We report the results of \((N,\rho,T)\) Molecular-Dynamics computer simulations of krypton-argon mixtures physisorbed between two graphite sheets. Three novel aspects of the system's behavior emerge from this study. To begin with, new high-temperature commensurate solid phases for both argon and krypton as a result of confinement are predicted, as well as a family of confinement-induced solid-liquid phase transitions. In addition, we observe that the melting temperature of the system can be adjusted within a given range by the graphite sheet spacing. Finally, in the case of argon-krypton mixtures, certain temperatures and sheet spacings result in almost complete impurity extraction.