assumed to be zero on the boundary
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with a prescribed displacement. To our knowledge, no MPM code has yet been written

that supports nonzero tractions on a moving boundary. Below, we will introduce the

concept of a boundary layer to enforce the moving traction boundary condition with the

use of the specific traction vector sc (i.e., traction divided by mass density).

Since the whole continuum body is described with the use of a finite set of

material points (mass elements), the mass density can be written as

� � � ��
�

��
pN

1p

t
ppMt, xxx �� (1-4)

where �  is the Dirac delta function with dimension of the inverse of volume. The

substitution of Eq. (1-4) into Eq. (1-3) converts the integrals to the sums of quantities

evaluated at the material points, namely

� � � �� ��
�

�
pN

1p
p t,t,M t

p
t
p xaxw

� � � � � � � � � ��
�

�

��
�

��
	 �
�
���

pN

1p

1
p t,t,ht,t,:t,M t

p
t
p

t
p

st
px

t
p

s xbxwxcxwwxs t
p

(1-5)

with h being the thickness of the boundary layer. As can be seen from Eq. (1-5), the

interactions among different material points are reflected only through the gradient terms,

and a suitable set of material points must be chosen to represent the boundary layer. In

the MPM, a background computational mesh is required to calculate the gradient terms.

To do so, suppose that a computational mesh is constructed of 2-node cells for one-

dimensional problems, 4-node cells for two-dimensional problems, and 8-node cells for

three-dimensional problems, respectively. These cells are then employed to define

standard nodal basis functions, � �xiN , associated with spatial nodes � �tix , i = 1, 2,…,

nN , with nN  being the total number of mesh nodes. The nodal basis functions are

assembled from conventional finite element shape functions. For instance, the shape

functions for a 2-node cell take the forms of

��� 1N1 (1-6a)

��2N (1-6b)
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where �  is the natural coordinate of a material point in the cell along the x-direction. For

two-dimensional problems, a 4-node cell is employed with the shape functions given by

� �� ��� ��� 11N1 (1-7a)

� ��� �� 1N2 (1-7b)

���3N (1-7c)

� ����� 1N4 (1-7d)

in which �  and �  are the natural coordinates of a material point in the cell along the x-

and y-direction, respectively. The coordinates of any material point in a cell can then be

represented by

� �t
p

t
i

t
p xxx �

�

�

nN

1i
iN (1-8)

If the displacements of any material point in a cell are defined by the nodal

displacements, � �tt
iu , it follows that

� �t
p

t
i

t
p xuu �

�

�

nN

1i
iN (1-9)

Since the same basis functions are used for both spatial coordinates and displacements,

kinematic compatibility demands that the basis functions must advect with the material,

as in the updated Lagrangian framework. In other words, the material time rates of the

basis functions must be zero. Hence, it follows that the velocity and acceleration of any

material point in a cell are represented by

� �t
p

t
i

t
p xvv �

�

�

nN

1i
iN (1-10)

and

� �t
p

t
i

t
p xaa �

�

�

nN

1i
iN (1-11)

with t
iv  and t

ia  being nodal velocities and accelerations, respectively. The test function

has also this form,

� �t
pxww �

�

�

nN

1i
i

t
i

t
p N (1-12)
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The use of Eqs. (1-8)-(1-12) ensures that the associated vectors are continuous across the

cell boundary. However, the gradients of these vectors are not continuous across the cell

boundary due to the use of linear shape functions. Note that the variables evaluated at

material points are related to the nodal values through the shape functions, as can be seen

from Eqs. (1-8) - (1-12).

Substituting Eqs. (1-11) and (1-12) into Eq. (1-5) yields

t
jaw� �

� �

�

n nN

1i

N

1i

t
ij

t
i m

t
i

t
i

t
i

t
ix

t
i bwcwsw ��������� ����

����

nn

t
p

pn N

1i

N

1i
i

t,s
p

N

1i
p

N

1i
NM (1-13)

at time t. In Eq. (1-13), the consistent mass matrix is given by

� � � ��
�

�

pN

1p
jip

t
ij NNMm t

p
t
p xx (1-14)

with corresponding lumped nodal masses

� ��
�

�

pN

1i
ip

t
i NMm t

px (1-15)

The discrete specific traction takes the form of

� ��
�

�

�

pN

1p
i

1,
p NhM t

p
ts

p
t
i xcc (1-16)

with � �t,, t
p

sts
p xcc � , while the specific body force is discretized as

� �t
p

t
p

t
i xbb i

N

1p
p NM

p

�
�

� (1-17a)

with � �t,t
p

t
p xbb � . Alternatively, if the vector b is a known function of position and time,

as for gravity, then the nodal body force can be computed directly by

� � t
ii mt,t

p
t xbb � (1-17b)

Since t
iw  are arbitrary except where the components of displacement are prescribed, Eq.

(1-13) becomes

� � � �extintt
im t

i
t

i
t
i ffa �� (1-18)
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for a lumped mass matrix, where the internal force vector is given by

� � � �t
pi

ts
p

t
i xGsf ��� �

�

pN

1p

,
p

int
M (1-19)

with � �t,, t
p

sts
p xss �  and � � t

px
t
pi xG iN�� , and the external force vector is

� � t
i

t
i

t
i bcf ��

ext
(1-20)

As can be observed from Eqs. (1-15) - (1-17), and Eq. (19), the information is mapped

from material points to the nodes of the cell containing these points, through the use of

shape functions. If a material point is located in the center of a cell, the information from

the particle would be equally mapped to the cell nodes, as can be found from the shape

functions defined in Eqs. (1-6) and (1-7).

An explicit time integrator is used to solve Eq. (1-18) for the nodal accelerations,

with the time step satisfying the stability condition, i.e., the critical time step being the

ratio of the smallest cell size to the wave speed. The boundary conditions are enforced on

the cell nodes, as discussed in more detail later. After the equations of motion are solved

on the cell nodes, the new nodal values of velocity are then used to update the position of

the material points. The strain increment for each material point is determined with the

use of the gradient of the nodal basis function evaluated at the material point position.

The corresponding stress increment can be found from the constitutive model. Any

internal state variables can also be assigned to the material points and transported along

with them. Once the material points have been completely updated, the computational

mesh may be discarded, and a new mesh is defined, if desired, for the next time step. 

 As illustrated in Section 3 with a step-by-step solution scheme, the key feature of

the MPM is the use of the same set of nodal basis functions for both the mapping from

material points to cell nodes to solve Eq. (1-18), and the mapping from cell nodes to

material points to update the material point information for the next time step.

2.  Boundary and Shock Wave Treatments

ONE TENTATIVE METHOD

Since the equations of motion are solved on the cell nodes, it is natural to enforce

both essential and natural boundary conditions on the nodes of the cells containing the
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boundary particles. For essential boundary conditions, this treatment is consistent with

the weak form of the governing equations because t
iw  are assumed to be zero on the

essential boundary. For moving natural boundary conditions, we are tentatively proposing

that the traction carried by the boundary particles should be mapped to the cell nodes

according to Eq. (1-16), and the external force vector would then be formed based on Eq.

(1-20). Since the continuum body is moving in an arbitrary computational mesh, all the

boundary conditions are carried by the boundary particles. If only one boundary particle

is located in a cell, the cell boundary becomes a part of the continuum boundary, and the

cell size represents the thickness of boundary layer. If both boundary and interior

particles of the continuum are located in a cell, this cell becomes a mixed one. However,

the mixed cell is still treated as a boundary cell. In other words, the interior particles

temporarily become boundary ones. To avoid numerical errors, therefore, small cells

must be used to contain only boundary particles if possible, and the boundary conditions

must be enforced in each time step. For instance, a quad-tree mesh refinement could be

used near physical boundaries.

The essential boundary conditions considered here include no slip, prescribed

tangential velocity and normal velocity, respectively. Because the shape functions are

continuous, no-slip impact and penetration between bodies are handled automatically by

the MPM without the need for any supplemental contact algorithm.

To produce a sharp shock wave front under impact, the viscous damping stress

tensor, t
pq , is added to the material point stress tensor, t

ps  [York et al., 2000], based on

the work by Wilkins [1980]. With i being the second order identity tensor, the viscous

damping stress takes the form of

iq t
p

�
�
�

�

�

�
�
�

�

�

��
t
p

t
p2

1
t
p

t
p

2
max

Dmax

Dc
cDgc �� (2-1)

where

��

�
�
�

���

�����
	

00

0
Dt

p
t
p

t
p

t
p

x

xx

v

vv
(2-2)
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In Eq. (2-1), maxc  is the maximum sound speed, g is a geometric constant proportional to

the mesh size, � is an artificial bulk modulus, and 1c  and 2c  are constants. The variable

t
pD  defined in Eq. (2-2) forces the viscous damping stress to be zero unless the material

point is in compression. With different values of 1c  and 2c , a reasonable shock wave

front can be obtained for given geometry, material properties and loading conditions.

ALTERNATIVE METHODS

The MPM has been herein shown to be a minor modification of the traditional

finite element method. The classic nodal force and mass matrix integrals for the FEM

grid are written in the usual FEM manner, but the MPM then discretizes these FEM

integrals through the use of a Dirac delta function to approximate the density field.

Instead of invoking a Dirac delta density field, an alternative interpretation of the

MPM is that the integrals (which are initially defined over the entire body) are broken up

into a sum of integrals over the physical domains associated with the material particles.

Of course, the actual shape of the particle domains is not monitored, so the sub-integrals

cannot be computed exactly. For interior particle domains (i.e., particle domains that do

not share a boundary with the true body boundary), information about the integrand is

known only at the particles themselves; consequently, the best approximation of the

integral is obtained by simple single-point integration. Using single point integration

gives a result at interior particles that is identical to the result from using a Dirac delta

density field. However, for boundary particles (i.e., particles whose physical boundary at

least partly overlaps the body boundary), greater information is known about the

integrand – one knows the value of fields at the particle and also at the particle’s

boundary. Consequently, the FEM integrals at boundary particles can be computed more

accurately via a two-point integration scheme. With this approach, there is no need to

introduce supplemental points lying on the body boundary itself. Instead, the interior

particles that are abutted with the body boundary can be readily identified and endowed

with additional geometrical information (i.e., a vector from the particle to the boundary

location). Hence, rather than assuming uniform fields (i.e., single point integration), a

linearly varying approximation to the fields can be constructed at boundary particles.
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This approach would permit boundary conditions to readily propagate into the body’s

interior.

Again we reiterate that the MPM is really only a minor modification of traditional

finite element methods where the finite element integrals are evaluated using an

alternative set of Lagrangian integration points that are fully uncoupled from the choice

of the finite element mesh. In every instance of MPM that we have seen to date, the mesh

has been chosen to be rectangular for computational convenience. However, this does not

have to be the case. The fact that the integration points (material particles) are Lagrangian

makes them ideally suited for history-dependent constitutive models. The fact that the

finite element mesh may be constructed with any desired topology makes the MPM

appealing for large-deformation problems. Recognizing that the MPM is only a minor

modification of traditional finite element methods, it makes good sense to develop an

MPM code by retrofitting a mature production-quality FEM code. That way, all of the

FEM infrastructure (graphics, data management, etc.) that took years to develop remains

available. One such infrastructure already present in FEM codes is the ability to construct

meshes that conform to the physical boundary of the body. So-called “arbitrary

Lagrange-Eulerian codes” are able to use meshes that always move with the body

boundary while allowing any level of remeshing on the interior of the body. This sort of

capability suggests an ideal solution to the question of enforcing  boundary conditions: by

using a boundary conforming internally-refined ALE mesh, the boundary conditions

could be imposed in the traditional FEM way! This benefit could very well outweigh the

inconvenience of using traditional FEM meshes while retaining the advantage of

permitting rezoning to avoid mesh tangling. This approach will be further explored in

later work.

3.  Solution Scheme

Based on the two-dimensional MPM code currently used at the University of

Missouri-Columbia, a step-by-step solution scheme is given as follows, which consists of

preprocessor, central processing unit and postprocessor.
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Preprocessor

1. A continuum body is discretized into a set of material points with respect to the

original configuration of the body. The number of material points depends on the number

of the division of the body volume. Each material point carries its original material

properties and has its own constitutive relation. The material points are followed

throughout the deformation of the body, which provides a Lagrangian description of

motion. An arbitrary computational grid can be used to find the natural coordinates of

any material point, and the grid cell that contains the point. For the purpose of simplicity,

however, a square grid with uniformly distributed cells is employed in the 2-D code, and

the grid is fixed throughout the computation.

2. Initialize all the state variables (velocity, strain, stress, internal state variables,

etc.) at the material points. Input the control parameters of the code.

Central Processing Unit

The detailed steps in each cycle are as follows:

1. For each material point (particle), perform the mapping operation from particles

to cell nodes.

Map the mass from the particles to the nodes of the cell containing these particles,

� ��
�

�

pN

1p
ip

t
i NMm t

px (3-1)

where t
im  is the mass at node i at time t, pM  the particle mass, iN  the shape function

associated with node i, and t
px  the location of the particle at t.

Map the momentum from the particles to the nodes of the cell containing these

particles,

� � � � � ��
�

�

pN

1p

t
i

t
p

t
i NMm pxvv (3-2)

where � �timv  denotes the nodal momentum at node i at t, and � �tpMv  the particle

momentum at t.

Find the internal force vector at the grid nodes,



13

� � � ��
�

���

pN

1p
t
p

pt
p

int M

�

sxGf t
pi

t
i (3-3)

in which � �t
pi xG  is the gradient of the shape function associated with node i evaluated at

t
px , t

ps  is the particle stress tensor at t, and t
p�  is the particle mass density at t.

2. Apply essential and natural boundary conditions to the grid nodes, and compute

the nodal force vector,

� � � �extint t
i

t
i

t
i fff �� (3-4)

where � �extt
if  represents the external nodal force vector, as defined in Eq. (1-20).

3. Update the momenta at the grid nodes,

� � � � tmm tt
i

tt
i �
�

ifvv ��
� (3-5)

4. For each material particle, perform the mapping operation from the nodes of the

cell containing the particle to the particle.

Map the nodal accelerations back to the particle,

� ��
�

�

nN

1i
it

i

N
m

t
p

t
it

p x
f

a (3-6)

Map the current nodal velocities back to the particle,

� � � ��
�

�

�
�

nN

1i
it

i

tt
i N

m

m t
p

tt
p x

v
v

�

� (3-7)

Compute the current particle velocity for strain calculations,

ttt
p �
� t

p
t
p avv ��

� (3-8)

Compute the current particle position,

t��� tt
p

t
p

tt
p vxx ��

�� (3-9)

Equation (3-9) represents a backward integration.

Compute the particle displacement vector,
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0
p

tt
p

tt
p xxu ��

�� �� (3-10)

As can be seen from Eqs. (3-7) and (3-9), nodal shape functions are used to map the

nodal velocity continuously to the interior of the cell so that the position of the particles

are updated by moving them in a single-valued, continuous velocity field. Because the

velocity tt
pv ��  instead of the velocity tt

pv ��  is used to update the particle position to

reduce the potential numerical error, interpenetration between material bodies is

precluded in numerical solutions. This unique feature of the MPM allows simulations of

impact and penetration problems without the need for a special contact algorithm.

5. Map the updated particle momenta back to the nodes of the cell containing these

particles,

� � � � � ��
�

��

�

pN

1p
i

tt
p

tt
i NMm t

pxvv �� (3-11)

6. Find the updated nodal velocities,

� �
t
i

tt
i

m

m �

�

�

�
�

v
v tt

i (3-12)

7. Apply the essential boundary conditions to the grid nodes of the cells containing

the boundary particles. For the essential boundary conditions, this treatment is consistent

with the weak form of the governing equations because t
iw  are assumed to be zero on the

essential boundary

8. If needed for a constitutive model, find the current gradient of particle velocity

� ��
�

��
�

nN

1i

t
pi

tt
i

tt
p xGvL �� (3-13a)

the particle strain increment

� � tsymp ��
�tt

pLe �
� (3-13b)

and the updated deformation gradient tensor
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� ��
�

��
��

nN

1i

t
p

t
pi

tt
p

tt
p FxGxF �� (3-13c)

9. Find the stress increment from the constitutive model for the given strain

increment, and update the particle stress tensor,

sss t
p

tt
p �
�

��
� (3-14)

10. Identify which grid cell each particle belongs to, and update the natural

coordinates of the particle. This is the convective phase for the next time increment.

11. Go to Step 1 for the next time increment, if the required termination time has not

been reached.

As can be found from Eqs. (3.6), (3.7) and (3.12), the numerical solution process would

be broken if t
im  is close to zero, which happens when no particles exist within the

support domain of iN . If t
im  is less than a small number set by machine precision, these

equations are not calculated in the code.
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4.  Verification and Demonstration

To test the completeness of the solution scheme and demonstrate the features of

the MPM, a one-dimensional MPM code is developed here, without considering the

viscous damping stress, to solve one-dimensional wave and impact problems. The

simplicity of 1-D problems makes it possible to provide a deeper insight into the unique

features of the MPM than 2-D and 3-D problems.

Consider an elastic bar with length L = 1, Young’s modulus E = 10000, Poisson’s

ratio � = 0, and mass density � = 1 so that the wave speed is 100/ �� �EC . In the

first test problem, a tensile step force f = 1 is applied to the bar’s right end, with its left

end being fixed. Here, we have intentionally defined a problem involving only

infinitesimal displacements so that the effects of particle convection and moving

boundary can be avoided, which permits a fair comparison between the MPM and FEM

solutions. In the MPM simulation, the number of cells is the same as that of particles; in

other words, one particle per cell is used. As shown in Figs. 1-2, the stress wave profiles

are improved if the number of particles is increased from 10 to 500, which is similar to

the finite element solutions with single-point Gauss integration. Both essential and

natural boundary conditions are enforced at the boundary cell nodes, while the stress is

evaluated at the particles. To investigate whether the code will separate particles when

the tensile waves meet in the center, Figs. 3a and 3b demonstrate the wave propagation

along the same elastic bar, but the boundary condition becomes that both ends are

subjected to a step force f = 1. By replacing the tensile step force with a compressive

rectangular impulse of magnitude 1 and duration L/C, applied at both ends of the bar,

Figs. 4a and 4b illustrate the wave propagation along the elastic bar. Again, the numerical

solutions are similar to the finite element solutions. As can be seen from Figs. 5 and 6, no

separation occurs in both tension and compression. The reason is that the existence of at

least one particle per cell causes the material to be treated as contiguous and coherent,

namely, no separation.

Now consider the impact between two elastic bars of equal length L = 0.5, with

the same material properties as before. The motion of the bars and the corresponding

stress wave profiles are shown in Figs. 7-10. As can be seen, two bars start to separate
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from each other when the reflected tensile waves cancel the compressive waves and reach

the middle point. To test whether a cell without a particle represents a space, elastic wave

propagation in two bars separated by an empty cell is examined in Figs. 11-12. The

results appear to be reasonable. To investigate the impact between two elastoplastic bars,

the motion of the bars and the corresponding stress profiles are given in Figs. 13-16, for a

linear strain-hardening model with elasto-plastic tangent modulus being a quarter of

Young’s modulus, and in Figs. 17-20, for an elastic-perfect-plastic model. These figures

demonstrate the capability of the MPM to simulate impact and wave responses.

To further demonstrate the contact/impact scheme of the MPM, consider the

impact between two separate elastic bars of unit area with an initial velocity 0V . Recall

that each nodal value of any field is influenced only by those particles within the support

domain of the node. Therefore, the velocity gradient is nonzero only if the particles

within the support domain of the node have different velocities. While the left and right

bars are freely translating in the space, with a constant speed, we know that the velocity

gradient in each bar must be zero based on the physics. This physical property is

preserved in the MPM because the velocity assigned to the boundary node is determined

by the particle in the support domain of that node. As can be observed from Eqs. (3.1),

(3.2) and (3.12),, the boundary nodal velocity is equal to the boundary particle velocity,

and the boundary particle therefore experiences no velocity gradient, as long as the nodal

force vector is zero. This is the case for a bar moving in the space with a constant

velocity the nodal momenta will not change with time as shown in Eq. (3.5). A zero

velocity gradient will persist until the support domain of the boundary node contains

particles with different velocities. Consequently, the two bars will not interact with each

other until the boundary particle of each bar is within the support domain of a single

node.

Just before impact as shown in Fig. 0-1, the strain increment of particle 3  and 4 ,

can be calculated, from the shape functions defined in Eq. (1-6), to be

0t
h

v
t

h

v0
e

c

3

c

3
3 ���

�

� ��� (4-1)

and
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�

� ��� (4-2)

respectively, because of 0v3 � , 0v4 �  and 0v5 � . In Eqs. (4-1) and (4-2), ch

represents the cell size.

Figure 0-1

The corresponding stress increments are given by 33 eEs �� �  and 44 eEs �� �
� . The

stress distribution just after impact is shown in Fig. 0-2.

Figure 0-2

In the restitution phase, the reflected tensile wave cancels the compressive wave. Just

before separation, the stress distribution is depicted in Fig. 0-3.

Figure 0-3
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Just before and after impact, the force mapped from particle 3  to node 3 is given by

0
h

s
s

h

1
f

c

3
3

c
3 ����

�

�
��
�

�
		� (4-3)

as can be found from Figs. 0-2 and 0-3. The force mapped from particle 4  to node 5 is

given by

0
h

s
s

h

1
f

c

4
4

c
5 
	���

�

�
��
�

�
	� (4-4)

At node 4, 0f4 �  because the forces mapped from particle 3  and 4  cancel each other.

Hence, particles 3  and 4  will move away from each other once just before impact, and

again just after impact. As a result, two bars separate from each other.

The above case is in contrast to the case where a bar is subjected to compressive

forces at both ends. As can be seen from Figs. 4 and 6 that are discussed before, the

center particles will move toward each other, when two compressive waves meet at the

center, in the same amount as they move away from each other when reflected tensile

waves cancel the compressive waves at the center. At C/L5.1t � , the center particles

move back to its original positions. Hence, the single bar will not be separated at the

center in the MPM simulation.

Now consider a single elastic bar of unit area under tensile loading at both ends,

as shown in Fig. 0-4.

Figure 0-4

Just after two tensile waves meet at the middle point of the bar, the stress distribution is

demonstrated in Fig. 0-5.
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Figure 0-5

Since the magnitude of the reaction from particle 5  to node 5, 55f
�

, is larger than that

from particle 4  to node 5, 54f
�

, particle 4  moves toward node 5. Similarly, particle 3

moves toward node 3.

After the stress wave is doubled at the middle point of the bar, the stress

distribution is shown in Fig. 0-6.

Figure 0-6

Now the magnitude of the reaction from particle 5  to node 5, 55f
�

, is less than that

from particle 4  to node 5, 54f
�

, so that particle 4  moves toward node 4. Similarly,

particle 3  moves toward node 4. Hence, both particles 3  and 4  would move toward

each other. In other words, the bar would not be separated at the center.
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As can be seen from the above qualitative analysis, the MPM can simulate the

contact/impact phenomena based on the physics involved, without invoking master/slave

nodes as required in the conventional mesh-based methods

5.  Comparison of the MPM with Other Meshless Methods

As indicated by Belytschko et al. [1996], the meshless (meshfree) methods are

uniquely suitable for those problems, for which the conventional mesh-based methods are

handicapped, such as localized large deformations, propagation of cracks and separation

of continuum. In fact, the key difference among different spatial discretization methods is

how the gradient and divergence terms are calculated. Because the meshless methods do

not use a rigid mesh connectivity as compared with the FEM, FDM and BEM, the

interpolation in the moving domain of influence is the common feature of the meshless

methods. Although a background mesh is used to calculate the gradient and divergence

terms, the MPM is still based on the interpolation in the moving domain of influence,

namely, the spatial discretization is continuously adjusted as a body deforms. Thus, the

MPM can be considered as one of the meshless methods. To our knowledge, all existing

meshless methods employ some sort of moving domain of influence to find the gradient

and divergence terms. Hence, the word “meshless” should be interpreted as meaning that

a rigid mesh connectivity is not used in spatial discretization.

The MPM is an extension to solid mechanics problems of a hydrodynamics code

called FLIP which, in turn, evolved from the Particle-in-Cell Method for fluid flow. The

motivation of the development was to simulate those challenging problems in solid

mechanics, such as impact/contact, penetration and perforation, with history-dependent

internal state variables. As can be found from the theoretical framework and solution

scheme discussed above, the MPM combines the advantages of Eulerian and Lagrangian

descriptions of the material while avoiding the shortcomings of each. In comparison with

the other meshless methods, the MPM appears to be less complex with a cost factor of at

most twice that associated with the use of corresponding finite elements. Due to the

mapping from material points to cell nodes and the mapping from cell nodes to material

points involved in each time step, the MPM can simulate localized large deformations

without mesh tangling. The use of the same set of continuous shape functions in both
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mappings results in a natural no-slip contact/impact scheme so that no inter-penetration

would occur. However, special treatments must be invoked if decohesion and the moving

surface of discontinuity occur in the deformation process, which is under current

research.

Other meshfree methods, such as the Moving Least Square (MLS) approximation

in the Element-Free Galerkin method or the Reproducing Kernel (RK) approximation

[Belytschko et al., 1996; Chen et al., 1998; Liu et al., 1997; among others], were

developed specifically for localization and crack propagation problems. However, the

routine use of these methods for a wide range of applications appears not to be feasible,

because of the complexity involved in their current forms. The computational cost of

explicit forms of the Element-Free Galerkin method exceeds that of low-order finite

elements by a factor of about 4. If penetration and perforation need be simulated,

master/slave type of constraints must be imposed on the spatial discretization procedure.

On the other hand, an alternative approach, which is less complex and appears promising

for penetration and perforation, is that based on smooth particle hydrodynamics [Johnson

et al., 1996; Randles and Libersky, 1996]. However, prevention of inter-penetration and

instability under tensile stresses requires special treatments with this approach.

With a focus on arbitrary domains, the pH  cloud method has been recently

developed by employing only a scattered set of nodes to build approximate solutions to

general boundary-value problems [Duarte and Oden, 1995]. This method exhibits a very

high rate of convergence and has a greater flexibility than traditional hp finite element

methods. However, it has not been applied to penetration and perforation problems.

Based on the literature survey, it appears that the MPM is particularly well-suited

to penetration and perforation problems, and is easily implemented, as compared with

other meshless methods.

6.  Conclusion and Future Work

The theory and algorithm for the MPM have been documented, based on which

the treatments of boundary conditions and shock wave problems have been discussed. To

test the completeness of the numerical algorithm and to demonstrate the features of the

MPM, a one-dimensional MPM code has been programmed to solve one-dimensional
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wave and impact problems, with both linear elasticity and elastoplasticity models. The

contact/impact scheme has been qualitatively illustrated via bar problems. The

advantages and disadvantages of the MPM have been investigated as compared with

competing meshfree methods.

Based on the current work, it appears that different meshfree methods have a

common feature, viz., the use of a moving domain of influence. In other words, the

spatial discretization is continuously adjusted as a body deforms. With the use of

different approaches to calculate gradient and divergence terms, different meshfree

methods have demonstrated the robustness and potential in different types of problems.

Future research will aim at taking advantages of different spatial discretization methods,

including both mesh-based and meshfree ones, to better simulate those complex physical

problems such as impact/contact, localization, crack propagation, penetration,

perforation, fragmentation, and interactions among different material phases, in a unified

computational framework.
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Figures

Figure 1. An elastic bar with its left end fixed and right end subjected to a tensile step
force (Np=10). Here, hash marks indicate cell boundaries, and X’s mark the (initially
cell-centered) particle locations.
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Figure 2a. Stress wave propagation along the bar (Np=10).
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Figure 2b. Stress wave propagation along the bar (Np=100).
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Figure 2c. Stress wave propagation along the bar (Np=500).
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Figure 3a. Elastic stress wave propagation along a bar with both
ends subjected to a tensile step force (Np=10).
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Figure 3b. Elastic stress wave propagation along a bar with both
ends subjected to a tensile step force (Np=100).
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Figure 4a. Elastic stress wave propagation along a bar with
both ends subjected to a compressive rectangular
impulse force (Np=100).
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Figure 4b. Elastic stress wave propagation along a bar with
both ends subjected to a compressive rectangular
impulse force (Np=100).
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Figure 5. The motion of selected particles along a bar with both
ends subjected to a tensile step force (Np=100).
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Figure 6. The motion of selected particles along a bar with both
ends subjected to a compressive rectangular impulse
force (Np=100).
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Figure 7. The impact between two elastic bars (Np=50 for
each bar), the distance between which is 0.5 at t=0.
The bars remain in contact for a time of 2L/C.
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Figure 8. The changes in the stress profile corresponding to
Figure 7.
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Figure 9. The continuation of Figure 8.
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Figure 10. The changes in the stress profile corresponding to
Figure 9, with Np=100 for each bar.
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Figure 11. Elastic wave propagation in two separated bars
(Np=50 for each bar), with the left end of the left
bar and the right end of the right bar being
subjected to a tensile step force, respectively.
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Figure 12. The stress profile corresponding to Figure 11.
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Figure 13. The impact between two elastic-hardening bars
(Np=50 for each bar), the distance between which
is 0.5 at t=0.
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Figure 14. The changes in the stress profile corresponding to
Figure 13.
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Figure 15. The continuation of Figure 14.
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Figure 16. The changes in the stress profile corresponding to
Figure 15, with Np=100 for each bar.
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Figure 17. The impact between two elastic-perfect plastic bars
(Np=50 for each bar), the distance between which
is 0.5 at t=0.
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Figure 18. The changes in the stress profile corresponding to
Figure 17.
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Figure 19. The continuation of Figure 18.
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Figure 20. The changes in the stress profile corresponding to
Figure 19, with Np=100 for each bar.
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