Mumps Language

A Quick Overview of the Basics of the Mumps Language

Kevin C. O'Kane
Professor Emeritus
Department of Computer Science
University of Northern lowa
Cedar Falls, IA 50614

kc.okane@gmail.com
http://www.cs.uni.edu/~okane

T
ar

) {,\F You D)

[e O

S
c
D
S
S
O

O
o,

4

ard 2015 most extreme snow dive | Highest jump | Best form!

ZzZ;

Boston Bliz

Mumps History

Beginning in 1966, Mumps (also referred to as M), was developed by Nell
Pappalardo and others in Dr. Octo Barnett's lab at the Massachusetts General
Hospital on a PDP-7. It was later ported to a number of machines including the
PDP-11 and VAX.

Mumps is a general purpose programming language that supports a novel,
native, hierarchical database facility.

The acronym stands for the Massachusetts General Hospital Utility Multi-
programming System.

It is widely used in financial and clinical applications and remains to this day the
basis of the U.S. Veterans Administration's computerized medical record system
VistA (Veterans Health Information Systems and Technology Architecture), the
largest of its kind in the world.

Mumps Implementations

1. Intersystems (Caché) http://www.intersystems.com/

2. FIS (GT.M)
http://www.fisglobal.com/products-technologyplatforms-gtm

3. MUMPS Database and Language by Ray Newman
http://sourceforge.net/projects/mumps/

4. GPL Mumps (http://www.cs.uni.edu/~okane/)

The dialects accepted by these systems vary. The examples in these slides will
be drawn from GPL Mumps. You should consult the web site of the version you
are using for further documentation. In the slides, non-standard extensions used
by GPL Mumps are noted. These may not be present in other versions.

GPL Mumps Interpreter

The GPL Mumps Interpreter (and compiler), written in C/C++, are open source
software under the GPL V2 License. The main version is for Linux but the
software will run in Windows if Cygwin is installed.

The interpreter may be executed in interactive command line mode by typing, in
a terminal window:

mumps

To exit, type halt. In this mode mumps commands may be entered and executed
immediately. To execute a program contained in a file, type:

goto "filename.mps

A file may be executed without starting the interpreter if you set its protections to
executable and have on its first line:

#!/usr/bin/mumps

The program may now be executed by typing its name to the command prompt.

Variables

Mumps has local and global variables. Global variables are stored on disk and
continue to exist when the program creating them terminates. Local variables
are in memory and disappear when the program which created them ends.

A Mumps variable name must begin with a letter or percent sign (%) and may be
followed by either letters, the percent sign, or numbers. Variable names are case
sensitive. The underscore () and dollar sign ($) characters are not legal in
variable names.

Global variable names are preceded by a circumflex ().
The contents of all Mumps variables are stored as varying length character
strings. The maximum string length permitted is determined during system

configuration but this number is usually at least 4096.

Long variable names may have a negative impact on performance because they
Impact runtime symbol table lookup time.

Mumps Variables

In Mumps there are no data declaration statements. Variables are created as
needed.

Variables are created when a value is assigned for the first time by either a set
or read command or if they appear as arguments to the new command.

Once created, variables normally persist until the program ends or they are
destroyed by a kill command. Ordinarily, variables are known to all routines.

Mumps Variables

Mumps variables are not typed. The basic data type is string although integer,
floating point and logical (true/false) operations can be performed on variables if
their contents are appropriate.

The values in a string are, at a minimum, any ASCII character code between 32
to 127 (decimal) inclusive.

Variables receive values by means of the set, merge and read commands.

Array references are formed by adding a parenthesized list of indices to the
variable name such as:

name("abc",2,3).

Indices may be numbers or strings or both. Strings must be quoted, numbers
need not be quoted.

Variables

set %$=123
set "x1("ducks")=123 ; global array reference
set fido="123" » names are case sensitive

set Fido="dog"

set x("PI")=3.1414 ; local array reference

set input dat=123 ; underscore not permitted

set $x=123 ; S sign not permitted

set 1x=123 ; must begin with a letter or %

read "x(100)
read %%123

read _A

String constants are enclosed in double quote marks (*).

A double quote mark itself can be inserted in a string by placing two immediately
adjacent double quote marks (") in the string.

The single quote mark (') is the not operator with no special meaning within
guoted strings.

The C/C++/Java convention of preceding some special characters by a
backslash does not apply in Mumps.

"The seas divide and many a tide"

"123.45" (means the same as 123.45)

"Bridget O'Shaunessey? You're not making that up?"
"""The time has come,"" the walrus said."

"\"the time has come"

'now 1s the time'

Numbers can be integers or floating point. Quotes are optional.

100

1.23
-123
-1.23
"3.1415"

Some implementations permit scientific notation. Each implementation has limits
of accuracy and size. Consult documentation.

Mumps Strings & Numeric

Expressions

Mumps has some peculiar ways of handling strings when they participate in
numeric calculations.

If a string begins with a number but ends with trailing non-numeric characters
and it is used as an operand in an arithmetic operation, only the leading numeric
portion will participate in the operation. The trailing non-numeric portion will be
ignored.

A string not beginning with numeric characters is interpreted as having the value
of zero.

Numeric Interpretation of Strings

1+2 will be evaluated as
"ABC"+2 will be evaluated as
"1AB"+2 will be evaluated as
"AA1"+2 will be evaluated as
"1"+"2" will be evaluated as

S W NhwWbhWw

" will be evaluated as

Logical Values

Logical values in Mumps are special cases of strings. A numeric value of zero,
any string beginning with a non-numeric character, or a string of length zero is
Interpreted as false. Any numeric string value other than zero is interpreted as
true.

Logical expressions yield either the digit zero (for false) or one (for true). The
result of any numeric expression can be used as a logical operand.

Logical Expressions

Logical expressions yield either zero (for false) or one
(for true). The result of any numeric expression can be
used as a logical operand.

The not operator is '

"l true S false
"o" false Q" true
" false run true
"A" false 'UYAM true
"oo" true '"oon false
"1A" true '"1A" false
"000" false '"000™" true
"-000" false '"-000" true
"+000" false '"+000" true

"0001" true '"0001" false

Mumps Arrays

Arrays in Mumps come in two varieties: local and global.

Global array names are prefixed by circumflex (*) and are stored on disk. They
retain their values when a program terminates and can be accessed by other
programs.

Local arrays are destroyed when the program creating them terminates and are
not accessible to other programs unless the other program was invoked by the
program which created the variable.

Arrays are not declared or pre-dimensioned.

A name used as an array name may also, at the same time, be used as the
name of a scalar or a label.

Array elements are created by assignment (set) or appearance in a read
statement.

The indices of an array are specified as a comma separated list of numbers or
strings or both.

Mumps Arrays

Arrays are sparse. That is, if you create an element of an array, let us say element 10, it
does not mean that Mumps has created any other elements. In other words, it does not
Imply that there exist elements 1 through 9. You must explicitly create these it you want
them.

Array indices may be positive or negative numbers or character strings or a combination
of both.

Arrays in Mumps may have multiple dimensions limited by the maximum line length (512
nominally).

Arrays may be viewed as either matrices or trees.

When viewed as trees, each successive index is part of the path description from the root
to a node.

Data may be stored at any node along the path of a tree.
Global array names are prefixed with the up-arrow character (*) and local arrays are not.

Local arrays are destroyed when the program ends while global arrays, being disk
resident, persist.

Mumps Arrays

Mumps arrays can be accessed directly if you know the indices.

Alternatively, you can explore an array tree by means of the $data() and
$order() functions.

The first of these, $data(), indicates if a node exists, if it has data, and if it has
descendants.

The second, $order(), is used to navigate from one sibling node to the next (or
prior) at a given level of a tree.

Local Arrays

set a(l,2,3)="text value"

set a("text string")=100

set i="testing" set a(i)=1001

set a("Iowa","Black Hawk County","Cedar Falls")="UNI"
set a("Iowa","Black Hawk County",Waterloo")="John Deere"
set a[l][2][3]=123 ; brackets not used

set a(l, 2, 3)=123 ; blanks in expression

set a[l,2,3]1=123 ; brackets again

Arrays as Trees

"root(1,37)]
root(1) "root(1,92,77) j

“root(1,92)

“root(1,92 ,1??}]

S

"root(5)

"root(8,1)

"root(8,100)

“root(32,5,3)]
“root(32,5)
“root(32,5,8)]

"root(32,123)]

|
["root "root(8)
)

"root(15)

"root(32)

e S

set
set
set
set
set
set
set
set
set
set
set

Creating Global Arrays

“root(1l,37)=1
“root(1,92,77)=2
“root(1,92,177)=3
“root(5)=4
“root(8,1)=5
“root(8,100)=6
“root (15)=7
“root(32,5)=8
“root(32,5,3)=9
“root(32,5,8)=10
“root(32,123)=11

String Indices

set ~lab(1234,”hct”,”05/10/2008",38)=""
set "lab(1234,"hct”,”05/12/2008",42)=""
set "lab(1234,"”hct”,”05/15/2008",35)=""
set "lab(1234,"hct”,”05/19/2008"”,41)=""

Note: sometimes the indices themselves are the data and
nothing ("") is actually stored at the node. That is the
case here where the last index is the test result.

MeSH hierarchy

The 2003 MeSH file contains approximately 40,000 entries.

Body Regions;A01
Abdomen;A01.047

Abdominal Cavity;A01.047.025
Peritoneum;A01.047.025.600
Douglas' Pouch;A01.047.025.600.225
Mesentery;A01.047.025.600.451
Mesocolon;A01.047.025.600.451.535
Omentum;A01.047.025.600.573
Peritoneal Cavity;A01.047.025.600.678
Retroperitoneal Space;A01.047.025.750
Abdominal Wall;A01.047.050
Groin;A01.047.365

Inguinal Canal;A01.047.412
Umbilicus;A01.047.849

Back;A01.176

Lumbosacral Region;A01.176.519
Sacrococcygeal Region;A01.176.780
Breast;A01.236

Nipples;A01.236.500
Extremities;A01.378

Amputation Stumps;A01.378.100

‘ Cardiovascular ‘

I_‘ Blood Vessels ‘

Arteries

Arterioles

Axillary Artery

Basilar Artery

Brachial Artery

Brachiocephalic T.‘

Bronchial ‘

Carotid Arteries

Aorta, Abdominal ‘

Aorta

H Aorta, Thoracic ‘

Carotid, Common

Carotid Sinus ‘

Anterior Cerebral ‘

Circle of Willis \

Middle Cerebral ‘

Posterior Cerebral ‘

Temporal

Sinus of Valsalva ‘

set “mesh("A07")="Cardiovascular System"

set “mesh("A07","231")="Blood Vessels"

Set. /\mesh(lle?ll’ll"z.s lll’ll‘[14")="AI‘teri'ES“

set “mesh("A07","231","114","056")="Aorta"

set “mesh("A07","231""114","056" "205")="Aorta, Abdominal"
set “mesh("A07","231" "114","056","372")="Aorta, Thoracic"
set “mesh("A07","231""114","056","847")="Sinus of Valsalva"
set “mesh("A07","231","114","060")="Arterioles"

set “mesh("A07","231" "114","085")="Axillary Artery"

set “mesh("A07","231","114","106")="Basilar Artery"

set “mesh("A07","231","114" "139")="Brachial Artery"

set “mesh("A07","231","114","145")="Brachiocephalic Trunk"

Carotid, External ‘

Carotid, Internal ‘

set “mesh("A07","231","114","158")="Bronchial Arteries"

set “mesh("A07","231","114","186")="Carotid Arteries"

set “mesh("A07","231","114" "186","200")="Carotid Artery, Common"

set “mesh("A07","231""114","186","200","210")="Carotid Artery, External"
set “mesh("A07","231","114","186","200","230")="Carotid Artery, Internal"
set “mesh("A07","231","114","186","456")="Carotid Sinus"

set “mesh("A07","231","114" "207")="Celiac Artery"

set "“mesh("A07","231""114","228")="Cerebral Arteries"

set “mesh("A07","231","114","228","100")="Anterior Cerebral Artery”

set “mesh("A07","231""114","228" "351")="Circle of Willis"

set “mesh("A07","231","114""228" "550")="Middle Cerebral Artery"

set “"mesh("A07","231""114","228","700")="Posterior Cerebral Artery"

set “mesh("A07","231","114","228" "868")="Temporal Arteries"

Global Array Examples

for 1=0:1:100 do ; store values only at leaf nodes
. for 3j=0:1:100 do

.. for k=0:1:100 do

... set "mat(i,j,k)=0

for i=0:1:100 do ; store values at all node levels
. set "mat(i)=1i

. for 3J=0:1:100 do

.. set "mat(i,J)=7j

.. for k=0:1:100 do

... set "mat(i,j,k)=k

for 1i=0:10:100 do ; sparse matrix - elements missing
. for 3j=0:10:100 do

.. for k=0:10:100 do

... set "mat(i,j,k)=0

Array Examples

set a="1ST FLEET”

set b="BOSTON"

set c="FLAG"”

set “ship(a,b,c)="CONSTITUTION"

set “captain(”ship(a,b,c))="JONES"

set "home(”"captain(”"ship(a,b,c)))="PORTSMOUTH"

write
write
write
write
write

“ship(a,b,c) - CONSTITUTION
“captain("CONSTITUTION") - JONES

“home ("JONES") - PORTSMOUTH

“home (“captain("CONSTITUTION")) - PORTSMOUTH
“home (“captain(”"ship(a,b,c))) - PORTSMOUTH

Navigating Arrays

Global (and local) arrays are navigated by means of the $data() and $order()
functions. The first of these determines if a node exists, if it has data and if it has
descendants. The second permits you to move from one sibling to another at a
given level of a global array tree.

The function $data() returns a 0 if the array reference passed as a parameter to
it does not exist. It returns 1 if the node exists but has no descendants, 10 if it
exists, has no data but has descendants and 11 if it exists, has data and has
descendants.

Navigating Arrays

$order(), returns the next ascending (or descending) value of the last index of
the global array reference passed to it as an argument.

By default, indices are presented in ascending collating sequence order unless
a second argument of -1 is given. In this case, the indices are presented in
descending collating sequence order.

$order() returns the first value (or last value when the second argument of -1 is
given) if the value of the last index of the array reference passed to it is the
empty string. It returns an empty string when there are no more values (nodes).

Navigating Arrays

kill "a ; all prior values deleted

for i=1:1:9 set "a(i)=1 ; initialize

write Sdata(”a(l)) ; writes 1

write Sorder("a("")) ; writes 1

write Sorder("a(l)) ; writes 2

write Sorder("a(9)) ; writes the empty string (nothing)
set i=5

for j=1:1:5 set "a(i,j)=]j ; initialize at level 2

write S$data("a(5)) ; writes 11
write S$data(”a(5,1)) ; writes 1
write S$data(”a(5,15)) ; writes 0
write Sorder("a(5,"")) ; writes 1
write Sorder("a(5,2)) ; writes 3
set "a(10)=10

write Sorder("a(l)) ; writes 10
write Sorder(”"a(10)) ; writes 2

set "a(ll,1)=11
write S$data(”a(1ll)) writes 10
write $data(”a(1l1,1)) ; writes 1

e

Navigating Arrays (cont'd)

The following writes 1 through 5 (see data initializations on previous slide)

Set j=u n
for set j=Sorder("a(5,j)) quit:j="" write j,!

The following writes one row per line:

set i=""

for do

. set i=Sorder("a(i))

. 1f i="" break

. write "row ",i," "

. if $data(”a(i))>1 set j="" do

.. set j=Sorder("a(i,j))

.. 1f j="" break

.. write j," " ; elements of the row on the same line

. write ! ; end of row: write new line

Operator Precedence

Expressions in Mumps are evaluated strictly left-to right without precedence. If
you want a different order of evaluation, you must use parentheses.

This is true in any Mumps expression in any Mumps command and is a common
source of error, especially in if commands with compound predicates.

For example, a<10&b>20 really means (((a<10)&b)>20) when you probably
wanted (a<10)&(b>20).

Postconditionals

A post-conditional is an expression immediately following a command. If the
expression is true, the command is executed. If the expression is false, the
command is skipped and execution advances to the next command which may
be on the same line or the next.

The following is an example of a post-conditional applied to the set command:
set:a=b i=2

The set command is executed only if a equals b.

Postconditionals

Postconditionals are used to exit a single line loop where an if command would
not work:

for i=1:1:100 quit:'S$data(”a(i)) write "a(i)
for i=1:1:100 if 'Sdata(”"a(i)) quit else write "a(i),!

The if command will skip the entire remainder of the line if the expression is
false. The else command is never executed! Nothing is ever written.

Why?

if $data(a(i)) is true (data exists), the remainder of the line is not executed. If
false, the quit is executed.

In the first example, if the postconditional is false, execution continues on the
same line. If true, the loop terminates.

Operators

Assignment:
Unary Arithmetic:
Binary Arithmetic

addition
subtraction
multiplication
full division
integer division
modulo

* exponentiation

+ +

* H= - N * |

Arithmetic Relational
> greater than
< less than
'> not greater / less than or equal
'< not less / greater than or equal
String Binary concatenate

Operators

String relational operators

= equal

[contains - left operand contains right
] follows - left operand follows right
? pattern

? not pattern

= not equal

[not contains

'] not follows

] Sorts after

']] not sorts after

Pattern Match Operator

for the entire upper and lower case alphabet.
for the 33 control characters.

for any of the 128 ASCII characters.

for the 26 lower case letters.

for the numerics

for the 33 punctuation characters.

for the 26 upper case characters.

Literal string.

crozZ2tBH0p

The letters are preceded by a repetition count. A dot
means any number. Consult documentation for more detail.

set A="123-45-6789"
if A?3N1"-"2N1"-"4N write "OK"
if A'"?3N1"-"2N1"-"4N write "OK"

writes OK
writes nothing

e e

set A="JONES, J. L."
if A?.A1",".E write "OK"
if A'?.A1",".E write "OK"

writes OK
writes nothing

Logical Operators

Logical operators: & and
! or
' not
1&1 yields 1
2&1 yields 1
1&0 yields 0
1&0<1 yields 1
1&(0<1) yields 1
1!1 yields 1
1!0 yields 1
0!0 yields 0
210 yields 1
'0 yields 1
'1 yields 0
'99 yields 0 ; any non-zero value is true
ro yields 1 ; strings are false except if they

have a leading non-zero numeric

Indirection Operator

The indirection operator (@) causes the value to its right
to be executed.

set a="2+2"
write @a,! + writes 4

kill "x

set "x(1)=99

set "x(5)=999

set v=""x(y)"

set y=1

set x=Sorder(@v)

write x,! ; next index of "x(1l) is 5
set v1=""x"

set x=Sorder(@(vl _"("_y ")"))

write x,! s writes 5

break

close
database

do
else
for
goto
halt
hang
html

Commands

Suspends execution or exits a block (non-
standard extension)

release an I/O device

set global array database (non-standard
extension)

execute a program, section of code or block
conditional execution based on $test
iterative execution of a line or block

transfer of control to a label or program
terminate execution

delay execution for a specified period of time

write line to web server (non-standard
extension)

lock
Kill
merge
new
open
quit
read
set

Commands

conditional execution of remainder of line
Create an independent process

Exclusive access/release named resource
delete a local or global variable

copy arrays

create new copies of local variables
obtain ownership of a device

end a for loop or exit a block

read from a device

assign a value to a global or local variable

shell

sql

tcommit
trestart
trollback
tstart
use
view
write
xecute
Z...

Commands

execute a command shell (non-standard
extension)

execute an SQL statement (non-standard
extension)

commit a transaction

roll back / restart a transaction
Roll back a transaction

Begin a transaction

select which device to read/write
Implementation defined

write to device

dynamically execute strings

implementation defined - all begin with the
letter z

Syntax Rules

A line may begin with a label. If so, the label must begin in column one.

After a label there must be at least one blank or a <tab> character before the
first command.

If there is no label, column one must be a blank or a <tab> character followed by
some number of blanks, possibly zero, before the first command.

After most command words or abbreviations there may be an optional post-
conditional. No blanks or <tab> characters are permitted between the command
word and the post-conditional.

If a command has an argument, there must be at least one blank after the
command word and its post-conditional, if present, and the argument.

Syntax Rules

Expressions (both in arguments and post-conditionals) may not contain
embedded blanks except within double-quoted strings.

If a command has no argument and it is the final command on a line, it is
followed by the new line character.

If a command has no argument and is not the final command on a line, there
must be at least two blanks after it or after its post-conditional, if present.

If a command has an argument and it is the final command on a line, its last
argument is followed by a new line character.

If a command has an argument and it is not the last command on a line, it is
followed by at one blank before the next command word.

A semi-colon causes the remainder of the line to be interpreted as a comment.
The semi-colon may be in column one or anywhere a command word is
permitted.

Non-Standard Line Syntax Rules

GPL Mumps:

If a line begins with a pound-sign (#) or two forward slashes (//), the remainder
of the line is taken to be a comment (non-standard extension).

If a line begins with a plus-sign (+), the remainder of the line is interpreted to be
an in-line C/C++ statement (non-standard compiler extension).

After the last argument on a line and at least one blank (two if the command has
no arguments), a double-slash (//) causes the remainder of the line to be
Interpreted as a comment.

If the last command on a line takes no argument, there must be at least two
blanks after the command and its post-conditional, if present, and any double-
slash (non-standard extension).

Line Syntax Examples

label set a=123
set a=123
set a=123 set b=345
set:i=7 a=123

+ standard comment
set a=123 ; standard comment
non-standard comment
set a=123 // non-standard comment
+ printf("hello world\n") // non-standard C/C++ embed

set a=123 ; only labels in col 1
label set a=123 + label must be in col 1
set a = 123 ; no blanks allowed in arguments

halt:a=b set a=123 ; Halt needs 2 blanks after halt
; postconditional

Originally, all Mumps commands had only line scope. That is, no command
extended beyond the line on which it appeared. In later years, however, a limited
block structure facility was added to the language.

Blocks are entered by the argumentless form of the do command (thus requiring
two blanks between the do and the next command, if any). The lines following a
do command belong to the do if they contain an incremented level of dots. The
block ends when the number of dots declines to an earlier level.

set a=1

if a=1 do

. write "a is 1",! ; block dependent on do
write "hello",!

set a=l1

if a=1 do

. write "a is 1", !

. set a=a*3

else do

. write "a is not 1",
. set a=a*4

write "a is ",a,!

writes a is 1 and a is 3

Blocks and $Test

$test is a system variable which indicates if certain operations succeeded (true)
or failed (false). An if command sets $test. The value in $test determines if an
else command will execute (it does if $test is false):

set a=1,b=2

if a=1 do + Stest becomes true

. set a=0

. 1f b=3 do + Stest becomes false

.. set b=0 ; not executed

. else do ; executed

.. set b=10 s executed

. write S$test," ",b,! + Stest is false

write S$test," ",b,! ; Stest restored to true

Writes: 0 10
1 10.

$test is restored when exiting a deeper block .

Originally, break was used as an aid in debugging. See documentation for your
system to see if it is implemented.

In the GPL Mumps dialect, a break command is used to terminate a block (non-
standard). Execution continues at the first statement following the block.

A quit command in the Mumps standard causes:
A current single line scope for command to terminate, or
« A subroutine to return, or

» A block to be exited with execution resuming on the line containing the
iInvoking do command.

14

non-standard use of break (GPL Mumps)

for do
. read a

. 1f 'Stest break ; exits the loop and the block
. write a,!

Do Command

Executes a dependent block, or a labeled block of code either local or remote.

if a=b do
. set x=1
. write x

e

executes the dependent block below

-e

executes code block beginning at label abc

returns to invoking do

do abc(123)

e

invokes code block passing an argument

A quit command in standard Mumps causes:

A current single line scope for command to terminate, or

» A subroutine to return, or

» A block to be exited with execution resuming on the line containing the
iInvoking do command.

. read a

. 1f 'Stest set f=1 quit ;
. write a,!

; quit as a return from a subroutine
do top

top set page=page+l
write #,270,"Page ",page,!
quit

; non-standard use of break (GPL Mumps)
for do

. read a

. i1f 'Stest break ;
. write a,!

; read and write until no more input (S$test is 0).
set £=0

for do quit:f=1 ;

; this quit, when executed, terminates the loop

; this quit returns to the do

; exits the loop and the block

loop while elements of array a exist
for i=1:1 quit:'Sdata(a(i)) write a(i),!

inner loop quits if an element of array b has the value 99 but
outer loop continues to next value of 1i.

set x=0

for i=1:1:10 for j=1:1:10 if b(i,]J)=99 set x=x+1 quit

outer loop terminates when f becomes 1 in the block
set f£=0
for i=1:1:10 do quit:f=1

if a(i)=99 set f=1

The last line of the block is not executed when i>50
set f=1
for i=1:1:100 do

set a(i)=1

set b(i)=i*2

if i>50 quit

set c(i)=1i*1i

; returning a value from a function

set i=SSaaa(2)

write i, ! ; writes 4
halt
aaa(x) set X=X*X

quit x

Else Command

The remainder of the line is executed if $test is false (0). $test is a system variable
which is set by several commands to indicate success. No preceding if command is
required. Two blanks must follow the command .

else write "error",! halt » executed if Stest is false
else do

. write "error",!
. halt

For Command

The for command can be iterative with the general format:

for variable=start:increment:limit

for
for
for
for

1:1:10 write i, !
10:-1:0 write 1i,!
1:
1:

2:10 write i, !
1l write i, !

He e e e

N Qe Ne wo

writes 1,2,...9,10
writes 10,9,...2,1,0
writes 1,3,5,...9

no upper limit - endless

For Command

The for command can be nested:

for i=1:1:10 write !,i,": " for j=1:1:5 write j," "
output:

1: 1 2 3 45

2: 1 2 3 4 5

3: 1 2 3 45

10: 1 2 3 4 5

For Command

A comma list of values may also be used:
for i=1,3,22,99 write i,! // 1,3,22,99
Both modes may be mixed:

for 1=3,22,99:1:110 write 1i,! // 3,22,99,100,...110
for 1=3,22,99:1 write 1,! // 3,22,99,100,...

With no arguments, the command becomes do forever: (two blanks required
after for):

set i=1
for write i,! set i=1+4+1 quit:i>5 // 1,2,3,4,5

Note: two blanks after for and do

set i=1

for do quit:i>5
. write 1i,!

. set i=i+l

writes 1 through 6

for i=1:1:10 do
. write 1

. 1f 1i>5 write !
. write " ",i*i,!

output:

11

2 4

39

4 16

5 25

6

7

8

9

10

quit

Nested For with Quit

for i=1:1:10 do

. write i,": "
for j=1:1 do quit:j>5
. write j," "
. write !
output:
1: 1 2 3 45 6
2: 1 2 3 45 6
3: 123 456
8: 1 2 3 45 6
9: 1 2 3 4 5 6

10: 1 2 3 4 5 6

Goto Command

Transfer of control to a local or remote label. Return 1is
not made.

go to label abc
go to label abc in file xyz.mps

goto abc
goto abc”xyz.mps

e o

goto abc:i=10,xyz:1=11 ; multiple postconditionals

Halt Command

Terminate a program.
halt

Any code remaining on the line or in the program is not
executed.

Hang Command

Pause the program for a fixed number of seconds.

hang 10 ; pause for 10 seconds

If and Else Commands

Keyword if followed by an expression. If expression is true, remainder of line
executed. If false, next line executed.

if a>b open 1:"file,old"
if sets $test. If the expression is true, $test is 1, 0 otherwise.

An if with no arguments executes the remainder of the line if $test is true. An
if with no arguments must be followed by two blanks.

The else command is not directly related to the if command. An else
command executes the remainder of the line if $test is false (0). An else
requires no preceding if command. An else command following an if
command on the same line will not normally execute unless an intervening
command between the if and else changed $test to false.

If Command

set 1i=1,j=2,k=3

if
if
if
if
if
if
if
if
if
if

if

i=1 write "yes",!

i<j write "yes",!

i<j,k>j write "yes",!
i<j&k>j write "yes",!
i<j&(k>3j) write "yes",!

i1 write "yes",!

'i write "yes",!

'(1=0) write "yes",!
i=0!(J=2) write "yes",!
a>b open 1:"file,old" else

write "hello world",!

else write "goodbye world",!

4

°
4
°
4
°
4

°
4

yes
yes
yes
does not write
yes
yes
does not write
yes
yes

write "error",! halt
the else clause never
executes
executes if Stest is 1
executes if Stest is 0

Job Command

Creates an independent process. Implementation defined.

Kill Command

Kills (deletes) local and global variables.
kill i,j,k removes 1, j and k from the local

symbol table

removes all variables except i, j and k

deletes node a(l,2) and any descendants

of a(l,2)

deletes the entire global array "a

deletes "a(l,2) and any descendants

of "a(l,2)

kill (i,3,k)
kill a(1,2)

kill “a
kill ~a(l,2)

MO MO N0 N N N w0 =

Lock Command

Locks for exclusive access a global array node and ist descendants.

lock "a(l,2) ; requests "a(l,2) and descendants
; for exclusive access

Lock may have a timeout which, if the lock is not granted, will terminate the
command and report failure/success in $test.

Implementations vary. Consult documentation. See also transaction processing.

Merge Command

Copies on array and its descendants to another.

global array "b and its
descendants are copied
as descendants of "a(l,2)

merge "a(l,2)="b

| WO o

New Command

Creates a new copy of one or more variables pushing previous copies onto the
stack. The previous copies will be restored when the block containing the New
command ends.

if a=b do

. hew a,b + block local variables
. set a=10,b=20

. write a,b,!

; the previous values and a and b are restored.

Open, Use and Unit Numbers

Format of open command implementation dependent. In GPL Mumps unit 5 is
always open for both input and output. Unit 5 is stdin and stdout

open l:"aaa.dat,old" ; old means file exists

if 'Stest write "aaa.dat not found",! halt

open 2:"bbb.dat,new" ; new means create (or re-create)
if 'Stest write "error writing bbb.dat",! halt

write "copying ...",!

for do
use 1 + switch to unit 1
read rec + read from unit 1
if 'Stest break
use 2 switch to unit 2

write to unit 2
close the open files
revert to console i/o

. write rec,!
close 1,2

use 5

write "done",!

WO N0 o N

Open with Variables

set in="aaa.dat,old"
set out="bbb.dat,new"
open l:in
if 'Stest write "error on ",in,! halt
open 2:out
if 'Stest write "error on ",out,! halt
write "copying ...",!
for do
use 1
read rec
if 'Stest break
use 2
. write rec,!
close 1,2
use 5
write "done",!

Close Command

Closes and disconnects one or more I/O units. May be implementation defined. All data
is written to output files and buffers are released. No further I/O may take place to
closed unit numbers until a successful new open command has been issued on the unit

number.

close 1,2 + closes units 1 and 2

Input/Output Control Codes

The write and read commands have the following basic format controls:
I - new line (!I! means two new lines, efc.)
- new page

?x - advance to column "x" (newline generated if needed).

Read Command

The read command reads an entire line into the variable. It may include a
prompt. Reading takes place from the current I/O unit (see $io). Variables are
created if they do not exist.

read
read
read

read
read
read

a
a,"b(l),c
!, "Name:",x

*a
a#lo0
a:5

e N0 N0 NO wNO O we wo

read a line into a

read 3 lines

write prompt then read into x

prompts: constant strings, !, ?

read ASCII code of char typed

read maximum of 10 characters

read with a 5 second timeout

Stest will indicate if anything was read

Set Command

The assignment statement.

set a=10,b=20,c=30

Transaction Commands

The following commands may or may not be implemented. They are intended to
make transaction processing possible. Check implementation documentation.

TCommit
TREstart
TROIlIback
TSTART

Use Command

Select an I/O unit. Implementations may vary. At any given time, one |/O unit is
in effect. All read and write operations default to that unit. You can select a
different unit with the use command:

use 2 ; unit 2 must be open

Implementation defined

Write command

write "hello world",!

set i="hello",j="world" write i," ",Jj,!
set i="hello",j="world" write 1i,!,7],!
write 1,?210,2,220,3,230,4,1!!

Xecute Command

Execute strings as code.

set a="set b=10+456 write b"

xXecute a s 466 1is written
set a="set c=""1+1"" write @c"

xXecute a ; 2 is written
set b="a"

xecute @b 2 is written

e

for read x xecute x xecute input

«e

Implementation defined.

Indirection

Indirection is one of the more powerful and also dangerous features of the
language. With indirection, strings created by your program, read from a file, or
loaded from a database can be interpretively evaluated and executed at runtime.

Indirection occurs at two levels. One is by means of the unary indirection
operator (@) which causes the string expression to its right to be executed as a
code expression. The other form is the xecute command which executes its
string expression argument as command level text.

Indirection

set 1=2,x="2+1"

write @x,!

set a=123

set b="a"

write @b,!

set c="b"

write @@Qc,!

set d="@@c+@@c"

write @d,!

write @"a+a",!

set @(""a(" _a ")")=789
write "a(123),!

read x write @x

set a=""ml.mps" do @a
set a="b=123" set @a

4 is written

123 is written
123 is written

246 1is written

246 1is written

equiv to "a(a)=789

789 is written

xecute the input expr as code
routine ml.mps is executed
123 is assigned to variable b

Originally, subroutines were ordinary local blocks of code in the current routine
or files of code. They are invoked by the do command. There were no
parameters or return values. The full symbol table of variables is accessible any
changes to a variable in a subroutine block would be effective upon return. This
was similar to the early BASIC GOSUB implementation.

Later versions of Mumps added parameters and return values as well as call be
name (subroutine can alter the calling routine's variable) and call be value
(subroutine cannot alter calling program's variables). The later changes also
permitted the programmer to create variables local to the subroutine (new
command) which would be deleted upon exit. However, in most cases, the full
symbol table of variables, is accessible to a subroutine.

In all cases, all global variables are available to all routines.

do
do

do
do

labl
“filel.mps

lab2(a,b,c)
“"file2.mps(a,b,c)

e e

e e

local label code block
file containing program

local label with params
file program with params

If you pass parameters, they are call by value unless you precede their names
with a dot:

do

lab3(.a,.b,.c)

do "file3.mps(.a,.b,.c)

; local call by name
; file call by name

e

blockl

original subroutine style of invocation

set i=100
write 1i,!
do blockl
write 1i,!
halt

set i=i+i
quit

we

we

-e

writes 100

writes 200

returns to invocation point

subroutine creates a variable which is not
destroyed on exit

e o

do two
write "expect 99 1 -> ",x," ",Sdata(x),!

two
set x=99

quit

similar to original style but subroutine creates
a new copy of x which is deleted upon return.

e o

set y=99

do one

write "expect 99 0 -> ",y," ",Sdata(x),!
halt

one new X
set x=100
write "expect 99 100 -> ",y," ",x,!
quit

; call be value example
; parameter variable d only exists in subroutine three
; any changes to d are lost on exit

do three(101)
write "expect 0 -> ",Sd(d),! ; d only exists in the subroutine

three(d)
write "expect 101 -> ",d,!
quit

call by name example
modification of z in the subroutine changes x

in the caller

e wo o

kill

set x=33

do four(.x)

write "expect 44 -> ",x,!

four(z)
write "expect 33 -> ",z,!
set z=44
quit

using new command
subroutine one creates x and subroutine two uses
it is destroyed upon return from subroutine one.

| W o

set y=99
do one
write "expect 99 0 -> ",y," ",Sdata(x),!

one new X

set x=100
write "expect 99 100 -> ",y," ",x,!
do two
write "expect 99 99 -> ",y," ",x,!
quit

two
set x=99

quit

it.

subroutine as a function with return value
1 is not changed in the subroutine

e o

set 1=100

set x=SSsub (1)

write x," ",1i,! ; writes 500 100
halt

sub (1)

set i=i*5
quit 1

Mumps has many builtin functions and system variables. These handle string
manipulation, tree navigation and so on.

Each function and system variable begins with a dollar sign. Some system
variables are read-only while others can be set.

While most functions appear in expressions only and yield a result, some
functions may appear on the left hand side of an assignment operator or in read
statements.

Intrinsic Special Variables

$Device
$ECode
$EStack
$ETrap
$Horolog
$lo

$Job
$Key
$Principal
$Quit
$STack
$Storage

Status of current device

List of error codes

Number of stack levels

Code to execute on error

days,seconds time stamp

Current |O unit

Current process 1D

Read command control code

Principal 10 device

Indicates how current process invoked.

Current process stack level

Amount of memory available
Uppercase characters indicate abbreviations

Intrinsic Special Variables

$SYstem System ID

$Test Result of prior operation

$TLevel Number transactions in process
$TRestart Number of restarts on current transaction
$X Position of horizontal cursor

Y Position of vertical cursor

$Z... Implementer defined

Uppercase characters indicate abbreviations

$Ascii
$Char
$Data
$Extract
$Find
$FNumber
$Get
$Justify
$Length
$NAme
$Order
$Piece

ASCII numeric code of a character

ASCII character from numeric code

Determines variable's definition

Extract a substring®

Find a substring

Format a number

Get default or actual value

Format a number or string

Determine string length

Evaluate array reference

Find next or previous node

Extract substring based on pattern’
Uppercase characters indicate minimal abbreviations.

1. Function may appear on LHS of assignment or in a read command

$QLength
$QSubscript
$Query
$Randon
$REverse
$Select
$STack
$Test
$TRanslate
$View

$Z...

Number of subscripts in an array reference

Value of specified subscript
Next array reference

Random number

String in reverse order

Value of first true argument
Stack information

String containing a line of code
Translate characters in a string
Implementation defined
Implementation defined

Uppercase characters indicate abbreviations.

Functions - $Ascii

SAscii(arg)
SA("A") yields 65 - the ASCII code for A
SA("Boston") yields 66 - the ASCII code for B

SA("Boston", 2) yields 98 - the ASCII code for o

Functions - $Char

SChar (nbr)

SC(65) yields A - the ASCII equivalent of 65
SC(65,66,67) yields ABC
SC(65,-1,66) yields AB - invalid codes are ignored

Functions - $Data

$Data(var)

$data returns an integer which indicates whether the variable argument is
defined. The value returned is O if vn is undefined, 1 if vn is defined and has no
associated array descendants; 10 if vn is defined but has no associated value
(but does have descendants); and 11 is vn is defined and has descendants. The
argument vn may be either a local or global variable.

set A(l,11)="foo"
set A(l,11,21)="bar"

Sdata(A(1l)) ; yields 10
Sdata(A(1l,11)) ; yields 11
Sdata(A(1l,11,21)) ; yields 1
Sdata(A(1l,11,22) ; yields O

$Extract(e1,i2) or $Extract(e1,i2,i3)

$Extract(e1,i2) $Extract(e1,i2,i3)

$Extract() returns a substring of the first argument. The substring begins at the
position noted by the second operand. Position counting begins at one.

If the third operand is omitted, the substring consists only of the i2'th character

of e1. If the third argument is present, the substring begins at position i2 and
ends at position i3.

If only e1 is given, the function returns the first character of the string e1.

If i3 specifies a position beyond the end of e1, the substring ends at the end of
el.

Sextract("ABC",2) YIELDS "B"
Sextract ("ABCDEF",3,5) YIELDS "CDE"

$Find(e1,e2) or $Find(e1,e2,i3)

$Find(e1,e2) $Find(e1,e2,i3)
$Find() searches the first argument for an occurrence of the second argument.

If one is found, the value returned is one greater than the end position of the
second argument in the first argument.

If i3 is specified, the search begins at position i3 in argument 1.

If the second argument is not found, the value returned is 0.

Sfind("ABC","B") YIELDS 3
Sfind("ABCABC","A",3) YIELDS 5

$FNumber ()

SFNumber (a,b[,c])

SFN(100,"P") yields 100
SFN(-100,"P") yields (100)
SFN(-100,"T") yields 100-
$SFN(10000,",2") yields 10,000.00
SFN(100,"+") yields +100

Based on local currency flags.

SGet (var)

Gets current value of a variable or a default value if undefined.

kill x

Sget(x,"?") yields ?
set x=123

Sget(x,"?") yields 123

$Justify(e1,i2) or $Justify(e1,i2,i3)

$Justify() right justifies the first argument in a string field whose length is given
by the second argument.

In the two operand form, the first argument is interpreted as a string.

In the three argument form, the first argument is right justified in a field whose
length is given by the second argument with i3 decimal places.

The three argument form imposes a numeric interpretation upon the first
argument.

Sjustify(39,3) YIELDS " 39"
Sjustify("TEST",7) YIELDS " TEST"
Sjustify(39,4,1) YIELDS "39.0"

SLength (exp)

set x="1234 x 5678 x 9999"

Slength(x)
Slength(x,"x")

yields 18
yields 3 (number parts)

$NAme ()

Give a string with all or part of an array filled in.

set x=10,y=20,2z=30

Sna(abc(x,v,2)) yields abc("10","20","30")
Sna(abc(x,vy,2),1) yields abc("10")
Sna(abc(x,v,2),2) yields abc("10","20")

abc() need not exist

Functions - $Order()

$Order(vn[,d])

The $0rder() function traverses an array from one sibling node to the next in
key ascending or descending order. The result returned is the next value of the
last index of the global or local array given as the first argument to $Order().

The default traversal is in key ascending order except if the optional second
argument is present and evaluates to "-1" in which case the traversal is in
descending key order.

If the second argument is present and has a value of "1", the traversal will be in
ascending key order. In GPL Mumps, numeric indices are retrieved in ASCII
collating sequence order. Other systems may retrieve subscripts in numeric
order. Check documentation.

$Order examples

for i=1:1:9 s "a(i)=1i

set "b(1l)=1

set "b(2)=-1

write "expect (next higher) 1 ",S$order("a("")),!
write "expect (next lower) 9 ",$order("a(""),-1),!
write "expect 1 ",Sorder("a(""),"b(1l)),!

write "expect 9 ",Sorder("a(""),"b(2)),!

set 1i=0,]j=1
write "expect
write "expect
write "expect
write "expect

",$order("a(""),J),!
",$order("a(""),-J),!
",Sorder("a(""),it+3j),!
",Sorder("a(""),i-j),!

O -~ O -

set i=""
write "expect 1 2 3 ... 9", !
for do quit:i=""
set i=$order("a(i),l)
if i="" quit
. write 1i,!

set i=""
write "expect 9 8 7 ... 1",!
for do quit:i=""
set i=$order("a(i),-1)
if i="" quit
. write 1i,!

$Piece(e1,e2,i3) or $Piece(e1,e2,i3,i4)

The $Piece() function returns a substring of the first argument delimited by the
instances of the second argument.

The substring returned in the three argument case is that substring of the first
argument that lies between the i3th minus one and i3th occurrence of the
second argument.

In the four argument form, the string returned is that substring of the first
argument delimited by the i3th minus one instance of the second argument and
the i4th instance of the second argument.

If only two arguments are given, i3 is assumed to be 1.
Spiece("A.BX.Y",".",2) yields "BX"
Spiece("A.BX.Y",".",1) yields "A"
Spiece("A.BX.Y",".",2,3) yields "BX.Y"

set x="abc.def.ghi"
set Spiece(x,".",2)="xxx" causes X to be "abc.xxx.ghi"

$QLength(e1)

$QLength() returns the number of subscripts in the variable name.

set i=1,j=2,k=3

set b(1)=99

write S$glength("a(i,j,k)),!
write S$glength(”a(b(1l),2)),!
write Sglength("a),!

writes 3, 2and 0

$QSubscript(e1,e2)

The $QSubscript() function returns a portion of the array reference given by e1.

If the second argument is -1, the environment is returned (if defined), if O, the
name of the global array is returned.

For values greater than 0. the value of the associated subscript.

If a value exceeds the number of indices, an empty string is returned. Note: the
variables or values of the subscripts must be valid.

$QSubscript() Examples

set i=1,3j=2,k=3,m="k”

write Sqgsubscript(”a(i,j,k),-1),!
write S$qgsubscript(”a(i,j,k),0),!

write Sqgsubscript(”a(i,j,k),1),!

write Sqgsubscript(”a(i,j,k),2),!

write S$qgsubscript(®a(i,j,@m),3),!

A

writes "a, 1, 2, and 3 respectively.

$QUery(e1)

The $QUery() function returns the next array element in the array space.

The first argument to $query() is a string representation of a global or local
array. The value returned is the next ascending entry in the array space.

An empty string is returned when there are no more array references to return.

$QUery() Examples

set a(l,2,3)=99
set a(l,2,4)=98
set a(l,2,5)=97

set x="a"
set x=Squery(@x)
write "expect a(l,2,3) ",x,!

set x=Squery(@x)
write "expect a(l,2,4) ",x,!

set x=Squery(@x)
write "expect a(l,2,5) ",x,!

$Random()

Srandom(10) yields a random number between 0
and 9

Sreverse("abc") yields bca

$Select()

set x=10
Sselect(x=9:"A",x=10:"B",x=11:"C") yields B

At first true expression, value after the colon returned.

Assume program code:

L1l set a=10
set b=20
set c¢=30

; line of comment

Stext (L1)
Stext (L1+1)
Stext (4)

yields "L1 set a=10"
yields " set b=20"
yields "; line of comment"

$TRanslate()

set x="arma virumgue cano"

Str(x,"a") yields "rm virumgue cno"
Str(x,"a","A") yields "ArmA virumque cAno"

Implementation defined

Implementation defined

The Medical Subject Headings (MeSH)

MeSH (Medical Subject Headings) is a controlled vocabulary hierarchical
Indexing and classification system developed by the National Library of
Medicine (NLM). The MeSH codes are used to code medical records and
literature as part of an ongoing research project at the NLM.

The following examples make use of the 2003 MeSH Tree Hierarchy. Newer
versions, essentially similar to these, are available from NLM.

Note: for clinical purposes, this copy of the MeSH hierarchy is out of date and
should not be used for clinical decision making. It is used here purely as an
example to illustrate a hierarchical index. (warning required by NLM)

A compressed copy of the 2003 MeSH codes is available at:

/home/mumps/Medline2012/Mesh

MeSH hierarchy

The 2003 MeSH file contains approximately 40,000 entries.

Body Regions;A01
Abdomen;A01.047

Abdominal Cavity;A01.047.025
Peritoneum;A01.047.025.600
Douglas' Pouch;A01.047.025.600.225
Mesentery;A01.047.025.600.451
Mesocolon;A01.047.025.600.451.535
Omentum;A01.047.025.600.573
Peritoneal Cavity;A01.047.025.600.678
Retroperitoneal Space;A01.047.025.750
Abdominal Wall;A01.047.050
Groin;A01.047.365

Inguinal Canal;A01.047.412
Umbilicus;A01.047.849

Back;A01.176

Lumbosacral Region;A01.176.519
Sacrococcygeal Region;A01.176.780
Breast;A01.236

Nipples;A01.236.500
Extremities;A01.378

Amputation Stumps;A01.378.100

The format of the MeSH table is:

a short text description
a semi-colon
a sequence of decimal point separated codes.

Each entry in a code sequence identifies a node in the hierarchy.
Thus, in the above, Body Regions has code A01, the Abdomen is
A01.047, the Peritoneum is A01.047.025.600 and so forth.

Entries with a single code represent the highest level nodes
whereas multiple codes represent lower levels in the tree. For
example, Body Regions consists of several parts, one of which Is
the Abdomen. Similarly, the Abdomen is divided into parts one of
which is the Abdominal Cavity. Likewise, the Peritoneum is part of

the Abdominal Cavity.

Representing the MeSH hieracrhy

First, our goal here is to write a program to build a global array tree
representation of the MeSH hierarchy.

In this tree, each successive index in the global array reference will
be a successive code from an entry in the 2003 MeSH hierarchy.
The text part of each MeSH entry will be stored as the global array
data value at both terminal and intermediate indexing levels.

To do this, we want to run a program consisting of Mumps
assignment statements similar to the fragment shown in Figure . In
this example, the code identifiers from the MeSH hierarchy
become global array indices and the corresponding text becomes
assigned values

set
set
set
set

set

Representing the MeSH hierarchy

"mesh("A01")="Body Regions"
"mesh("AO01","047")="Abdomen"
"mesh("AO01","047","025")="Abdomenal Cavity"
“"mesh("A01","047","025","600")="Peritoneum"

“mesh("A01l","047","365")="Groin"

Representing the MeSH hierarchy

However, rather than being a program consisting of several
thousand Mumps assignment statements, instead we use the
Mumps indirection faclility to write a short Mumps program
that reads the MeSH file and dynamically generates and
executes several thousand assignment statements.

Representing the MeSH hierarchy

#!/usr/bin/mumps
~/Medline2012/Mesh/BuildMeshTree.mps December 6, 2011

kill "mesh
open l:"mtrees2003.txt,old"
if 'Stest write "mtrees2003.txt not found",! halt

for do
use 1
read a
if 'Stest break
set key=$piece(a,";",1) // text description
set code=$piece(a,";",2) // everything else
if key=""!(code="") break

for i=1:1 do
set x(i)=$piece(code,".",i) // extract code numbers
if x(1i)="" break

set i=i-1
use 5
set z=""mesh(" // begin building a global reference

Representing the MeSH Hierarchy

B
build a reference like "mesh("A01","047","025","600)
by concatenating quotes, codes, quotes, and commas onto z
B
for j=1 . 1 . i_l Set Z=Z_" nn ll_x(j)—ll nn , 1]
Set Z=Il Set II—Z—II mn Il—x(i)—ll mn)=Il n "_keY_" mmon
B
z now looks like set "mesh("A01","047")="Abdomen"
now execute the text
B
. write z,!
Xecute z
close 1
use 5

write "done",!
halt

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

Representing the MeSH hierarchy

"mesh("A01")="Body Regions"
"mesh("A01","047")="Abdomen"
"mesh("A01","047","025")="Abdominal Cavity"
"mesh("AO1","047","025","600")="Peritoneum"
"mesh("AO1","047","025","600","225")="Douglas' Pouch"
"mesh("AO1","047","025","600","451")="Mesentery"
"mesh("AO1","047","025","600","451","535")="Mesocolon"
"mesh("AO1","047","025","600","573")="Omentum"
"mesh("A0O1","047","025","600","678")="Peritoneal Cavity"
"mesh("AO0O1","047","025","750")="Retroperitoneal Space"
"mesh("AO01","047","050")="Abdominal Wall"
"mesh("A0O1","047","365")="Groin"
"mesh("AO1","047","412")="Inguinal Canal"
"mesh("A01","047","849")="Umbilicus"
"mesh("A01l","176")="Back"
"mesh("A0O1","176","519")="Lumbosacral Region"
"mesh("A0O1","176","780")="Sacrococcygeal Region"
"mesh("A01","236")="Breast"
"mesh("A01","236","500")="Nipples"
"mesh("AO01","378")="Extremities"
"mesh("A0O1","378","100")="Amputation Stumps"
"mesh("A01","378","610")="Lower Extremity"
"mesh("A0O1","378","610","100")="Buttocks"
"mesh("A0O1","378","610","250")="Foot"
"mesh("A0O1","378","610","250","149")="Ankle"
"mesh("A0O1","378","610","250","300")="Forefoot, Human"
"mesh("Aa01","378","610","250","300","480")="Metatarsus"

Displaying the hierarchy

#!/usr/bin/mumps
~/Medline2012/Mesh/BasicMtreePrint.mps December 5, 2011

for levl=Sorder("mesh(levl)) do
. write levl," ", "mesh(levl),!
for lev2=Sorder("mesh(levl,lev2)) do
. write ?5,lev2," ","mesh(levl,lev2),!
for lev3=Sorder("mesh(levl,lev2,lev3)) do
. write ?10,lev3," ", "mesh(levl,lev2,lev3),!
for lev4=Sorder("mesh(levl,lev2,lev3,levd)) do
. write ?15,1lev4," ", "mesh(levl,lev2,lev3,levd),!

MeSH hierarchy display

A0l Body Regions
047 Abdomen
025 Abdominal Cavity
600 Peritoneum
750 Retroperitoneal Space
050 Abdominal Wall
365 Groin
412 Inguinal Canal
849 Umbilicus
176 Back
519 Lumbosacral Region
780 Sacrococcygeal Region
236 Breast
500 Nipples
378 Extremities
100 Amputation Stumps
610 Lower Extremity
100 Buttocks
250 Foot
400 Hip
450 Knee
500 Leg
750 Thigh
800 Upper Extremity
075 Arm
090 Axilla
420 Elbow

Global array collating sequence

"mesh("A01")

"mesh("A01","047")
"mesh("A01","047","025")
"mesh("AO01","047","025","600")
"mesh("AO01","047","025","600","225")
"mesh("A01","047","025","600","451")
"mesh("AO1","047","025","600","451","535")
"mesh("AO01","047","025","600","573")
"mesh("A01","047","025","600","678")
"mesh("AO01","047","025","750")
"mesh("A01","047","050")
"mesh("A01","047","365")
"mesh("A01","047","412")
"mesh("A01","047","849")
"mesh("A01","176")

Better MeSH display

#!/usr/bin/mumps
~/Medline2012/Mesh/AdvancedMtreePrint.mps December 5, 2011

set x=""mesh"

for do
set x=$Squery(x)
if x="" break

set i=$qglength(x)
. write ?i*2," " ,Sgsubscript(x,i)," ",@x,?50,x,!

A0l Body Regions
047 Abdomen
025 Abdominal Cavity
600 Peritoneum
225 Douglas' Pouch
451 Mesentery
535 Mesocolon
573 Omentum
678 Peritoneal Cavity
750 Retroperitoneal Space
050 Abdominal Wall
365 Groin
412 Inguinal Canal
849 Umbilicus
176 Back
519 Lumbosacral Region
780 Sacrococcygeal Region
236 Breast
500 Nipples

“mesh ("A01")

“mesh ("A01","047")
“mesh("A01","047","025")
"mesh("A01","047","025","600")
"mesh("A01","047","025","600","225")
"mesh("A01","047","025","600","451")
"mesh("A01","047","025","600","451","535"
"mesh("A01","047","025","600","573")
"mesh("A01","047","025","600","678")
"mesh("A01","047","025","750")
“mesh("A01","047","050")
"mesh("A01","047","365")

"mesh ("AO01","047","412")
“mesh("A01","047","849")
"mesh("A01","176")
“mesh("A01","176","519")
"mesh("A01","176","780")
"mesh("A01","236")
"mesh("A01","236","500")

Tree codes and contents

#!/usr/bin/mumps
~/Medline2012/Mesh/AdvancedMtreePrint2.mps December 5, 2011

set x=""mesh" // build the first index

for do
. set x=$Squery(x) // get next array reference
. if x="" break

. write x,?250,@x,!

"mesh ("AO01")
"mesh("A01l","047")
"mesh("AO01","047","025")
"mesh("AO01","047","025","600")

“mesh("A01","047","025","600","225")
*mesh("A01","047","025","600","451")
“mesh("A01","047","025","600","451","535")
“mesh("A01","047","025","600","573")
“mesh("A01","047","025","600","678")

"mesh("AQ01","047","025","750")
"mesh("AO01","047","050")
"mesh("AQ01","047","365")
"mesh("AO01","047","412")
"mesh("AQ1","047","849")
"mesh("A01l","176")
"mesh("AQ01","176","519")
"mesh("AO01","176","780")
"mesh("AO01","236")
"mesh("AO01","236","500")
"mesh("A01","378")
"mesh("AO01","378","100")

Body Regions
Abdomen

Abdominal Cavity
Peritoneum
Douglas' Pouch
Mesentery
Mesocolon

Omentum

Peritoneal Cavity
Retroperitoneal Space
Abdominal Wall
Groin

Inguinal Canal
Umbilicus

Back

Lumbosacral Region
Sacrococcygeal Region
Breast

Nipples
Extremities
Amputation Stumps

ard 2015 most extreme snow dive | Highest jump | Best form!

ZzZ;

Boston Bliz

* 3
s

¥

g

Exit full screen (Esc) |

=
T
@
=t
]
&
=)
=
1)
=
o]
=
S
2
=
)
o
S
2
]
n
=
=
=
=

T
ar

{1 Tube]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143

