The results of $(N,\rho,T)$ Molecular-Dynamics computer simulations of krypton-argon mixtures adsorbed between two graphite sheets are discussed. To begin with, new high-temperature commensurate solid phases for both argon and krypton resulting from confinement are observed, as well as a family of confinement-induced solid-liquid phase transitions. Secondly, the melting temperature of the system can be adjusted within a given range by the graphite sheet spacing. Moreover, in the case of argon-krypton mixtures, certain temperatures and sheet spacings result in almost complete mixture separation.