Mumps Programming Language Interpreter,
Compiler, and C++ Class Library
User's Guide
Including
Sqlite Global Array Database Storage Facility

Kevin C. O'Kane

kc.okane@gmail.com

http://threadsafebooks.com/

http://www.cs.uni.edu/~okane/

April 24, 2022

Table of Contents

R B 153 =1 1 Y) o D TSP 7
O A TN I o] NI O AV =12V =Y 7
1.2 INTERPRETER VS COMPILER. ... cuuttuiunetnttesnesssnseatetnsessssesases s s ea st s ea s s s ea s s s snssa s snseassnssassnsesesansensnssnnnns 7

1.2.1 Interpreting @ PrOgramml.......cvi ittt ettt e e et e et e e e e e e e e e e eneenans 7

IO ©70) a1Y o) 1 o To fF T s 0T 1 =10 o HOUU RN 7
1.3 REQUIRED SV STEM SOFTWARE. .. tuttuiettinttaeteeea et a e ettt ea s ea s s s e easea s s s s st s easea s e s s e s s e s s e st en e s e s ensnstreennenen 7
1.4 BASIC SOFTWARE INSTALLATIONttt uttuttsesntesssnseasesnesaeansensesnssaseanssnsssssaesssnsessstnsensstssnssssssnsessensenssssnsneenes 8
1.5 SQLITEB SOFTWARE . .ctttueettttttueeattettunaeaeeetuunaaaeestea e aeteetsanaaaeeetan s aaeeesstaaaeeestsansaaeeessnnaeeensaesnsneennaees 8
I = U T oY TR 1 Yo L= V7Y = =3 9

T A O 11 (o]] = o PR 9

1.6.1.1 Single User Native Data BasSe.....c.c.iiuiiiiiieiiieiec et e et e e et e et et e aeeeeaaanas 9
1.6.1.2 Shared (Multi-User) Native Data BasSe.....c.coviiiiiiiiii e 9
1.6.1.3 Multi-User Slite3 Data BasSe.......ciiuiiiiiiiiiiiiie et et e e e e e e e e aaas 9

1.6.2 Native Database OptionS. ... e e et e e e e et e e eeaeanan 10

1.6.3 Sqlite3 Database OPtiOm.......ciuniiiiiiiii e e e e e e e e et e ae et e e s e et et et aaaaans 10

1.6.4 Sqlite3 Database Server Stored Global ATTayS........cvuuiiiiiiiieiiiii e e e e eeaas 11

1.6.5 Basic Sqlite3 Database Configuration...........cccc.oeiiiiiiiiiii e e 12
1.7 OPTIMAL COMPILATION CONFIGURE OPTIONS. . .uutuuttuestsnsssesnsesesnssnesnsssesnssnsssssssesssnsessssnsenssrensseensssensseenees 12

1.7.1 Single User Native Database......cccuviiiiiiiiiiiiii e ea e e e 13

1.7.2 Shared NatiVe Database. et aeaen 13

1.7.3 SOItE3 Dalabhase...uu e e e ettt a e e et et aaaanan 13
S AV, T 1= T L= 13
1.9 NUMERIC CONFIGURATION O PTIONS. 1. .tttituesetneuetneetesneeseesnseatetsea st ssatesesnsesssnsesesnseaesansraeraestensensseenenees 13

1.9.1 HArAWAre Math.. ..ottt nas 13

1.9.2 Extended PreciSion Math.. ... e 14
L1.10 ALL CONFIGURE OPTIONS. ..t uituituitneentetetteteene et esa et st ea st s eas et ssaessaasea st ea st esssanseasrassneraseneeasenes 15

1.10.1 CONMIQUIE Pre i m/UST .. iitiiiiiiieiii ittt e et e et e et e e et s e et s eanneaeansaesnaarsnasasnnsansnaeennnns 15

1.10.2 General Relational Database OpPLionsS........c.ceiiiiiiiiiiiii e e e et e e e 15

1.10.2.1 —-With-dbName=Tame.......ccoiuiiiiiiiii e e nenns 15
1.10.2.2 --with-INdeX SIZE=TUMDET........ciiiiiiiiiiiiiiii e e e et e e e e e et eanes 15
1.10.2.3 --with-data SIZE=TIDT ...ttt e et e e e e 15
1.10.2.4 --With-AbfIle=MaAIE......cvniiiiiii e e e e e aeane 15
1.10.2.5 ——WIth-SliCE=VaAlUE. .. ot 15
1 O D T T L o =T =Y = o PN 15
1.10.2.7 —-With-@larmimValUe. ..o et e ae e ae e 15
1.10.2.8 ——WIth-CaChe=V ALoeiiiiii ettt enens 16
1.10.2.9 —-With-DlOCK=DIKSIZO. .. euitiiniiiiie et ns 16
1.10.2.10 —-With-TEAAONLY.....iiniiiiiiii e et e e et et e e e e s e eananeansan 17

1.10.3 —=WIER-TDUT = e e 17

O R T W] 1 1 0 = - 17

1.10.5 —~WIth-10CAIEZ10CALE. . .uuieiee e aas 17

http://threadsafebooks.com/
http://www.cs.uni.edu/~okane/

1.10.6 —-With-LermiNate-0n-EITOTo e e et e e e et et e s e s eaenaanan 17
1.10.7 —-With-INCIUAES=DIR... .ottt et e e e s et e e enerae s raeeaens 17
1.10.8 —-With-lIDTariES=DIR.....cuiuiniiiiiiii ittt et e et e ettt et e et e e aaaenns 17
1.10.9 —-With-float-DitS=Val.......ccoiiiiii e e e e e e e e e e e e e 17
1.10.10 --With-float-digitS=Val.......cccuiiiiiiiie e e e e e e et e e e e e e r e e eaaenns 17
1.10.11 --with-hardware-math............cooiiiiii e e et e e e e e anas 17
1.10.12 —-WiIth-NO-TNIINE. ...t et et e et e e e e e e e e e e eaaeeaneeaneanaeans 17
I O RS T 1 1 o T o) 4 0 1 (= TP 17

2 Running a Mumps Program........cccceeeeieieiieiersececersacessssecessssessssessessosssssosssssssses 18
2.1 FORMAT THE GLOBAL ARRAY SQLITES SERVER. ... cuuiuuititntitetneetetneeatteeatttssatessseeateasesessseeraesasassarnrens 18
2.2 IMUMPS CLI INTERPRETER. 11ttt tttttitett et ettt ete et et e e e et s e et e et s ea e st sea e e b s aa e e s s ea s ea s en s easensea s snseasenseneseenens 18
2.2.1 Mumps CLI Special CoOmMMandS.........ccuuiiuiiuiiiiiiiiieiie e e e ee e e e et et et et eaeanerneaneaeaaanaans 18
2207200 IS B o =1 L Vo 101 A 4 B SO PRt 18

2.3 MUMPS PROGRAMS (SCRIPTS).11tttuuuuiiiiseeeeeeesettetsstsetssttsesaasaaeaeeeaaeeeeeessesessas s ataaaaaaeaeaestansaaeatteeeesnnnnns 18
P 1o TN Yo = @) o =l mTa) 1V 7. 19
3 Relational Database Commands & Variables......c.cccceieiiiiiiiiiiiiecincieceecnecnecenncens 20

G TR 54 Yo T 1= 20
3.2 BZSQUITE("BEGIN TRANSACTION”)..uttttttttteeetttaaeaeeeesssssssassssssbbstssseeeeeaeeeeaaeeeassssaaassssbbbbbbe s e e e eeeeeaaaeeeeeesesannnnns 20
3.3 BZSQLITE(“COMMIT TRANSACTION"). 1.t utttetteeeeauttteee e e e sttt e e e e e ettt e e e e e aasb e e e e e e e e anbbb e e e e e e e anst e s 20
3.4 $zSQUITE(“SAVEPOINT”[,SAVEPOINT _NAME])....cuetteteeeeaaittete e e e e ettt e ettt e e ettt et e e e ettt eeas 20
3.5 BZSQUITE(“ROLLBACK [, SAVEPOINT]) .. tttteteee et etttteee e e e s ettt e e e ettt e e e e e ettt e e e e s e e st b et e e e e e e e nnbb e e e eeeeennnnnees 20
3.6 BZSQUITE(“SQL”,SOL_COMMAND).uvvuueeeeetitteeeee e e e e e e e e et e ettt e e e e e e e e eaaaeae e e e s s e sassba s e s e eeeaaaaaaaaaaaaaanns 20
3.7 BZSQUITE(“PRAGMA” JOPTION) ..ttt etetiteeeeeeeeaeaaeaaaeaeaessssaanss et etea e e e e e eeeeeeaaaeeeeseaaaannnnnsssssssnneeeeeaaaaaaeaeaaeanns 20
R T2 Te K O L1 TR 20
T 74 1T 11V =3P 20
4 Tmplementation NOteS.....cccciiiiiiiiiieiiiiiiiiiietetiitacettesecessecessssscssssssessssessscssssscasss 21
g I |V, o o YOI Y @ 11T YNy o 21
A €T} o I ©Fa)Y 1Y T N o TP 21
4.3 NOTES ON ARITHMETIC P RECISION . .11 tuittttitii ettt ettt e et e et et et e et e e et e e e ea s s s ea st s en s et senssbsenansen 21
TN A3 i 0 11 5001 oY= of () TP 21
4.3.2 Exponential format NUMDETS. et e e 21
LIRS TG TN 1 01 0 1<) (ol o =03 1= 10} o W 21
4.3.3.1 Floating Point PreCiSiON........ciiuiiiiiiii e e e e et e e e e e e e e e e 21
VG T0C T2 B o W= To (=)l =0 < Tod 153 10) o TN 21
4.3.3.3 PeIfOTIANCE. . ..ot e e et ettt e aaaaaas 21

G T A 2 o] 01 s 1o 11 o Vo FR TP 21
O N VYA OV 1Y 7Y 21
4.4.1 Runtime Symbol Table ..ottt e et ea e 22
4.4.2 Forms of the New COmmMANd.........cccuiiiieiiieiiieiiieii e e et et e e eaeeaeeaesaesanesaneaaerasnasnasnns 22
4.4.2.1 New Command with NO ATQUINENTS.ccuuiiiiiiiiiiiiiieiir e e e et e e e e e e e ans 22
4.4.2.2 New Command with ATGUMENES........cciiiiiiiiie e e e ees 23
4.4.2.2.1 New Command with Comma List of Variable Names...........cccovvviiiiiiiiiiiiiiiiininn, 23
4.4.2.2.2 New Command with Parenthesized List of Variable Names............ccccocevivvininnnn.n. 24

T QT @YY 7Y N o PP 25
4.6 FOR COMMAND EXTENSIONS. .. etuituiitittneititteetteteete et eeneettesae et esaseassaseaeesaseseesnsenessnsessesssnsstaetsenesaensssensenns 25
A7 BREAK AND QUIT. 1ttt titt ettt e ettt e e etttk e oo e e et bh e e et ettt s e e e e e et bt e e e e eebaa e e e e eeete e e e e e eeaa e e e eeeebaa e aeans 25
4.8 LOCK COMMAND WITH SQIL. . .etuiiiiiiiiitiie e ettt ettt e ettt e ettt e e et e etb e e e e e eetba e e e e eeebba e e e eestann s e eaeenenss 28
4.9 Lock COMMAND IN SHARED NATIVE DATABASE IMIODE.cuuiriiiiiiiiieeieeiee e e e e e e et e e e et e e e s e b s aeans 28
2. 10 INAKED INDICATOR. 1.t ttuetutunetnsesnssnseanssnssanssasssssases s s sea st s ea st s sa st s sassasansasenssassnseassnsensenssesnssrensneenns 28
g T N T = o7 VY 7Y N o 28
4.12 FiLE NAMES CONTAINING DIRECTORY INFORMATION. .. eutittitnitietneitieteenesteeaeetssnseaeesnseaesanseaesansssensseenssreneanens 28
g T T TN A= 29
4.14 ARRAY INDEX COLLATING SEQUENCE ... tutitnituitneentetetneestssneeatstesasssesnses et eassanseaasanseaeesnseaeeansenseanseneesnses 29
4,15 SUBROUTINE & FFUNCTION CALLS..uuitiitniitiiieit et e e e e et e et e e et e e et e e et e s e e b e s e ea e ea s en e e ea e e eneensseenannen 29
4.16 BFNUMBER() FUNCTION. c . utttiite e e ettt e e e ettt e e e ettt e e e e ettt e e e e ettt e e e e e e e sttt e e e e e e e e e e e e e e e s e e e e e e aaaaeaeeens 30
.17 BSELECT() FUNCTION. c ettt ettt ettt ookttt e 4o ek bbbt e oo e ekttt e e e e e e b et e e e e e annbb b e e e e e e e e e e eeeeeas 31

2

4,18 COMPILING LARGE P ROGRAMS. .. cuiiiiteitiite ittt e et e ettt et et et e et st e e e e s e e ea s e s e e s et s ea s e s e et easeas e s e snenenaes 31

S B Y =T oY) = R e daT {11 L) NI T 31
L O T N T T) N 31
O O B R O 1 1 o) A VA= 1T YU 32
4.20.2 Call DY REIEIEIICE. .. cuuiiiiiiiiii ettt et e et e e e e ee et s e et et e et e e s e etaaaeeneanns 32
5 Shell Commands......cccceiiieiieieiieiieieeeareareaceecescascescsensescescescsscssessessesssesssesssessscnse 34
LT =N S 34
LT T 34
L TR = = 34
5.4 EPRESSION SUBSTITUTION . 1t ttutttesntsnesnesssneaesneaesnsesssaseassaseassssaesssaes s saseassassnsssenssseastsensssrnsssensens 34
6 Added CommandsS.......cccceiieiieierierieteeciacescescasessescescescsscssossossssssscssscssscsssesssosssanss 35
(G TR R I 7 Y=Y N == S 35
6.2 ZHALT RETURN_CODE .. tttttuuuatetttuusaaeaesstunaasaesssaaaaeessaaa s aaaeessaaaaaaeessaa e aeeessann s eeaeeasnan s aaeensaastnaaesnaaesnnaaes 35
(ST T 10 =Tt 35
7 Z Functions and System Variables........cccciiiiiiiiiiiiiieiiiiiiiiiiceiiisicnicessscescescesces 36
B RS 32 =T T Z 17N T =L 36
7 R 374 o oY 1 =Y 1 o DU 36
A = 7T I U N To 1T NPT 36
7.2.1 $Zbasename(@rg L, arg2]) .. cce ittt ettt et et e e e e et e e e 36
WA A A w1 (oY K= =Y oo B = 5 o 12 TN 36
.3 IV ATH FFUNCTIONS. 1ot itti it ie ettt ettt e e e et e et e e et e et e ea e et e ea e et eaa e et s e e e et s e s e et e e s e ea e s e sa e s eeaesan st eenenens 36
7.3.1 $zabs(arg) abSOIULE VAIUE.........oiiuiiiiiiee e e et e e e e et e et e e a e s e e e e e as 37
WARCIVAEY 2. Yol T -V oo) I N o o]0 1S3 1 s 1 YN 37
7.3.3 $ZASIN(ATF) ATC SITIB....itniiiiiiieiie ettt e e e e et e et e et et e et e tteatnestnesaesasaeassnesanasrnesraesnesnen 37
7.3.4 $atan(arg) ATC LaNgEMNt......oii i et et e et e et a e et aaaaaaa 37
7.3.5 $ZCOS(AF) COSIMB . ..u ittt ittt ittt e e e et e et e e tee et e et e et e et e et e st e st estnaatesaaanesnasnasnetasnesnnes 37
7.3.6 $zexp(arg) EXPONEntial.......cccciiiiiiiiiiiiiie e e e et e e e et e e e aaaa 37
7.3.7 $zexp2(arg) EXponential Dase 2......cco.iiiiiiiiiiii e 37
7.3.8 $zexpl0(arg) Exponential Dase 10.......cccoeiiiiiiiiiiii et 37
7.3.9 $Z10g(arg) NATUTAL 10G. ... ciuiiiiiiiiiii et et e e et e et e e e e e e et eaeaneanees 37
7.3.10 $Z10g2(arg) BasSE 2 100 . ..uuiiuniiiiiiieie et e e e e e e e e e e et et et e e e 37
7.3.11 $7Z10g10(arg) Base 10 10G...ccuiiuuiiiiiiiiiii e e e e et e e et e e e e e e e e e an 37
7.3.12 $zpow(argl,arg2) POWer fUNCLION.........c.iiiiiiii e 37
7.3.13 $ZSATE(ATG) SQUATE TOOE.....uiiiiiiiieieiie et et e e te e te et e e e e ete et e eaneaanaanasnensannes 37
7.3.14 $zsin(arg) Sine fUNCHION.......oooii e e e e e e 37
7.3.15 $ztan(arg) Tangent fUNCEION. ..o e e e e ees 37
B D 7 = =] o T =N 38
7.4.1 $zdate(or $zd) formatted date SEriNg.....ccccoueiiniiiiii e 38
7.4.2 $7d1 nUMETIC INTEINAL AATC. ..ot ettt enenes 38
7.4.3 $z2d2(INterndalDate) date COMVETSION.vuiu ettt ettt ettt ettt e eeseaeneeseneneanans 38
7.4.4 $zd3(Year,Month,Day) JUlian date.........ccceeuiiiiiiiiiieiiie e e e e e e e e ens 38
7.4.5 $zd4(Year,DayOfYear) Julian t0 Gregoriamn.......c.eiiuiiueeiiieieeieeie et e eieeeie et e e e et e e eaneaneanaans 38
7.4.6 $zd5(Year, Month, Day) comma listed date.........c.ceevuiiiiiiiiiiiiii e 38
TA.7 $ZA0 NOUTINIIIULE. ...oeniie ettt et e e e e e e e e s e e et eae e enenans 38
7.4.8 $7d7 hyphenated Aate.......ccuuiiiniiiiiiii et et et e e et e et et e e e e aaan 38
7.4.9 $zd8 hyphenated date With time.........cooiniiiiiiii e 38
7.5 SPECIAL PURPOSE FFUNCTIONS. ...ttt ittt i e ettt e et e et e ettt e ettt e e e b e et e eae et s ea e e b s sneea s snseasssnseassansenanss 38
7.5.1 $zb(arg) remove DLAnKS.ccouiiiiiii e e e e e e e 38
7.5.2 $zchdir(directory path) change dir€CtOry.........ovviiiiiiiiiiiiiiiin e 38
7.5.3 $zCurrentFile Current Mumps File. ..o 39
7.5.4 $zdumpl[(filename)] dump global ArTayS......ccoeeiuiiiieiiiiiiieiiieee e 39
7.5.5 $zrestore[(arg)] restore gloDals........coouiiiiiiiii i 39
7.5.6 $Zfile(arg) file eXISTS TST...cuuii i e e e 39
7.5.7 $ZEIUSH flUSH BEree DU OIS .ottt e e e 39
7.5.8 $zgetenv(arg) get environment variable........coooviiiiiiiiiiiii e 39
7.5.9 $zhtml(arg) encode HTML StriNg.....ciuiiiiiiiiieeiie e e e et e e et e et e e e e e e e e e e e e eaenens 39
7.5.10 $zhit global array cache hit ratio.......ccceeiiiiiieiiiii e e e aes 39
7.5.11 $zlower(string) CONVErt t0 JOWET CASE......c..ivuniiuiiiiiieeiieeieeeieeetee e e e e e e e e e e e e aaaans 39

7.5.12 $znormal(argl[,arg2]) word normalization............cccceuiiiiiiiiiiiiiiie e 40
7.5.13 $zNoBlanks(arg) remove all blanks.........ccoiiuiiiiiiiiiiie e 40
7.5.14 $zpad(argl,arg2) left justify with padding..........ccooouiiiiiiiiiii i 40
R T ST ALY oY L - 4o) TR 40
AR T I 53 = N o [) o) 1SRN 41
R T A 53 =Y ' = o N 41
ARSI R T A S =Y 01 = 1 PPN 41
RS T R A =Y | R 41
ARSI VI AV T (=) 4) =113 (o) 0| F R 41
AR T A T = U o N 41
7.5.22 $zwn extract words from DU er... ..ot 41
7.5.23 $zwp extract words from Duffer...........coooiiiii i 41
7.5.24 $zws(string) initialize internal buffer...........coooiii 41
ARSI ASTIES Tok= 1 B 2k U o Lo w10 o - JU RN 42
AR T T R R 3474 Yok | o WS 42
7.5.25.1.2 $ZZSCANAINUITL.ovuiiniitiitiiieie et e e e e e e e e e e s es e s ernernernernernerneeneens 42
SIS T IRCTIE-54 1] 011 (= of TR 42

7.6 VECTOR AND IMATRIX FFUNCTIONS. .11t itu ittt it ettt et et e et e et s s et s st e e e e s e e et s e s s ea s et s ea s e e a e e et s ens e snsanenss 43
AT R /77N o =Yl 1)) S 43
7.6.2 $zzCentroid(gbIMatrix,gbhIRe).....c.iiiiii e 43
WACRCIIE. /4 01010 N a LW (o] oY A V4= To1 o) of 1SN 44
AR A\ - b (o 1 o)) TS U 44
OIS T /41 b1 o1 (o 1 o)) PSP 44
7.6.6 $zzMultiply(gbll,gbl2,gbl3) e a e e 45
ARV 4410 N0 a1 (o 1] AV4=To1 o) of TSNS 45
7.6.8 $zzTranspose(gblMatrix1,ghbIMatriX2)....c.eiiiiiiiiiieiie e e e e e e e e e ee e ans 45
.7 TEXT PROCESSING FUNCTIONS. .t itititiieii i ee ettt et e e ettt et e et ea e e b e e e et e b e ea e e et e s ea e s e s et e taenenebesseenenss 45
7.7.1 SImilarity FUNCHIONS.iiiiici et e et e e et e et e e e e e e e e eaaeneanaas 45
7.7.1.1 $2ZCoSINe(gDhLL,gbhl2) ... e a e 45
7.7.1.2 $z7zSImM1(gDI1,gDbhl2) ..o et a e 45
7.7.1.3 $ZzZDIce(gDhLL,gbhl2) .. i e e e e e e e ar e aees 45
7.7.1.4 $zzJaccard(gbhll,gbhl2) a e 45
7.7.2 $ZZBMGSEarCh(@rgl,arG2) ... iuu i tiieiieiietieeieeteete et eeteeteetsetnseanseunseusensenasensenesnenesnsenees 46
7.7.3 $zPerIMatch(String, Pattermn) . ..o e 47
7.7.4 $zReplace(string,pattern,replacement).........cc.cviiiiiiiiiiiiiiiie e 48
7.7.5 $zShred(string,length)... ..o e a e 48
7.7.6 $zShredQuery(string,length) ..o 48
VRV Y 441010 k1T 1=y C-3 1) T 50
7.7.8 $zSmithWaterman(sl,s2,algn,mat,gap,noMatch,match)...........c.ccceiiiiiiiiiiiiiiiiiiieeeenes 50
7.7.9 $ZZIDF(Global,dOCCOUNL) . .cuuiiiiiii e e et e et e e e e e ee e e e eaeeaneaanaenaen 51
7.7.10 Correlation FUNCEIONS.iu ettt e e e e neaenenas 51
7.7.10.1 $zzTermCorrelate(globall,global2)........ccoivuiiiiiiiiiiiiiiieii e 51
7.7.10.2 $zzDocCorrelate(gblrefl,gblref2, mthd,thrshld).............ccoooiiiiiiiii e 52
7.7.11 Stop and Synonym FUNCEIONS........cuuiiiiiiiiie e e e e e e e e e e e e enaes 53
720 B T 4]) 01 B o N o =1 o) Nt 53
7.7.11.2 $ZStOPLOOKUP(WOTA)...cuitiiiiiiiiie e e e et e e e e e e e e et e e e e aenaans 53
7.7.11.3 $ZSYNINIL(FLEINAINE)....uniiiiiiieiie e et e e ee e e et e e e te e e eae s e e eaenns 53
7.7.11.4 $ZSYNLOOKUDP(WOTA)....euiiiniiieiiieieeieete et et e e e e e e e e e e e e e e eanaeaneesnaeaneeenaetnasenannnns 53

AR TS 10 | I N To oo N T PRSP 54
R S T 5 410 1 (0] o 1=) s RN 54
RS I A A\ L= LAY TS 54
7.8.3 $zSqlite[command[,0PtionT]......ccuueiiniiiiii e a e 54
7.8.3.1 $zSqlite(“begin tranSaCtiON”)......ciii i e e e e e e aaas 54
7.8.3.2 $zSqlite(“commit tranSacCtioN”).......cciuiiiiiiiiiee e 54
7.8.3.3 $zSqlite(“savepoint”[,Savepoint]) ..o 54
7.8.3.4 $zSqlite(“rollback”[,SAVePOINL])....ccccunieiiiiieee e 55
7.8.3.5 $zSqlite(“Pragma”,0PLiON)c..ciun i e e et a et a e aa e aaaas 55

8 GTK DeSKEOP GUI APPS.icuiieiiiiiiiiiiiieieecestascessessssssssscesssssssssssssssessssssssssssssssssans 56
R R TN = €10 1 I B 12T N Y 56
TR I I S N 1= 57
8.2.1 Glade DeSigm TOO0L.....c.uiiiiiiiiiei ettt e et e e e et e et e et e et e et ea e e e e e e e aan 57

4

8.2.2 Building A Mumps App from The Glade XML Fil€.......cccuiiiiiiiiiiiiiieeeeeee e 59

0 N o 1 1 N DO 60

I A o 11 -9/« TPt 60
G T o 114G TN TSR 60

I o 1 S o FO 60

T T o 1 198 '} o 1 FS 61

ST o) o W WoTe fo § TSN M WoTo [0 L=Yo IS a0} o 1SNt 61

TG T 1Y/ |] I U N T N 61
8.3.1 $z~mdh~toggle~button~get~active(ToggleButtonReference)..........cc.ccooevviiniiniiininninnanns 61
8.3.2 $z~mdh~toggle~button~set~active(ToggleButtonReference,intVal)............cccceeeiviiniinnni. 61
8.3.3 $z~mdh~dialog~new~with~buttons(ParentWindowRef,dialog).......cc..ccoerviiiiiiniiiniiniinnnns. 61
8.3.4 $z~mdh~entry~get~text(EntryReference).......ccccueiiiiiiiiiiiii e 62
8.3.5 $z~mdh~entry~set~text(EntryReference,value).........ccccoeiiiiiiiiiiiiiiiiiiiiinieccc e 62
8.3.6 $z~mdh~text~buffer~set~text(TextBufferReference,string).........cccccceeiiiiiiiiiiiiiiiiiiniinnnns. 62
8.3.7 $z~mdh~label~set~text(LabelReference,string).........ccoveuiiiiiiieiiiiiiinii e 62
8.3.8 $z~mdh~tree~selection~get~selected(TreeModelReference,column)..............cceeevnvennnenne. 62
8.3.9 $z~mdh~tree~store~clear(TreeStoreREefEIEINCE)ccovuinieieiiiiiiieeee e 62
8.3.10 $z~mdh~tree~level~add(TreeStoreReference,treeDepth,index,datal,...]).......cccccceeeniin. 62
8.3.11 $z~mdh~spin~button~get~value(SpinButtonReference)...........cccceeueiviiiiiiiiiiiiiiiiinninnnss 62
8.3.12 $z~mdh~spin~button~set~value(SpinButtonReference,number).............c.ccceeeeiiiinn.n. 62
8.3.13 $z~mdh~widget~hide(WidgetReference).......ccccueiieiiiiiiiiii e 62
8.3.14 $z~mdh~widget~show(widgetReference).........ccoeivviiiiiiiiiiii e 62
9 Pattern MatChing.....cccieiiiiuiiiiiiiiiiiiiiiiiiiiiiiiiiisaiersssecersscessssasessssessssssessssssesssceses 63
0.1 MUMPS O5 PATTERN IMATCHING. ... itttttitite ittt e et ettt e e et e e et e e et e s s et e e e s et s e s ea e e s s eaesansenesseneansneanenns 63
0.2 USING PERL REGULAR EXPRESSIONS. .1 ituitiiiiiit ittt eete e e et e et et e et e et e et e e e et e e e et e e s e ea s s e en st sensenessenesaenns 63
10 Mumps COmMPIler....ccciuiiiiiiiiiiiiiiiiiiiiiiiiiiietietiettietistescescestosstosscosscssscssscsssensssns 65
JO.1 COMPILING PROGRAMS. .. .ceuitietiiite et ettt et e e e ettt e et e et e et e e e e e s e a e e e s ea e e s e aa s e b e an s e s b e e eaeen e b eensasensaenses 65
10.2 How 10 CoMPILE AND RUN A MUMPS OR MDH PROGRAM.....cuiiviiitiiiiii it e e ens 65
10.3 COMPILER ERROR IMIESSAGES. ..uuituituitittniitite ettt e eaeta st e et et eae st s et et et et s ea st s ea et st s e eae e tasensnrenrneenses 65
10.4 GLOBAL ARRAY STORAGE IN COMPILED PROGRAMS.uiitiitiiiie ettt et e e e e s s e e aens 66
10.5 COMPILER IMPLEMENTATION OVERVIEW. ..u.cuuitnitetneitee et ee et eet e et e st e eae st e e e et e en e et saaeeasenseaeeasteenearneeenen 66
11 Multi-Dimensional and Hierarchical Database Class Library (MDH)........... 67
11.1 MDH CLASS LIBRARY HEADER FILE . uuitiiitiiiiitiiie ettt ettt e et et e et et e et e e et s e e a e enet s e s e eneeenen 67
O |V | T T I 7N 1R =N 67
I 200 R\ 53w T D = Ut) o) =T o S 67
11.2.1.1 Arithmetic Operations on Mstring ODbJectS.........cceivuiiiiiiiiiiiiieee e, 68

G T 1o =YY D 7 N 1= =o =S 68
11.4 OPERATORS DEFINED ON MSTRING & GLOBAL O BIECTS. uuiitnitniitieniitieteitieteene st seaesteeasea s e eas et et senseaeens 69
11.5 ExampLE ARITHMETIC OPERATIONS ON GLOBAL AND MSTRING OBJIECTS .. itniiniitiiiiiiieineiieetsenseeneeeneeenseneneeneens 70
11.6 FUNCTIONS FOR GGLOBAL AND IMSTRING O BJIECTS. cuuituitnieniiteeniiteentetssaeetesae et saneeaeesseneesseneeanseneeseensaeenaes 71
R e Y =TI == N 87
| A B (o =Y 1 17 T PN 89
2t R 1\ O I T = N7 == 89
12.1.1 GNU General PUDLIC LICBISE.ottt e aenes 89
12.1.2 GNU Free Documentation LICEINSE.cc.viuiiiiriiiiii et e e eeteaeneaeaenenenenes 94
12.1.3 GNU LESSER GENERAL PUBLIC LICENSEottt et eenaans 100
12.2 PeRL CoMPATIBLE REGULAR EXPRESSION LIBRARY LICENSE. .. iuuiitiiiniitiiieiiitieieiteet et e s eneeaeeneeanseneeaneenaes 108

Index of Figures

Figure 1 new Command WithoUt ArgQUMENTS........cuiiiiiiiiii e e e e e e e aeanas 23
Figure 2 new Command with Comma LiSt.........cciuuiiiiiiiiiiii e e e e e 24
Figure 3 new Command with Parenthesized LiSt...........ccccoiiiiiiiiiiiii e 25
Figure 4 Subroutine/Function CallS.........cciiiiiiiiiiiii et et e et e et e et e et e et e et e eaneeanaanns 30
Figure 5 INlNe FUNCEIONS. ...uuiiiiiiieie et e et e et e et e et e et e et e et e et e et e s e s eaasaasnasnasnasaenaenns 32

Figure 6 Call by Value FUNCHIONS......ciiuiiiiiiii et e e e e e e e e et e ea e et e et e e e sneanaanas 32

Figure 7 Call by Reference FUNCEIONS.ciiuiiiiiiiiie e e et e et e e e e et e e e e e e e e e e e enaanas 33
Figure 8 FUNCtion RELUIT VaAlUES.......ciuiiiiiiiiie et ettt e et e e et e et e et e et e et e st e eaneeanaanns 33
Figure 9 Shell Command EXamPIe.......ccuiiuiiiiiiiiiie et et et e e et e e e et e te e e e e e et aaaananns 34
Figure 10 $ZD() EXAIMIPLES. .. iiuueiiiiiiiiitiii e eiie ettt et e et e e ete e et e et s eataseatasaaanseatn et eansaneansanennsannenns 38
FIigure 11 $ZSeK() EXAMIDIES. . uuiiuiiiiiiiiii et e e te et e et e et e et e et e et e et e et e st e aansaeneensaneaneenenns 40
Figure 12 $ZWi() EXAMIDLES....uuiiiiiiiiieiiii ettt et et e et e e tie e et s et s eatn e e et satansatanseasnsaatansesnnsessnseensenns 42
Figure 13 Scan FUNCtions EXamMPles.....c..oiiniiiiiiiii e e et e e et e et e et e et e et e et e aneaneanaannns 43
Figure 14 $ZZAvG() EXAIMPLE.. ...ttt et e e ettt ettt e e et e e e et e e e e eennes 43
Figure 15 $zzCentroid() EXAmPIe......ccuniiiiiiiiiie e et e e et e et e et e et e et e et e et e et esasaenaanasnaanns 44
Figure 16 $ZZCoUNt() EXAMPIE.....ciiuuiiiiiiiiiii et e e et e et e e e s e ate e et e aeaneene et eansensansennenns 44
Figure 17 $ZZMax() EXAIMIPLE....ccuuiiiiiiiiieiie ettt ettt et e et e e e s eete e et e ettseeaaseetanseannsesneansenneanenns 44
Figure 18 $ZZMIn() EXAmMPLE.....couu ittt ettt e e et e et e een e eeaaeees 44
Figure 19 Similarity FOTTNUIAE.........oiiiiiiiiiriiiie ettt e e et e et e et s e eea e e et e eeanseataseenneenns 45
Figure 20 Similarify FUNCTIONS. ...c..iiiiiie ettt et e e e et e e e eans 46
Figure 21 $zzZBMGSearch() EXamPLe.......oiiueiiiiiiiiiiiiiieiie et eetie e et e eeie e et e ettneaetneeetnesesnnseesnsessnnesnsenns 46
Figure 22 $ZZMUultiply() EXamDIe....cuuiiiiiiiiiiie et e e e e et e et e et e et e et e et e eaneaaneanas 47
Figure 23 $ZZSUM() EXAIMIPLE.....ciuuiiiiiiiiiieiiiie et et et e et e e eie e et e eean e eetaesetnneastnseesnsessnnsesnnsensnsersnneensees 47
Figure 24 $zzTransSpoSe() EXAIMPLE......ccuiiiuiiiiiiiiiiiii e e e e e et e et e et et ea e e e e et et eneaneanaanas 48
Figure 25 $zPerIMatch() EXampPle. ... ccoui oot e e e 48
Figure 26 $ZReplace() EXamIDLe.cuuiiuniiiiiiiiiei et e et e et eeee et e et e et e et et e e e e anns 49
Figure 27 $ZShred() EXampPle. ...ttt e e e e et e e e eeeaeeae et e et e et e e et eteanaanes 49
Figure 28 $ShredQuUery() EXAMPLE........ccoocuuriieieeeeeeeeeeeeeitiee e e e e e e e e eeeeeeeeeeeeeeeeeeeeeaaneeeeeeeeeeeerannnnens 50
Figure 29 $zSmithWaterman() EXampPle.......ccuiiiiiiiiiiiiiiie et e et e e e e e e eaaeaanas 51
Figure 30 $ZZIDF() EXAIPIE.....uiiniiiiii e e et e e et e e e et e et e et e et e st e ean e et eannasnasansansnasnannns 51
Figure 31 $zTermCorrelate() EXamPle......couuiiiiiiiiiiiii et e e e e e e e e e s e e e eaaeneas 52
Figure 32 $zD0CCorrelate()EXammPle. .. ocuu ettt e et e et e e e et e st e et e et e an e s e e e e aeaeneaneanaanas 54
Figure 33 StOP LISt FUNCTIONSiuiiiiii ittt e e e et e e et e e e et e e e e a e e e eaeananes 54
FIigUre 34 Glade CamVas.ouuuieiuuiiiiineiiieetitetie ittt ettieettsettneatunsttansettaeasaeatnnsetnnsersnseesnnseennsermasensnseess 56
Figure 35 Toggle BUutton SCIEEN L......ccuiiiiiiiiiiiiiii e e e e et e et e et e et e et e et e eaneeaneranaanaanas 57
Figure 36 Toggle BUttON SCIEEI 2......ccuuiiiiiiiiiiiiii ettt ettt et e et e e et s eate e et e aeansestnseaeneaensenns 58
Figure 37 Toggle BUttOn SCIEEIN 3......couiiiiiiiiii et e e et e et e et e et e et e et e et e ean e et aeanaanaanns 58
Figure 38 Toggle BUttON SCIEEI 4......cc.uiiiiiiiiiiiiiiieeiiie et et e e e e eae e et e e et e eatae e et saeansessnsansnneaensenns 59
Figure 39 EXamPLe CA 4 COQE...c.uiiuiiiiiieiee e et e et et e et e et e et e e e st e et s aaaeaneeanassnastnastnsaneesnns 66
Figure 40 Operators Defined on mstring and global...........cceeiiiiiiiiieiiiiiiie e e e 70
Figure 41 Code EXAmPLES. . ..iiiuiiiiiiiiieiie ettt ettt ettt e et e et e et s e et s e et e aaa e aatnseeanseasaeansannenns 71
Figure 42 Functions Defined on mstring and global...........ccooiiiiiiiiii e 83
Figure 43 FUNCION EXamPIES. ... oiiuiiiiiiiiiiiii ettt e et e et s e et e e et s eea s eatnseaanseaensenneananns 85
Figure 44 Query(), Qsububscript() and Qlength() EXample........ccoooviiiiiiiiiiiiiiiii e 87
Figure 45 Document Weighting. ..o e e e et e et e e e aaeaaas 88

1 Installation

1.1 Installation Overview

1.2 Interpreter vs Compiler

The compiler supports most of the features supported by the interpreter. The compiler generates
a C++ file which can be subsequently compiled.

1.2.1 Interpreting a Program
To run a Mumps program (file suffix: .mps) with the interpreter, either:

1. Type
mumps fileName.mps

where fileName.mps is the name of the Mumps program, or,

2. Place on the first line, first column of the Mumps program the line:
#!/usr/bin/mumps

Make the Mumps program executable, and invoke the program by typing its name (including
file extension):

filename.mps

1.2.2 Compiling a Program

The script file mumpsc if given a Mumps program (file suffix: .mps) as an operand compiles the
Mumps to C++ and then compiles the C++ resulting in an executable binary with the same name as
the input Mumps program.

When compiling a Mumps program, mumpsc generates a C++ file (file suffix: .cpp) which is the
C++ translation of the Mumps program. It is this file that is passed to the C++ (g++) compiler.

You may edit the C++ file and include calls to other routines. You may compile it (the C++) file)
to a binary executable using mumpsc.

You should not pass the Mumps compiler generated C++ file directly to the C++ compiler due to
required libraries which the mumpsc command includes.

If you use the compiler, you should avoid using the xecute command and the indirection operator

(@).

1.3 Required System Software

Building mumps requires that your system have certain software installed. For the most part,
these are available through the Synaptic Package Manager or apt-get. The Configure... scripts
automatically install these if they are not present on your system.

1. Linux, preferably a Debian based version such as Debian, Ubuntu or Mint. The Windows-10
WSL (Windows Subsystem for Linux) implementation with Ubuntu may be used.

2. The g++/gcc compilers and related libraries.
3. The pcre (Perl Compatible Regular Expression) development libraries. The pcre libs should
be in /usr/lib and the include files in /usr/include. Be certain to install the pcre

development libraries.

4. The bash shell interpreter located in /bin.

5. The GNU readline and readline-dev packages.
6. Autoconf

7. The following libraries are needed for the extended precision mathematics. If they are not
installed by default, you will need to do so. Be sure to install the development versions of
the libraries:

a) The GNU Multiple precision floating point computation library

http://www.mpfr.org/
libmpfr-dev

b) The GNU Multiprecision arithmetic library development tools

https://gmplib.org/
libgmp-dev

1.4 Basic Software Installation

There are Bash script files (see below) that will install any needed software. You may wish to use
these rather than manually installing each software package. The names of these files all begin with
the prefix Configure. A related set of files to compile the various versions, begin with the prefix
Compile.

The following are the apt-get tool install commands for required software used by Debian
GNU/Linux and related distributions (such as Ubuntu and Mint). Other Linux systems use different
but similar tools. You need to install these packages for all versions of Mumps.

These commands are in the Configure.... script files so you don’t need to run them manually if
you use the Configure.. files.

apt-get --yes install autoconf
apt-get --yes install libreadline6 libreadline6-dev

apt-get --y install libpcre3
apt-get --y install libpcre3-dev

apt-get --y install g++
apt-get --y install gcc-doc

apt-get --y install libgmp-dev
apt-get --y install libmpfr-dev
apt-get --y install astyle

apt-get --y install libglib2.0-dev
apt-get --y install pkg-config

apt-get --yes install libgtk-3-dev

apt-get --yes install libgtkmm-2.4-dev
apt-get --yes install libgtkmm-3.0-dev
apt-get --yes install libgtk-3-0

apt-get --yes install gtk-3-examples
apt-get --yes install libwebkit2gtk-4.0-dev
apt-get --yes install glade

1.5 SQLite3 Software

The following are in ConfigureSqlite.script file so you don’t need to run them manually. If you
do run them manually, these are the commands so to do:

apt-get --yes sqlite3

apt-get --yes libsqlite3-dev
1.6 Building the Software

The distribution consists of source code. The source code must be compiled and linked to create
executable versions of the interpreter.

There are several options that must be set before compilation. These can be set manually. The
script file configure.ac' contains all the options. The file configure.ac is used to create the file
configure.

However, for the most part, you should use the Compile... script files:
CompileNativeSharedMumps.script
CompileNativeSingleUserMumps.script
CompileSgliteMumps.script

These will invoke configure, configure the source code, and build the resulting executables
according to pre-set templates. You may change the configuration options in by making changes to
these files. They are discussed below. If you wish to change a configuration option, edit these files.

You must be root to run the configuration and compile scripts.

1.6.1 Quick Start

If you want to build the most basic version of the Mumps interpreter, see the following. Compile
time options are shown in section 1.10.2.

To build the simplest and fastest version, the Native Database Single User version, as root, type:
ConfigureNativeMumps.script
Compile NativeSingleUserMumps.script

The first script file installs any necessary software and the second compiles and builds the most
basic version of the interpreter. If you have already installed the necessary software, the first step is
not needed. You must be root to run these scripts.

The resulting interpreter is named mumps and is located in /usr/bin/mumps.

The single user native data base is fastest but only one user may use a set of database files at a
time. The Shared Native is next fastest and permits multiple users to share the same data base files.
The slowest is based on Sqlite3 but it provides for the greatest data base integrity and permits the
data base to be accessed/viewed in a relational context.

1.6.1.1 Single User Native Data Base

ConfigureNativeMumps.script

followed by:

CompileNativeSingleUserMumps.script

1.6.1.2 Shared (Multi-User) Native Data Base

ConfigureNativeMumps.script

followed by:

CompileNativeSharedMumps.script

1.6.1.3 Multi-User Sqlite3 Data Base

ConfigureSqgliteMumps.script
followed by:

1. configure is a program that edits the source files to set paramater, limits, file names, and so forth before
the files are compiled. The file configure.ac becomes configure when you run the program autoconf.

9

CompileSqliteMumps.script

1.6.2 Native Database Options

The native database options are fast with a minimum of overhead and it can efficiently manage
very large databases however they lack a number of features normally found on modern database
systems:

1. They are sensitive to system and programming errors.
2. They do a minimum of checkpointing.
3. The maintain part of the global array tree in volatile memory.

If the host system crashes or the program using the global arrays terminates unexpectedly, the
contents of the entire global array database are likely to be lost.

However, in applications where speed is important and, in the event of a crash, the program can
be re-run, the native database is a good choice.

The native database has two configurations:

1. The first of these is a single user global array facility where the global arrays are stored in one
directory, usually the one in which the Mumps program is itself running. In this mode, only
one read-write’ Mumps program may access the global arrays in a given directory at a time
although other Mumps programs may run concurrently in other directories operating on other
global array data sets. This is the fastest but most restrictive option. The single user version
also contains a read-only version that permits multiple instances of Mumps to access the
database concurrently provided no version concurrent version is read-write.

2. The native database also has a shared option. In this version, multiple instances of Mumps
may concurrently access the database in read-write mode. This option is slower than the
single user version.

The native database is stored in the current directory in files named key.dat and data.dat.
Database files created by the single user version may be used by the shared version (but not
concurrently) and vice versa.

1.6.3 Sqlite3 Database Option

If data integrity, remote and multi-user access are important, option 2 is better. This uses
Sqlite3 to store the global arrays.

While option 2 is slower than option 1, due to relational data base system overhead, using a
relational database has significant advantages with regard to reliability and flexibility. These
include:

All database transactions are ACID (Atomicity, Consistency, Isolation, Durability) compliant.
SQL commands such as Begin Transaction, Commit and Rollback are available.

The Mumps global arrays can be queried with SQL commands from non-Mumps environments.
SQL views of the Mumps database may be constructed.

The Mumps global array database can be remote and distributed.

Mumps programs can execute SQL commands on the server on any accessible database table.
Multiple concurrent Mumps programs may run at the same time.

Noukwh =

The distribution contains several scripts that will build various versions of the system. These are
detailed next. You must be root to run these.

The scripts assume a Debian (apt-get) based Linux installation. If you are using a version of
Linux not based on Debian, you will need to manually install and configure the required system
software manually according to the procedures on your system.

2 The native database Mumps comes in two versions: a read-write version which may both read and write
global arrays and an read-only version where each Mumps program may only read the global arrays. Multiple
read-only instances may operate concurrently on the same global array data sets.

10

Some of the scripts provided with the distribution may install system software as needed.
Consequently, when using these scripts, your machine needs to have a reliable Internet connection.
Also, due to Internet load factors, it is possible that software installations may take a long time or,
in some cases, fail in the unlikely event that the servers from which the software to be downloaded
are unavailable.

The Mumps interpreters and libraries built as a result of the scripts will be stored in /usr/bin,
/usr/lib, and /usr/include.

1.6.4 Sqlite3 Database Server Stored Global Arrays
The Mumps global arrays my be stored in the Sqlite3 relational database system. With simple
code changes, other servers could also be accommodated.

To build the Sqlite3 versions, use the scripts:

ConfigureSqliteMumps.script
CompileS gliteMumps.script

There are advantages and disadvantages to storing global arrays in a relational database. The
primary disadvantage is that the hierarchical nature of the Mumps database is not well suited to the
tabular structure of a relational database and overall access is slower.

On the other hand, relational databases provide flexible multi-user, robust, fully ACID
(Atomicity, Consistency, Isolation, Durability) compliant data storage along with a complete suite of
transaction processing functions not otherwise available in the Mumps language definition.

A further advantage is that global array data may be interrogated and manipulated by ordinary,
standard SQL commands.

By default, the Mumps interpreter maps global array references to a multi-column relational
database table normally with the name mumps (this can be changed by configure). The columns of

the table are named al, a2, ... al0 and so forth. The values in the columns are the name of the
Mumps global array (in al) and indices from a global array reference (in a2 through a9)..

The final column (a10) contains the value stored at the reference, if any. For example, the code:
set ~birds(1,2,3,4,5)="ducks”

would map to a table named mumps in the relational database as follows?>:

birds

temmm - - Hommm - Feommm - +ommm - temmm - - B ik SRR S PP +
| al | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | alo |
R R Fommmm- oo - ommmm- e St SR EEEE TP +
| birds| 2 | 3 | 4 | 5 | | | | |ducks |
temmm - - Hommm - Feommm - +ommm - temmm - - e ik R ST P +

Where the values for a6 through a9 are null.

If your program instantiates array elements like the following:

set "~birds(1)="all”

set ~birds(1,2)="flying”

set "~birds(1,2,3)="water”

set ~birds(1,2,3,4)="1large”
set "~birds(1,2,3,4,5)="ducks”
set ~birds(1,3)="flightless”
set ~birds(1,3,3)="water”

3 By default, the columns varchar (note: the character length is a settable option but the index columns are
normally varchar(64) while the data column, the last column, is normally varchar(512)). The character size of
columns can be set to other values by configure. Smaller values may improve performance.

11

set "birds(1, 3,

3,4)="large”
set ~birds(1,3,3,4,

5)="penguins”

The relational table will look like*:

R Fommm - +ommm-- Fommm - R Fommm - R Fo-mmm-- Fommmm-- R +
| al | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | alo |
F-nmmmnn Feommmma L T Fommmma Fommmmn Fommmmmmme e L T |------- BRI |
|birds | 1 I I I I I I I |all I
+o--- - R +emmm - +o-m--- +o-m- - Fommm - e [------- [EEEEEE T |
|birds | 1 2 | I I I I I | flying I
F-nmmmnn Feommmma L T Fommmma Fommmmn Fommmmmmme e L T |------- BRI |
|birds | 1 | 2 | 3 | | | | | |water |
+o--- - R +emmm - +o-m--- +o-m- - Fommm - e [------- [EEEEEE T |
|birds | 1 | 2 | 3 | 3 | | | | | large |
F-nmmmnn Feommmma L T Fommmma Fommmmn Fommmmmmme e L T |------- BRI |
|birds | 1 | 3 | 3 | 4 | 5 | | | |ducks |
- - - +o-m-- +emmm - +o-m--- +o-m- - I +ommm - Fommmm o [------- [------mee--
|birds | 1 | 3 | | | | | | | flighhtless|
F-nmmmnn Feommmma L T Fommmma Fommmmn Fommmmmmme e L T |------- BRI |
|birds | 1 | 3 | 3 | | | | | |water |
+o--- - R +emmm - +o-m--- +o-m- - Fommm - e [------- [EEEEEE T |
|birds | 1 | 3 | 3 | | | | | | large |
F-nmmmnn Feommmma L T Fommmma Fommmmn Fommmmmmme e L T |------- BRI |
|birds | 1 | 3 | 3 | 5 | | | | | penguins |
+o--- - R +emmm - +o-m--- +o-m- - Fommm - e [------- [EEEEEE T |

Mumps access requests produce the expected results:

write "~birds(1) = all
write ~birds(1,2) => flying
write "~birds(1,2,3) => water
write ~birds(1,2,3,4) => large
write "~birds(1,2,3,4,5) => ducks
write $order(~birds(1,2)) = 3

write $order(”birds(1,2,"")) => 3

The row-wise duplication in the above is also present in many other Mumps systems and the
empty columns (nulls) has little real effect on overall performance.

An advantage, as mentioned above, is that data stored in such a table may be queried by an
ordinary SQL command such as:

select al® from mumps where al='birds' and a2='1l’' and a3='2"';
which yields flying.

Similarly, SQL views may be established on the Mumps table to facilitate access in other ways
by other users.

1.6.5 Basic Sqlite3 Database Configuration

By default, in order for Mumps to store and retrieve global arrays Sqlite3 there must be a
database file named mumps.sqlite accessible to the instance of Mumps being executed (links may
be used if the database file is in another directory).

You may create mumps.sqlite with the file CreateSqliteDB.script which is produced by the
configure procedure. Options to configure can be sued to set the maximum number of characters
per Mumps global array index and the maximum number of characters stored at the node. The
defaults are 64 and 128, respectively.

1.7 Optimal Compilation Configure options

The following are the optimal recommended compile configuration options.

4 Table row order may differ but this is not important.

12

1.7.1 Single User Native Database

./configure prefix=/usr \
--with-cache=33 \
--with-hardware-math \
--with-int-32 \
--with-float-digits=6 \
--with-block=1024 \
--with-slice=0 \
--with-alarm=0

1.7.2 Shared Native Database

./configure prefix=/usr \
--with-hardware-math \
--with-cache=9 \
--with-slice=10 \
--with-alarm=1 \
--with-shared \
--with-block=4096

1.7.3 Sqlite3 Database

./configure prefix=/usr \
--with-sqlite --with-dbname=mumps \
--with-slice=0 \

--with-alarm=0

1.8 Math Options

Arithmetic in this Mumps distribution can be performed either by hardware or by a library of
extended precision software.

In extended precision mode, the precision of both floating point and integer numbers can be
significantly larger than is the case with standard hardware arithmetic with minimal performance
penalty.

The several Build scripts look for files gmp.h and mpfr.h. If these are found, they cause the
build to use the extended math packages. If not, the builds will use hardware arithmetic.

You may override this and force hardware arithmetic by modifying the scripts to add the --with-
hardware-math option.

1.9 Numeric Configuration Options

Both extended precision and basic hardware precision are available as noted above.

In this version of Mumps, as is the case with many others, numeric values are stored in variables
as character strings. When a variable participates in an arithmetic operation, the value is converted
to a numeric format, the operation performed (for example, addition), and the result converted back
to character string. Not only are numeric values stored in variables as strings, but also, intermediate
results are in string format.

In this version of Mumps, there are several options with regard to handling numeric data. As an
option, you may process numeric data either by means of builtin hardware operations or by means of
extended precision software. Hardware is quicker while extended precision permits a greater range
of values. The following discusses the configure options available.

1.9.1 Hardware Math

In hardware math mode, integer and floating point numbers are processed by your machine's
arithmetic processing hardware. Floating point numbers are treated as either long double or double
values and integers are treated as either signed 64-bit long long or signed 32-bit long integer values.

To enable hardware math, you must specify the following as a configure option:

--with-hardware-math

13

Integer arithmetic may be performed in int (32 bit) or long long (64 bits in the gcc compiler)
mode. The default is long long. The int mode may be turned on with the configure option:

--with-int-32

If the above is not specified, long long is used. The gcc compiler implements long long as 64 bits.
The data type int is implemented as 32 bits.

Floating point arithmetic may be performed in either long double or double mode. The long
double mode may be enabled with the configure option:

--with-long-double
If the above is not specified, floating point arithmetic will be performed in double mode.

All numeric values are stored internally as strings. They are converted to binary numeric integer
or floating point format just prior to an arithmetic operation and then converted back to strings.

By default, the string format of a floating point number will have with 8 digits of precision. This
can be altered by configure using the -with-float digits option (default is 8). For example, if you want
16 digits of precision, add

--with-float-digits=16

to the configure parameters. The number of digits specified should be consistent with the
hardware data type (double or long double).

On x86 architectures, long double is usually implemented as an 80 bit number with a sign bit, an
15 bit exponent and 63 bit fractional part with a range of approximately 3.65x107%%! to 1.18x10%9%2
while double is implemented as a 64 bit number.

1.9.2 Extended Precision Math

Extended precision is available through use of the GNU multiple precision arithmetic library® and
the GNU MPFR library®. For integers, this means effectively unlimited precision. For floating point
numbers, the exponent is 64 bits and the fraction is user specified (default of 72 bits in Mumps - this
option may be set by configure).

Hardware arithmetic will be selected during compilation of the interpreter if (1) configure does
not find the extended precision libraries or the user affirmatively specifies the configuration option:

--with-hardware-math

If extended precision is used, the number of bits in the fraction of a floating point number can
be set with:

--with-float-bits=value

where value is the number of bits. The default value is 72. The number of decimal digits for a
given number of bits (nbits) is approximately:

1-0910 (2nbits)
Thus, 72 bits corresponds to approximately 21 decimal digits.

For extended precision floating point numbers, the number of digits of precision to print is
controlled by:

--with-float-digits=value
where value is the number of digits. The default is 8.

The number of digits specified should be consistent with the number of bits in the fraction. If the
number of digits specified is too large, random low-order digits will appear in numbers.

5 http://www.mpfr.org/
6 http://gmplib.org/manual/index.html
14

If extended precision mode is in effect, integer numbers have no upper or lower bound.

1.10 All Configure Options

The basic install sequence, as is the case with many Linux based packages is to run something
similar to the following as root:

./configure prefix=/usr
./make
./make install

The configure step, however, as is typical, contains many options. Specifying these causes
modification to the source code and changes the final product.

The distribution, as noted above, contains several bash script files with pre-configured
configure commands. For the most part, you probably don't want to write your own configure
options except in limited cases. You may, however, want to edit the files provided to set details such
as passwords and so on. This is discussed below.

The full set of options to configure are:

1.10.1 configure prefix=/usr

The directory where the runtime modules will be stored. If this is not specified, the default
location is in a directory named mumps compiler in the user's home directory. Normally, if you
want Mumps available to all users, you will specify the option as shown and run make and make
install as root. If you specify /usr as shown, the Mumps routines will be placed in /usr/bin/mumps.

1.10.2 General Relational Database Options

1.10.2.1 --with-dbname=name

Default name of the Sqlite3 mumps database table name [mumps].
1.10.2.2 --with-index_size=number

Maximum number of characters in an Sqlite3 global array index [64]
1.10.2.3 --with-data_size=nbr

Maximum number of data characters stored for an Sqlite3 global array [128]
1.10.2.4 --with-dbfile=name

Name of Sqlite’s database file [mumps.sqlite]
1.10.2.5 --with-slice=value

When using Sqlite3 or the single user native database, this number should be zero.

For the shared native database, a value of zero will cause the database files to be finalized after
each global array transaction. This results in slower but safer operation.

For shared native database, if this number is a positive integer, it is the number of milliseconds
for the database to sleep when a time slice has expired (see --with-alarm). This allows other pending
instances of mumps to gain access to the database. Default: 10.

1.10.2.6 --with-server

Compile the native database in shared (server) mode. This value should be zero for single user
native and Sqlite databases.

1.10.2.7 --with-alarm=value

The time interval of a database time slice in seconds. During a time slice, parts of the native
database are maintained in memory. Default: 1.
If --with-slice is zero, this value should be set to zero.

15

This value should be zero for Sqlite3 and single user native modes.
1.10.2.8 --with-cache=VAL

Native global database cache size. Default for single user: 33. Default for shared: 33. Number is
the number of blocks (see: --with-block) to maintain memory resident.

The only legal values for this parameter are:

9

17

33

65

129
257
513
1025
2049
4097
8193
16385
32769
65537
131073
262145
524289
1048577

1.10.2.9 --with-block=blksize
Native global btree block size. Default shared mode: 1024. Default: 4096.

The native Btree database consists of two files: the tree file (key.dat) containing the actual Btree
and the data file (data.dat) containing stored data. The maximum size of the Btree file is dependent
on the block size. The block sizes listed below each have a PAGE SHIFT value and this ultimately
determines the maximum file size as shown. The basic internal disk address is effectively 31 bits
(signed 32 bit quantity) but, depending upon the block size, some number of bits at the low-order
end are always zero. For example, if the block size is 1024, the final 10 bits of an address are
always zeros. As only the significant 31 bits are stored, the true address is not 31 bits but 41 bits
thus a file size of 2 terabytes is possible.

The only legal values for this parameter are:

1024
2048
4096
8192
16384
32768
65536
131072
262144

The block size determines the internal PAGE SHIFT factor:

1024

- PAGE_SHIFT 10
2048 - PAGE_SHIFT 11
4096 - PAGE_SHIFT 12
8192 - PAGE_SHIFT 13
16384 - PAGE_SHIFT 14
32768 - PAGE_SHIFT 15
65536 - PAGE_SHIFT 16
131072 - PAGE_SHIFT 17

16

262144
524288
1048576
2097152

PAGE_SHIFT
PAGE_SHIFT
PAGE_SHIFT
PAGE_SHIFT
PAGE_SHIFT
PAGE_SHIFT
PAGE_SHIFT

PAGE_SHIFT
PAGE_SHIFT
PAGE_SHIFT
PAGE_SHIFT

corresponds
corresponds
corresponds
corresponds
corresponds
corresponds
corresponds

to
to
to
to
to
to
to

18
19
20
21

MBLOCK
MBLOCK
MBLOCK
MBLOCK
MBLOCK
MBLOCK
MBLOCK

1024
2048
4096
8192

and a
and a
and a
and a

max
max
max
max

Btree
Btree
Btree
Btree

file
file
file
file

size of 2 TB
size of 4 TB
size of 8 TB
size of 16 TB

16384 and a max Btree file size of 32 TB
32768 and a max Btree file size of 64 TB
65536 and a max Btree file size of 128 TB

The data file may grow to a max of 2**64 bytes for all settings.

.10.2.10 --with-readonly

Native database will be readonly - only applied to the native global array facility.

.10.3 --with-ibuf=
Maximum size of an interpreted program [32000].
.10.4 --with-strmax=
Maximum internal string size [4096].
.10.5 --with-locale=locale
Locale information [en US.UTF-8].
.10.6 --with-terminate-on-error
Halt interpreter on error [off].
.10.7 --with-includes=DIR
To identify header dirs (Apple build only).
.10.8 --with-libraries=DIR
To identify libs (Apple build only).
.10.9 --with-float-bits=val
Number of bits in floating point fractional part (72).

.10.10 --with-float-digits=val

Number of decimal digits to print in a floating point number (20).

.10.11 --with-hardware-math

Use hardware arithmetic facilities.
.10.12 --with-no-inline

Do not use inline functions.
.10.13 --with-profile

Enable profiler (run gprof mumps gmon.out > stats).

17

2 Running a Mumps Program

2.1 Format the Global Array Sqlite3 Server

If you are using Sqalite3, be sure you have created mumps.sqlite using the CreatSqliteDB.script
file.

2.2 Mumps CLI Interpreter

To run the command line interpreter from a terminal window, type:
mumps

Any Mumps commands you enter will be executed immediately. To exit the interpreter, type
H[alt].

In interactive mode, you will be presented with a prompt (>). Any Mumps command may be
typed for immediate execution (including a goto or do commands with a file name reference
pointing to a file to be loaded and executed).

The keyboard up arrow and down arrow keys may be used to cycle through and display
commands previously entered during this session.

A previously entered command my be re-executed by using the keyboard up arrow key to locate
and display the command and then typing <enter>.

Input to the Mumps CLI follows GNU readline conventions.

2.2.1 Mumps CLI Special Commands

2.2.1.1 \halt \quit \h \q
Exit the Mumps CLI. The Mumps Halt (h) command and ~d work as well.

2.3 Mumps Programs (scripts)

Mumps programs are ASCII files that can be created by any ASCII text editor. Do not use word
processing editors that may embed hidden formatting characters into the text.

A script will normally have the following as their first line:
#!/usr/bin/mumps
The file extension of a Mumps program .mps is preferred but not required.
The Mumps source file must be made executable:
chmod u+x prog.mps
where prog.mps is the name of your mumps source file.
Example:
#!/usr/bin/mumps
for i=1:1:10 do
. write "Hello World ",i,!

halt

You may execute the program by typing prog.mps to your terminal prompt. The program above
will write Hello World, followed by a number ten times.

18

2.4 Source Code Format

C++ and C code were formatted using:

astyle --style=ratliff *.cpp
astyle --style=ratliff *.c

19

3 Relational Database Commands & Variables

If Sqlite3 relational database storage of globals is enabled, the following functions and builtin
variables are available in the Mumps interpreter. If the native database is in use, these, with the
exception of $zNative, are ignored.

3.1 $zSqlite

$zsqlite with no arguments returns true (1) if globals are being stored in Sqlite3, false (0)
otherwise.

3.2 $zSqlite(“begin transaction”)
Sends a BEGIN TRANSACTION; command to Sqlite.

3.3 $zSqlite(“commit transaction”)
Sends a COMMIT TRANSACTION; command to Sqlite.

3.4 $zSqlite(“savepoint”[,savepoint_name])

If the second argument is omitted, send a SAVEPOINT default; command to Sqlite.
If the second argument is present, send a SAVEPOINT savepoint; command to Sqlite where
‘savepoint’ is the value passed as the second argument. See Sqlite3 documentation for details.

3.5 $zSqlite(“rollback”[,savepoint])

If the second argument is omitted, send a ROLLBACK TRANSACTION to default; command to
Sqlite. If the second argument is present, send a ROLLBACK TRANSACTION to savepoint;
command to Sqlite where ‘savepoint’ is the value passed as the second argument.

3.6 $zSqlite(“SQL’,sql_ command)

The SQL command will be passed to the Sqlite3 server. The result, if a single value, will be
returned.

3.7 $zSqlite(“pragma”,option)

A PRAGMA command will be sent to Sqlite with option as its argument. If the PRAGMA results
in a returned value, it will be the returned result of the function. Otherwise, the function will return
0 (success) or 1 (failure).

Some example PRAGMA commands:

s i=$zsqlite("pragma"," mmap_size=20000000")
s i=$zsqlite("pragma","cache size=-1000000")
s i=$zsqlite("pragma","journal mode=off")

3.8 $zsqlOpen
Returns true if a connection to the SQL server is open, false otherwise.

3.9 $zNative

$znative returns true (1) if globals are being stored in the native global array. False (0)
otherwise.

20

4 Implementation Notes

4.1 Modulo Operator

The modulo operator (#) returns results that are the same as the C/C++ modulo operator (%).
Some Mumps documentation shows the Mumps modulo returning results that are different than
what would be expected from C/C++.

4.2 Goto Command

If you use a goto command, all do command pending returns are canceled. That is if you invoke
a section of code by means of a do and the section of code executes a goto command, the return to
the line the do was on is canceled as well as any other pending returns.

4.3 Notes on Arithmetic Precision
See section 1.8 on page 13 for additional details.
4.3.1 $fnumber()

The builtin function $fnumber() only works on numbers that can be represented in a 64 bit
floating point variable.

4.3.2 Exponential format numbers

All numbers represented in exponential format are treated as floating point numbers. If
exponential format constants are used in expressions, they must be enclosed in quotes:

set 1="1.23e3"*5

4.3.3 Arithmetic Precision

If found, Mumps will use the GNU bignum integer and MPFR floating point packages (this can
be disabled by a configure option).

4.3.3.1 Floating Point Precision

When using extended precision MPFR numbers, floating point values have a default fractional
precision of 72 bits. This can be changed with the --with-float-bits=val configure option. The
maximum number of printed decimal digits is, by default, 20. This can be changed with the --with-
float-digits=val configure option. The number of meaningful decimal digits that can be printed
depends upon the number of bits in the fractional part of the floating point number. More bits mean
more decimal digits can be printed.

If MPFR is not present, standard hardware double precision is used.
4.3.3.2 Integer Precision

There is no effective limit to integer precision except string length and memory when the
extended precision bignum package is in use. Otherwise, precision is the same as the hardware
long.

4.3.3.3 Performance

Extended precision arithmetic results in slower performance. The amount is dependent on how
much arithmetic a program does, whether it is mainly integer or floating point (floating point is
slower), and, in the case of fixed length numbers, how large the numbers are. Larger numbers
result in slower computations.

4.3.4 Rounding

The $justify() function is useful to round lengthy repeating decimal floating point numbers to a
more reasonable value.

4.4 New Command

The new command functions differently than in the 1995 standard. The following details its
behavior.

21

4.4.1 Runtime Symbol Table

The new command controls the internal run time symbol table. Upon entering a block by means
of a do command, a new layer of the symbol table is created. Upon exit, the layer is discarded and
the previous layer becomes the current layer.

When a program begins, an initial or base layer is created in the symbol table. In the absence of
any new commands, newly created variables are stored at this base or initial layer.

When a variable is retrieved, all layers are searched beginning with the most recently created
layer and progressing through to older layers until the initial layer is reached.

In the absence of any new commands, only the initial or base layer will contain variables.

4.4.2 Forms of the New Command

There are three forms of the new command based on the arguments provided. The first has no
arguments, the second has a list of arguments consisting of variable names separated from one
another by commas, and, finally, the third has an argument consisting of a parenthesized comma
separated list of variable names. For example:

new
new a,b,c
new (a,b,c)

4.4.2.1 New Command with No Arguments

A new command with no arguments cause the system to copy all variables from all layers to the
current layer.

Until the current block is exited, all access to any variable known at the time of the new
command will access the copy of the variable, not the original. Upon exit from the block, the copies
are deleted’.

Any variable created whose name was not known when the new command was executed, will be
created and stored at the lowest base layer of the symbol table and, consequently, not deleted upon
exit from the block that contained the new command.

If a new command is executed in a block that invokes a block which itself executes a new
command, the new command in the second block makes of copy of the invoking block's variables
along with any variables created by the invoking block after executing its new command. If, in the
symbol table stack, a vriable appears at several layers, only the most recent version will be copied.

An example is given in Figure 1. In this example, variables i, j, and k are created at the
beginning of the program. The function test1 is then called.

Initially, in test1, the variables have the same values that they did in the main function. The
variable i is changed. The new command is executed and a copy of all the variable currently known
(i,j,k) is made to the current layer. The values of i, j, and k are altered the function test2 is called.

The values of the variables on entry to test2 are the same as they were in testl. Anothe new
command is executed making another copy of the variables. These are altered and a new variable,
y, not previously known at any level (and thus stored at the base level) is created. Return is made to
testl.

In test1 the values of the variable are printed and it can be seen that they have reverted to the
values they had prior to entering test2. Return is made to the main function.

In the main function the variables have reverted to the values they had prior to the invocation of
testl with the exception of i which was altered in testl prior to execution of the new command. It
retains the value it received in test1.

7 A block is any sequence of code entered as a result of a do command.
22

Note also that the variable y now exists at the main function level since, when it was created in
testl, it was not in the group of variables copied to the symbol table level for testl. Thus, it was
created at the base level of the symbol table.

However, when y was altered in test2, only the copy made by the new command in test2 was
altered, not the original.

#!/usr/bin/mumps
set i=10
set j=20
set k=30
do testl
write "Main: expect 100 20 30 50: ",i," ",j," ",k," ",y,!
halt

testl write "testl: expect 10 20 30: ",i," ",j," ", k,!
set i=100
new
set i=11, j=22,k=33,y=50
do test2
write "testl: expect 11 22 3350 : ",i," ",j," ",k," ",y,!
quit

test2 write "test2: expect 11 22 33 50: ",i," ",j," ",k," ",y,!
new
set i=12,j=23,k=34,y=55
write "test2: expect 12 23 34 55 : ",i," ",j," ",k," ",y,!
quit

root@AMD6 validate new0Ol.mps

testl: expect 10 20 30: 10 20 30

test2: expect 11 22 33 50: 11 22 33 50
test2: expect 12 23 34 55 : 12 23 34 55
testl: expect 11 22 33 50 : 11 22 33 50
Main: expect 100 20 30 50: 100 20 30 50

Figure 1 new Command without Arguments
4.4.2.2 New Command with Arguments

There are two forms of the new command that take arguments.

The first has a list of arguments consisting of variable names separated from one another by
commas:

new a,b,c

The second has an argument consisting of a parenthesized, comma separated list of variable
names:

new (a,b,c)

If a variable is named in the list that does not exist, it is created in the current symbol table
layer with a value of the empty string.

4.4.2.2.1New Command with Comma List of Variable Names

If the new command argument is a list of one or more variable names, it means that the
variables listed will be copied to the current symbol table level and, eventually, discarded when the
current block is exited?®.

8 A block is any sequence of code entered as a result of a do command.

23

If a variable whose name appears in the list exists at several layers in the symbol table stack,
only the most recent will be copied.

Any reference to any variable not in the argument list will be satisfied by searching through the
symbol table stack for the most recent instance of it. See Figure 2.

If a variable is mentioned in the argument list that does not exist, it is ignored.

#!/usr/bin/mumps
set i=10
set j=20
set k=30
do testl
write "Main: expect 100 20 30 50: ",i," ",j," ",k," ",y,!
halt

testl write "testl: expect 10 20 30: ",i," ",j," ",k,!
set i=100
new i, j
set i=11,j=22,k=33,y=50
do test2
write "testl: expect 11 23 34 55 : ",i," ",j," ",k," ",y,!
quit

test2 write "test2: expect 11 22 33 50: ",i," ",j," ",k," ",y,!
new i
set i=12,j=23,k=34,y=55
write "test2: expect 12 23 3455 : ",i," ",j," ",k," ",y,!
quit

root@AMD6 validate # new02.mps

testl: expect 10 20 30: 10 20 30

test2: expect 11 22 33 50: 11 22 33 50
test2: expect 12 23 34 55 : 12 23 34 55
testl: expect 11 23 34 55 : 11 23 34 55
Main: expect 100 20 30 50: 100 20 34 55

Figure 2 new Command with Comma List
4.4.2.2.2 New Command with Parenthesized List of Variable Names

If the new command argument list consists of a parenthesized list of one or more variable
names, it means to make a copy of the most recent versions of all known variables except for the
variable named in the list. This is similar to the no-argument version except the one or more
variables known at the time of command execution will not be copied to the current symbol table
layer.

When the block containing the new command is exited, the copies of the variables are
discarded but any changes to this variables given in the argument list are not®.

See Figure 3.

#!/usr/bin/mumps
set i=10
set j=20
set k=30
do testl
write "Main: expect 11 22 30 50: ",i," ",j," ",k," ",y,!
halt

9 Note: if one or more of the variables in the argument list are themselves copies from a lower layer but
not the base layer, they will eventually be discarded.

24

testl write "testl: expect 10 20 30: ",i," ",j," ",k,!

new (i,j)
set i=11,j=22,k=33,y=50

do test2

write "testl: expect 11 23 34 55 : ",i," ",j," ",k," ",y,!
quit

test2 write "test2: expect 11 22 33 50: ",i," ",j," ",k," ",y,!

new i

set i=12,j=23,k=34,y=55

write "test2: expect 12 23 34 55 : ",i," ",j," ",k," ",y,!

quit

root@AMD6 validate # new@3.mps

testl: expect 10 20 30: 10 20 30

test2: expect 11 22 33 50: 11 22 33 50
test2: expect 12 23 34 55 : 12 23 34 55
testl: expect 11 23 34 55 : 11

Figure 3 new Command with Parenthesized List

4.5 Kill Command

The kill command operates only on the current symbol table level.
4.6 For Command Extensions
The for command accepts extensions such as the following:

for i=%$order(~a(i)) ...
for i=init:$order(”~a(i)):final ...

In the first example, the variable i will assume all the index values of the global array in collating
sequence order.

In the second, the first value of i will be the next higher collating sequence value of the index
above init and subsequent values will be the values in collating sequence order of the global array up
to but not including final.

4.7 Break and Quit

In this version, the break command has a non-standard use. Originally intended as a means of
interrupting a program for debugging purposes, in this implementation is is used in loop control.

A quit in a single line for terminates processing of the for. If there are multiple for commands,
it terminates the nearest:
for i=1:1:10 write i,! if i>5 quit
writes 1 through 6 only.

for i=1:1:10 for j=1:1:10 write j,! if j>5 quit
writes 1 through 6 ten times.

A break may NOT be used in a single line for command. It may ONLY be used in an indented
block that was introduced by a do command.

In an indented block, quit and break have special meanings:

A quit ends further processing of the block in which it appears and returns control to the line
containing the invoking do at a point just after the do. Processing of the line containing the invoking
do resumes. If there are more commands on the line, they are executed.

25

A break ends further processing of the block in which it appears but does not return the line
containing the invoking do. Instead, execution moves to the line following the block which the do
invoked.

Examples:

for i=1:1:10 do write " continuing"
. write !,1i

. if i>5 quit

. write " ",1i

write !,"done",!

writes

continuing
continuing
continuing
continuing
continuing
continuing
continuing
continuing
continuing
10 continuing
done

UubWNBRE

OCooNOUEWNRE

In this example, the block is invoked 10 times. After each invocation, the remainder of the line
containing the for is executed producing the instances of the word "continuing". Each block
invocation prints the value of "i". When the value of "i" is greater than 5, the block executes the quit
command thus returning to the invoking line early. When the value if "i" is 5 or less, the full block is
executed and return is made to the invoking line at block end. When the for command finishes
execution, control is passed to the line following the for and "done" is printed.

set i=9

if i>0 do write " continuing"
. write !,1i

. if i>5 quit

. write " ",1i

write !,"done",!

writes:

9 continuing
done

In this example, the block is entered, the value of "i" is printed but, because "i" is greater than 5,
the quit is executed and control is returned to the invoking do and the word "continuing" is printed.
Now, the line being completely executed, control passes to the line following the block and "done" is
printed.

for 1i=1:1:10 do write " mark " do write " end of line",!

. write 1

if i>5 quit
. write "X"
writes:

1X mark 1X end of line
2X mark 2X end of line
3X mark 3X end of line
4X mark 4X end of line
5X mark 5X end of line
6 mark 6 end of line

7 mark 7 end of line

26

8 mark 8 end of line
9 mark 9 end of line
10 mark 10 end of line

In this example, multiple do commands are shown. Note the two blanks following each.
Each do invokes the block following the line containing the do

On the other hand, the break command terminates the the block in which it is contained
but execution does not return to the line containing the invoking do but, instead, continues
with the line following the block:

for i=1:1:10 do write " continuing"

. write !,i

. 1f i>5 break

. write " ",1

write !,"done",!

writes:
1 1 continuing
2 2 continuing
3 3 continuing
4 4 continuing
5 5 continuing
6
done

set i=9

if i>0 do write " continuing"

. write !,1i

. 1f i>5 break

. write " ",1

write !,"done",!

writes:

9

done

for i=1:1:10 do write " mark " do write " end of line",!

. write i

. 1f i>5 break
. write "X"
write !
writes:

1X mark 1X end of line
2X mark 2X end of line
3X mark 3X end of line
4X mark 4X end of line
5X mark 5X end of line
6

In these examples, execution of the break can be seen to terminate the current block and move
to the line following the block.

for i=1:1:10 do
for j=1:1:5 do
. write j,!
. if j>3 break

The above write 1 through 4 ten times.

27

Note: the contents of $test revert to their former value when exiting an indented block by means
of break or quit:

if 1=1 do

. write "test 1: ", $test,!
. if 1=2 write "wow",'!

. else write "not wow",'!
. write "test 2: ", $test,!
write "test 3: ", $test,!

writes:
test 1: 1
not wow
test 2: 0
test 3: 1

If you exit a block with a goto, the value of $test is not restored.

4.8 Lock Command with SQL

Locks are not needed if you are using Sqlite3 for global array storage as SQL transaction
commands can achieve the same or better effect.

When using SQL for the backend global array stores, the Lock should not be used. Instead, use
the more modern native SQL transaction processing commands (BEGIN, COMMIT, ROLLBACK,
etc.) to achieve the same effect with far greater integrity (see Section 3 on page 20).

4.9 Lock Command in Shared Native Database Mode

In native B-tree mode, the Lock command creates a file named Mumps.Locks in /tmp where lock
information for the system is stored. If this file becomes corrupted due to abnormal terminations, it
should be deleted. It will be rebuilt as needed.

4.10 Naked indicator

This version of Mumps does not support the naked indicator.
The naked indicator has no place in a modern or even semi-modern programming language.

It was originally included in early versions of Mumps because of the inefficient binary mapping
of an n-way tree which was used at the time to store the global arrays. The naked indicator was a
short-hand to the interpreter to allow it to search for a global without stating at the top of the tree
each time thus resulting in faster access. That is no longer the case with B-tree based access
methods.

The main issue is the ambiguity of determining what exactly the naked indicator is after certain
Mumps operations. Unfortunately, some legacy applications use it. These should be re-written.

4.11 Job command

The JOB command results in a C/C++ fork() function to be executed thus creating a child
process. The child process will attempt to execute the argument to the JOB command. The JOB
command may be used in native B-tree user mode but only one process may access the globals. In
native client server mode, this restriction is not in effect.

The child process must end with a HALT command or the child process will hang.

4.12 File Names Containing Directory Information

When invoking a file name containing directory information (forward slash in Linux and
backslash in DOS) with the DO or GOTO commands, the file name must be enclosed in quotes. For
example:

set x="""~/home/user/xxx.mps""" goto @y
goto @""""~/home/user/xxx.mps"""

28

Note the extra quotes. These are required.

4.13 File Names

File names should conform to variable naming conventions except that the first character of a
file name may not be the percent sign (%) character. The first character must be alphabetic. File
names may only contain letters, digits and the percent sign.

4.14 Array Index Collating Sequence

Array index collating sequences for both global and local array is ASCII. That is, for the
$query() and $order() functions, all array indices will be presented in the same order as ASCII
strings. Thus, in an array with 15 elements whose indices range from 1 to 15, the indices will be
presented as:

1101112 13 141523456789

Other versions of Mumps may present numeric indices in numeric order. This, however, leads to
considerable inefficiencies in the data base.

You may achieve numeric ordering by storing the indices padded to left with blanks such as:

for i=1:1:15 set ~a($justify(i,
set i="" for set i=$order("a(i

n "

8))=1
)) quit:i=""' write +i,

the indices will now be presented as:
12345678910 11 12 13 14 15

Note the the +i in the write command has the effect of converting the string to a number with
no leading blanks.

4.15 Subroutine & Function Calls

Subroutines and functions may be performed in several ways as shown in Figure 4. Values
returned from functions invoked by a do command are ignored. In standard Mumps, the $$ form is
used only with function invocations.

Caution: be certain to include a halt or other exit in your program prior to any functions that
may appear at the end of your code. If the halt is not present, function code will be entered and any
passed variables will be undefined.

#!/usr/bin/mumps
calls.mps

set i=10

do fcn(i)

do fcn(5)

do $$fcn(i)

do $$fcn(5)

set k=$$fcn(5)

write "returned k=",k,!

set i=10

do fcn™ext.mps(i)

do fcn”ext.mps(5)

do $$fcn”ext.mps(i)

do $$fcn”ext.mps(5)

set k=$$fcn~ext.mps(5)
write "returned k=",k,!

do fcn™extl.mps
do fcn”extl.mps

29

do $$fcn”extl.mps

do $$fcn”extl.mps

set k=$$fcn"extl.mps
write "returned k=", k,!

halt

fcn(x) write "in fcn(x) value passed is ",x,!
quit x

#!/usr/bin/mumps
ext.mps

fcn(x) write "in fcn(x) value passed is ",Xx,!
quit x

#!/usr/bin/mumps

extl.mps

fcn write "in fcn extl.mps",!
set x=22
quit x

output results:

in fcn(x) value passed is 10
in fcn(x) value passed is 5
in fcn(x) value passed is 10
in fcn(x) value passed is 5
in fcn(x) value passed is 5
returned k=5

in fcn(x) value passed is 10
in fcn(x) value passed is 5
in fcn(x) value passed is 10
in fcn(x) value passed is 5
in fcn(x) value passed is 5

returned k=5

in fcn extl.mps
in fcn extl.mps
in fcn extl.mps
in fcn extl.mps
in fcn extl.mps
returned k=22

Figure 4 Subroutine/Function Calls

4.16 $Fnumber() Function

The $fnumber() is implemented via the C function strfmon() which provides much greater
flexibility when dealing with differing locales and, especially, currencies. The default locale is
en US.UTF-8 but this can be set with the configure option:

--with-locale=location-information

You may use $fnumber() with the legacy Mumps parameters or use it with a pattern parameter
designed for strfmon().

30

If you use the strfmon() parameter opetion, the function takes two arguments. The first must be
a number consisting of only numeric characters. The second is a character string conforming to a
strfmon() pattern but preceded by an asterisk to distinguish the pattern from those used by the
legacy Mumps function of the same name. The strfmon() function is well documented but here are
some examples:

set x=12345.6789

write $fn(x,"”*%!n") ==> 12,345.68

write $fn(x,"”*%n") ==> $12,345.68

write $fn(x,"”*%i") ==> USD 12,345.68

write $fn(x,"”*%n3") ==> $12,345.683

write $fn(x, "*%20n") ==> $12,345.68

4.17 $Select() Function

All arguments of the $select() function are evaluated. In standard Mumps, they are evaluated
until one is true or all are false.

4.18 Compiling Large Programs

When compiling'® large programs, especially if SQL is enabled, there may be a warning about
variable tracking from the gcc/g++ compiler. You may ignore this.

4.19 Embedded Expressions

In several extended Mumps commands, the figure &~exp~ may appear. The expression exp is
evaluated and the result replaces the figure. For example:

set x="1s -1h"
shell &x~

4.20 Functions

This is the form of subroutine was originally used in Mumps. There are no parameters passed to
the subroutine and the subroutine shares the same namespace as the calling program hence, as seen
in the example in Figure 5, the values of the variables i, j, and k are accessible to the subroutine and
any changes to them are available in the calling program.

Variables created in the subroutine in the normal manner by a set or read command, unless the
subject of a kill command, are available to the calling routine.

Variables created in the subroutine as a result of a new command are destroyed upon return and
are not available to the calling routine.

zmain

set i=10

set j=20

set k=30

write "main program: ",i," ",j," ",k,!
do test

write "main program: ",i," ",j," ",k,!
write "main program x=",6Xx,!

write "main program $data(y)=",$data(y),
halt

test

write "sub-program: ",i," ",j," ",k,!
set i=11

set j=22

set k=33

set x=22

new y

set y=33

quit

10 Using the compiler is not presently recommended.

31

which produces the following output:

main program: 10 20 30
sub-program: 10 20 30
main program: 11 22 33
main program x=22
main program $data(y)=0
Figure 5 Inline Functions

4.20.1 Call by Value

This form of subroutine call was introduced later in the evolution of Mumps. It permits
parameters to be passed to the subroutine but the subroutine maintains a separate name space for
values passed to it as parameters. Variables from the calling program are visible to the called
program. Variables created by the called program become available to the calling program upon
return (except if the are killed prior to return or created by a new command). and variables created
in the called program are deallocated upon return and are thus not visible to the calling program.
Changes to parameters passed to the called program do not change the corresponding arguments in
the calling program.

zmain

set i=10

set j=20

set k=30

write "main program: ",i," ",j," ",k,!
do test(i,j,k)

write "main program: ",i," ",j," ",k,!
halt

test(a,b,c)
write "sub-program: ",a," ",b," ",c,!
set a=11
set b=22
set c=33
quit

which produces the following output:

main program: 10 20 30
sub-program: 10 20 30
main program: 10 20 30

Figure 6 Call by Value Functions

4.20.2 Call by Reference.

Same as the above but 'call be reference' permitted. That is, changes to parameters made by the
called program cause changes to the corresponding arguments in the calling program. Note the "." in
front of the variables in the 'do' command that are to be passed by reference. Both call by reference
and call by value arguments may be mixed in the same 'do' statement.

#!/usr/bin/mumps
zmain
set i=10
set j=20
set k=30
write "main program: ",i," ",j," ",k,!
do test(.i,.j,.k)
write "main program: ",i," ",j," ",k,!
halt

32

test(a,b,c)
write "sub-program: ",a," ",b," ",c,!
set a=11
set b=22
set c=33
quit

which produces the following output:
main program: 10 20 30

sub-program: 10 20 30
main program: 11 22 33

Figure 7 Call by Reference Functions

In each of the examples, the subroutine and calling program are actually part of the same C++

function. In effect, subroutines of the type shown above as similar to the old Basic gosub facility.
Functions such as shown above may also return values:

An example recursive factorial computation is shown in Figure 8.

#!/usr/bin/mumps
zmain
set i=$$factorial(5)
write "factorial=",1i,!
halt

factorial(a)
write "sub-program: a=",a,!
if a<2 quit 1
set b=$$factorial(a-1)
write "a=",a," b=",b,!
quit a*b

sub-program:
sub-program:
sub-program:
sub-program:
sub-program:
a=2 b=1

[\V <V IV VI o]
LI | |
=N WRU

Figure 8 Function Return Values

33

5 Shell Commands

The shell command passes the remainder of the line to a shell for execution (sh in Linux). Shell
output will appear on stdout. The command sets $test to false if the fork() fails, true otherwise.

5.1 shell/p

The shell/p form passes the remainder of the line to a shell for execution but opens a pipe from
the shell to Mumps unit number 6. All stdout output from the shell is directed to unit number 6 and
can be read with any of the input commands or functions in association with the use command.

5.2 shell/g

The shell/g form passes the remainder of the line to a shell for execution (sh in Linux) and
opens an output pipe from the Mumps program to the shell as Mumps unit number 6. Data written
to this unit becomes stdin to the shell. Output from the shell is written to stdout. Remember to
close unit number 6 to signal end-of-file to the shell.

5.3 shell

With no qualifier, the shell command passes the remainder of the command line to a shell.
Input or output from the shell come from or go to stdin or stdout, respectively.

5.4 Epression Substitution

In all cases, the remainder of the command line is scanned for &~...~ expressions. The
expression between &~ and ~ is evaluated and the result replaces the &~...~ expression.

For example:

shell sort dictionary.tmp | uniq -c | sort -nr > dictionary.s

The Linux shell created will do the following:

1. The file dictionary.tmp, a collection of words, will be sorted by sort and the output piped to
uniq

2. uniq counts duplicate entries and pipes its output consisting of a count and a word to sort

3. sort sorts the result numerically by number of duplicates in reverse order and writes its
output to dictionary.s.

shell/p sort dictionary.tmp | uniq -c | sort -nr
open 1l:"dictionary.s,new"
for do
use 6
. read line
. if '$test break
use 1
. write line,!
close 1

Co~NOOULTEs WN P

Figure 9 Shell Command Example

The above does the same but the output will be presented to Mumps unit 6 which reads and
writes the result to the file named dictionary.s

34

6 Added Commands

6.1 Database expr

By default, Native databse file key.dat and data.dat are stored in the directory current when a
program is invoked.

The database command may be used to set the name of the files to be used to store the native

global arrays. The expression will be evaluated and the resulting name will become the name,

suffixed .key and .dat, of the files in which the native global arrays are stored. The expression may

contain directory information. For example:
database "/home/user/data/mumps”
will cause the system to access files:

/home/user/data/mumps. key
/home/user/data/mumps.dat

This command must be issued prior to any attempt to access the global arrays. It only works
with the native B-tree database option.

6.2 Zhalt return_code

The zhalt command will terminate the current program with a return error code given by its
argument. Example:

if a=0 zhalt 99

The value of $? in the BASH environment will be 99.
6.3 Declare
The Declare command is ignored by the interpreter.

In the compiler, is can be used to establish one or more variables as declared C++ variables
rather than variables stored in the Mumps run time symbol table. Consequently, access to the
variables is about twice as fast.

Declared variables may only be scalers. The may not, at present, be subscripted.

Declared variable names may conflict with exiting internal compiler variables. In which case,
select a different name for your scaler.

Example:

zmain
declare dclx,dclxl
for dclx=0:1:1000 set dclxl=dclx write dclx1,!

35

7 Z Functions and System Variables

$zfunctions are extensions added by the implementor and not covered by the standard. Thus,
many if not all of the following M2 extensions may not be supported or supported differently in other
implementations. Likewise, there are implementer defined system variables which may be queried
and, in some cases, set.

M?2 implementation note: you may add new $z functions by modifying the function zfcn() located
in the source file bifs.cpp.in

7.1 System Variables

7.1.1 $zProgram

Returns a string with the name of the currently executing program.

7.2 Bash Functions

7.2.1 $zbasename(argl[,arg2])

Returns a result equivalent of the Bash function basename

$zbasename (“/home/jsmith/base.wiki”) yields base.wiki
$zbasename(“/home/jsmith/”) yields jsmith

$zbasename(“/"”) yields /
$zbasename(“/home/jsmith/base.wiki”,”.wiki”) yields base
$zbasename (“/home/jsmith/base.wikia”,”ki”) yields base.wi
$zbasename(“/home/jsmith/base.wiki”,”base.wiki”) yields base.wiki

7.2.2 $zfiletest(argl,arg2)

Performs a Bash style check on a file name. The first argument is the name of a file and the
second is a parameter that determines the type for file check. If the check condition is true, a one
(1) is returned, zero (0) otherwise. The following are legal values for the second argument:

-a True if FILE exists.

-b True if FILE exists and is a block-special file.

-c True if FILE exists and is character-special file.

-d True if FILE exists and is a directory.

-e True if FILE exists.

-f True if FILE exists and is a regular file.

-g True if FILE exists and its SGID bit is set.

-h True if FILE exists and is a symbolic link.

-k True if FILE exists and its sticky bit is set.

-p True if FILE exists and is a named pipe (FIFO).

-r True if FILE exists and is readable.

-s True if FILE exists and has a size greater than zero.

-t True if file descriptor FD is open and refers to a terminal.
-u True if FILE exists and its SUID (set user ID) bit is set.
-w True if FILE exists and is writable.

-Xx True if FILE exists and is executable.

-0 True if FILE exists and is owned by the effective user ID.
-G True if FILE exists and is owned by the effective group ID.
-L True if FILE exists and is a symbolic link.

-N True if FILE exists and has been modified since it was last read.
-S True if FILE exists and is a socket.

Q

7.3 Math Functions

36

The following C/C++ math functions are available in M2. Their arguments and return values are
the same as the correspondingly named C++ functions.

7.3.1 $zabs(arg) absolute value
Function returns the absolute value of its numeric argument.

7.3.2 $zacos(arg) arc cosine

Computes the inverse cosine (arc cosine) of the input value. Arguments must be in the range -1 to

7.3.3 $zasin(arg) Arc sine

Computes the inverse sine (arc sine) of the argument arg. Arguments must be in the range -1 to

7.3.4 $atan(arg) Arc tangent

Computes the inverse tangent (arc tangent) of the input value.
7.3.5 $zcos(arg) Cosine

Computes the cosine of the argument arg. Angles are specified in radians.
7.3.6 $zexp(arg) Exponential

Calculates the exponential of arg, that is, e raised to the power arg (where e is the base of the
natural system of logarithms, approximately 2.71828).

7.3.7 $zexp2(arg) Exponential base 2
Calculates 2 raised to the power arg.
7.3.8 $zexp10(arg) Exponential base 10
Calculates 10 raised to the power arg.
7.3.9 $zlog(arg) Natural log

Returns the natural logarithm of arg, that is, its logarithm base e (where e is the base of the
natural system of logarithms, 2.71828...).

7.3.10 $zlog2(arg) Base 2 log

Returns the base 2 logarithm of arg.

7.3.11 $zlog10(arg) Base 10 log

Returns the base 10 logarithm of arg.
7.3.12 $zpow(argl,arg2) Power function
Calculates arg1 raised to the exponent arg?2.
7.3.13 $zsqrt(arg) Square root
Function returns the square root of its numeric argument.
7.3.14 $zsin(arg) Sine function
Computes the sine of the argument arg. Angles are specified in radians.
7.3.15 $ztan(arg) Tangent function

Computes the tangent of arg.

37

7.4 Date functions

7.4.1 $zdate(or $zd) formatted date string

Function returns the system date and time in standard system printable format. This includes:
day of week, month, day of month, time (hour:minute:second), and year (4 digits).

7.4.2 $zd1 numeric internal date

Returns the number of seconds since January 1, 1970 - a standard used in Linux. This number
may be used to accurately correlate events.

7.4.3 $zd2(InternalDate) date conversion

Translates the Linux time from $ZD1 into standard system printable format. The argument is a
Linux format time value.

7.4.4 $zd3(Year,Month,Day) Julian date

Returns the day of the year (Julian date) for the Gregorian date argument.

7.4.5 $zd4(Year,DayOfYear) Julian to Gregorian

Returns the Gregorian date for the Julian date argument.

7.4.6 $zd5(Year, Month, Day) comma listed date

Returns a string consisting of the year, a comma, the day of year, and the number of days since
Sunday (Monday is 1).

7.4.7 $zd6 hour:minute
Returns a string consisting of the hour, a colon, and the minute.
7.4.8 $zd7 hyphenated date

Returns a string consisting of the year, hyphen, month, hyphen, and day of month. If an argument
is given in the form of the number of seconds since Jan 1, 1970, the result returned will reflect the
argument date.

7.4.9 $zd8 hyphenated date with time

Returns a string consisting of the year, hyphen, month, hyphen, and day of month, comma, and
time in HH:MM format. If an argument is given in the form of the number of seconds since Jan 1,
1970, the result returned will reflect the argument date.

7.5 Special Purpose Functions
The following special purpose functions are available:
7.5.1 $zb(arg) remove blanks

Function returns a string in which all leading blanks have been removed and all multiple blanks
have been replaced by single blanks. See also $zZNoBlanks(). Figure 10 gives examples.

1 #!/usr/bin/mumps
2 set a=" abc Xyz 123 "
3 write $zb(a),"***", |

output:
abc xyz 123 **xx*

Figure 10 $Zb() Examples

7.5.2 $zchdir(directory_path) change directory

Function changes the current directory to the path specified. If the operation succeeds, a zero is
returned. If it fails, -1 is returned.

38

7.5.3 $zCurrentFile Current Mumps File

Returns the name of the currently executing Mumps program file (if any) ar blank.

7.5.4 $zdump|(filename)] dump global arrays

Function dumps the globals to a sequential ASCII file in the current directory. If an argument is
given, it is taken as the name of the file to which the globals will be written. If the argument is
omitted, a file name is constructed from the system date of the form number.dmp where number is
the value of the C++ time() function at the time of the dump.

The dump file is a pure ASCII text file. Each entry in the global array is represented by two lines.
The first line is the global array reference and the second line is the store value. In the global array
reference, parentheses and commas are replaced by the "~" character. Thus, if you wish to use this
facility, you may not include the "~" character in a global array index.

The function $zrestore() reloads the global arrays from a dump file (see below).

$zdump and $zrestore do not work when SQL is used for the global array store.

7.5.5 $zrestore[(arg)] restore globals

Function restores the globals from a dump file produced by $zdump. If an argument is given, it
is taken as the name of the dump file otherwise, the default name dump is used.

$zdump and $zrestore do not work when SQL is used for the global array store.

7.5.6 $zfile(arg) file exists test

Function returns a zero or one indicating if the file given as the argument exists.

7.5.7 $zflush flush Btree buffers

Function flushes all modified native global array handler buffers to disk. The function should only
be used with the native globals. After flushing, all updates to the btree file system have been
committed. In cases where the internal buffers are very large, this function may take several seconds
to execute. The function returns the empty string. Flushing the buffers is a precaution against system
failure which would otherwise result in corruption of the global arrays.

7.5.8 $zgetenv(arg) get environment variable

Returns the contents of the environment variable specified as arg or the empty string if the
variable is not found.

7.5.9 $zhtml(arg) encode HTML string

Function encodes its argument in the form necessary to be a cgi-bin parameter. That is,
alphabetics remain unchanged, blanks become plus signs and all other characters become
hexadecimal values, preceded by a percent sign.

7.5.10 $zhit global array cache hit ratio

Function calculates and returns the native global array cache hit ratio. This number ranges
between zero and one. A value of one indicates all requests were satisfied from the cache while a
value of zero indicates no requests were satisfied from the cache. Calling this function resets the hit
ratio to zero. A higher value for the hit ratio indicates better database performance.

7.5.11 $zlower(string) convert to lower case

Function returns the input string with alphabetics converted to lower case.

39

7.5.12 $znormal(argl[,arg2]) word normalization

Function converts the word passed as argument 1 to lower case and removes any embedded
punctuation. If a second argument is given, the word is truncated to the length specified by this
argument. If no second argument is given, words are truncated to 25 characters if their length
exceeds 25 characters.

7.5.13 $zNoBlanks(arg) remove all blanks

Returns arg with all blanks removed. See also: $zb.
7.5.14 $zpad(argl,arg?2) left justify with padding

Function left justifies the first argument in a string whose length is given by the second
argument, padding to the right with blanks.

7.5.15 $zseek(arg)

Function takes one argument (a positive integer) which is a byte offset in the currently active
(use) file. The command moves the file pointer to that location in the file. $zseek() may only be
used on files opened with old attribute. Figure 11 gives examples.

#!/usr/bin/mumps
open 1:"tdb,new"
for j=1:1:1000 do
. use 1
. set i=$ztell
. set "a(j)=1
. write "xkx U g

CoNOOULLE WN

close 1

10 open 1:"tdb,old"

11 for j="":%$order(”a(j)):"" do
12 . use 1

13 . set i=$%$zseek(™a(j))

14 . read a

15 . use 5

16 . write a,!

output:

kokkk]
kkkk 10

*kxk 100
w1000
kkkk 101
kkkk 102
kkxk 103
*kxk 1094
*kkx 1095
*kxk 106
kkkk 1097
*kxk 108
*kkk 1099
*kkx 1]

kkkk 170
kkkk 171171

Figure 11 $Zseek() Examples

40

7.5.16 $zsrand(arg)

Seed the random number generator. The value passed as the argument will seed the internal
random number generator. If the random number generator is re-seeded with the same seed, the
sequence of random numbers produced by $random will be the same. The value passed must be a
positive integer.

7.5.17 $zstem(arg)

Returns an word English word stem of the argument. This function attempts to remove common
endings from words and return a root stem.

7.5.18 $zsystem(arg)

Executes "arg" in a system shell. Returns -1 (fork failed) or the return code of the execution of the
argument. See also the shell command.

7.5.19 s$ztell

Function returns the byte offset in the currently open file. Similar to the C++ ftello function.
Note: The offset returned is for the file most recently made the default i/o file by the use command.
$ztell may be used on either a file opened as new, old or append. (See example under $zseek
above)

7.5.20 $zu(expression)

Function returns 1 if the expression is numeric, 0 otherwise.

7.5.21 $zwi(arg)

Function loads an internal buffer with the string given as the argument. The alphabetic
characters of the argument are converted to lower case. The contents of this buffer are returned by
the $zwn and $zwp functions. Figure 12 gives examples.

7.5.22 $zwn extract words from buffer

Function returns successive words from the internal buffer delimited by blanks. When no more
words remain, it returns an empty string (string of length zero). Returned words are converted to
lower case. See $zwi.

7.5.23 $zwp extract words from buffer

Function returns successive words from an internal buffer delimited by blanks and punctuation
characters. When no more words remain, it returns an empty string (string of length 0). Returned
words are converted to lower case. See $zwi.

7.5.24 $zws(string) initialize internal buffer

Initializes the parse buffer but does not convert "string" to lower case as is the case with $zwi

1 #!/usr/bin/mumps
2 set i="now, is the time, for all good"
3 set %=$zwi(i)

4 for w=$zwp write w,!
5 write "------- "l

6 set %=$zwi(i)

7 for w=$zwn write w,

output:

now
’

is
the
time

’
for

41

Figure 12 $Zwi() Examples

7.5.25 Scan Functions
7.5.25.1.1 $zzScan
7.5.25.1.2 $zzScanAlnum

7.5.25.1.3 $zzInput(var)

The functions return the next word in the current input stream delimited by white space. Words
are restricted to a maximum length of 1023. Successive calls return successive words. When there
are no more input words, an empty string is returned and $test is set to false.

If only part of a line is scanned as a result of these functions, a subsequent read command will
begin at the white space following the last word returned.

If scanning input from stdin (i/o unit 5), you may signal end of file with a control-d on a separate
line by itself. This will result terminate the scan and $test will be set to false.

$zzScan returns all words delimited by whitespace with no conversion. Words may contain any
printable ASCII character.

$zzScanAlnum processes words before returning them according to the following rules:

« Special characters at the beginning of a word are ignored.

« Words beginning with digits are not returned. If a word begins with one or more special
characters followed by a digit, it is not returned.

- Words shorter than 3 characters or longer than 25 characters are not returned.

« Words are converted to all lower case characters.

- If a word contains embedded special characters, it is treated as a delimiter.

Both functions will advance to additional lines as needed. If a word exceeds 1023 bytes, the
results are undefined. See Figure 13 for an example.

for the input line:

now -- 7?7 1@#$%°&*() += IS 2for the time for

for set i=$zzScan quit:'$test write i,!
output:

now

2?
l@#$%"°&* () +=
IS

2for

42

the
time
for

for set i=$zzScanAlnum quit:'$test write i,!
output:

now
the
time
for

for i=$zzScanAlnum do
. write i,!

output:

now
the
time

Figure 13 Scan Functions Examples

$zzInput(var) reads an entire input line, converts all characters to lower case, separates the
words, removes punctuation (as defined by the C ispunct() function except hyphen), and stores the
words into a numerically indexed array whose name is the value of the variable or constant passed
as the argument. The function returns the number of elements in the array. A return of zero
indicates no input was obtained (end of file). As the array created by the function could be quite
large, you should probably kill it when no it is longer needed. The maximum line length permitted
is twice the system parameter MAX STR (9,000 bytes by default).

7.6 Vector and Matrix Functions

7.6.1 $zzAvg(vector)

Computes and returns the average of the numeric values in the vector. For example, see Figure
14.

1 #!/usr/bin/mumps

2 for 1i=1:1:10 set "a(99,i)=i
3 set i=$zzAvg(~a(99))

4 write "average=",1i,!

Figure 14 $zzAvg() Example

The above writes 5.5

7.6.2 $zzCentroid(gblMatrix,gblRef)

A centroid vector gblRef is calculated for the invoking two dimensional global array gblMatrix.
The centroid vector is the average value for each for each column of the matrix. Any previous
contents of the global array named to receive the centroid vector are lost. The global array gblMatrix
must contain at least two dimensions. See Figure 15 for an example. The matrix must be a top level
global array.

1 #!/usr/bin/mumps

2 for i=0:1:10 do

3 . for j=1:1:10 do

4 .. set "A(i,j)=5

5 set %=$zzCentroid("A,”"B)

6 for i=1:1:10 write "B(i),!

43

output:

(GO, O, NG, NC, N, N, NE,NE, N0,

Figure 15 $zzCentroid() Example
7.6.3 $zzCount(gblVector)

Counts the number of nodes that contain a value in the global array reference and any
descendants. For example, see Figure 9.

1 #!/usr/bin/mumps

kill "~a

for i=1:1:10 set ~a(99,1i)=1i
set i=$zzCount(~a(99))
write "count=",1i,!

b WwN

writes: count=10

Figure 16 $zzCount() Example

7.6.4 $zzMax(gbl)

Computes and returns the maximum numeric value in the vector and any descendants. See
Figure 17 for an example.

1 #!/usr/bin/mumps
1 for i=1:1:10 set ~a(99,i)=i
2 set i=$%$zzMax(~a(99))
3 write "max=",1i,!
output:
10
Figure 17 $zzMax() Example

The above writes the largest value stored in the vector.

7.6.5 $zzMin(gbl)

Returns the minimum numeric value stored in the vector and any descendants. See Figure 18 for
an example.

1 #/usr/bin/mumps

2 for i=1:1:10 set "a(99,1i)=1i*2
3 set i=$zzMin("~a(99))

4 write "min=",1i,!

output:

2

Figure 18 $zzMin() Example

44

7.6.6 $zzMultiply(gbl1,gbl2,gbl3)

Multiplies the first and second matrix leaving the result in the third. The ordinary rules of algebra
apply. Figure 22 gives an example. The arguments gbll and gbl2 must be top level, two dimensional
arrays.

7.6.7 $zzSum(gblVector)

Computes and returns the sum of the numeric values stored in the vector. For example, see
Figure 23.

7.6.8 $zzTranspose(gblMatrix1,gblMatrix2)

Transposes the first global array matrix leaving the result in the second. For example, see Figure
24. the argument gblMatrix1 must be a top level, two dimensional array.

7.7 Text Processing Functions

The following functions are used in connection with experiments in information storage and
retrieval.

7.7.1 Similarity Functions
7.7.1.1 $zzCosine(gbll,gbl2)
7.7.1.2 $zzSim1(gbll,gbl2)
7.7.1.3 $zzDice(gbll,gbl2)

7.7.1.4 $zzJaccard(gbll,gbl2)

These compute the Cosine, Siml, Dice and Jaccard similarity coefficients between document
vectors given as the first and second arguments. Both arguments are numeric global array vectors.
The formulae are given in Figure 19 and an example in code is given in Figure 20. The formulae
calculate the similarities between two global array vector gbll and global array vector gbl2. The
vectors need not be of equal length. Missing elements are interpreted as zero. The vectors should be
top level vectors.

k=t
2 Z Term,-Term
Simularity ., (i, j)= = =

t

Te ermik+z Term,,
k=1
k=t

Term, -Term
k=1

SimUIarilyJaccard(i) .]) = k=t k=t
Term,+), Term, — D, (Term,-Term,,)
k=1

k=1

,\..
1]

t

M

Term,-Term
1

||
=

SimUIarityCosine(i’j): k
\/ Té ermizk z Termik
1

=

k=t
Simularity ,, (i, j)= Term,Term,,

k=1

Figure 19 Similarity Formulae

45

#!/usr/bin/mumps

1

2 kill ™A

3 kill "B

4

5 set ~A("1")=3
6 set ~A("2")=2
7 set ~A("3")=1
8 set ~A("4")=0
9 set ~A("5")=0
10 set ~A("6")=0
11 set ~A("7")=1
12 set ~A("8")=1
13

14 set "B("1")=1
15 set 7"B("2")=1
16 set ”B("3")=1
17 set "B("4")=0
18 set 7B("5")=0
19 set "B("6")=1
20 set "B("7")=0
21 set "B("8")=0
22

23 write "Cosine=",$zzCosine(™A,”"B),!
24 write "Siml=",$zzSiml("A,”B),!

25 write "Dice=",$zzDice(™A,”B),!

26 write "Jaccard=",$zzJaccard(™A,”B),!

output:

Cosine=0.75
Siml=6
Dice=1
Jaccard=1

Figure 20 Similarity Functions

7.7.2 $zzBMGSearch(argl,arg?2)

Boyer-Moore-Gosper Function returns the number of non-overlapping occurrences of argl in
arg?2.

These functions, were obtained from
ftp://ftp.uu.net/usenet/comp.sources.unix/volume5/bmgsubs.Z
and were written by Jeffrey Mogul (Stanford University), based on code written by James A. Woods
(NASA Ames, an agency of the U.S. Government) and are thus believed to be in the public domain.
Figure 21 gives an example.
1 #!/usr/bin/mumps
2 set key="now"”
3 set str="now is the now of the now in the know”
4 write $zBMGSearch(key,str),!
output:
4

Figure 21 $zzBMGSearch() Example

46

7.7.3 $zPerlMatch(string,pattern)

Applies the Perl pattern to string and returns 1 if the pattern fits and 0 otherwise. The
$zPerlMatch function has the side effect of creating variables in the local symbol table to hold
backreferences, the equivalent concept of $1, $2, $3, ... in Perl. Up to nine backreferences are
currently supported, and can be accessed through the same naming scheme as Perl ($1 through
$9). These variables remain defined up to a subsequent call to $zPerlMatch, at which point they
are replaced by the backreferences captured from that invocation. Undefined backreferences are
cleared between invocations; that is, if a match operation captured five backreferences, then $6
through $9 will contain the empty string. Figure 25 contains examples (long lines wrapped).

1 #/usr/bin/mumps

2 set ~d("1","1")=2

3 set ~d("1","2")=3

4 set ~d("2","1")=1

5 set ~d("2","2")=-1

6 set ~d("3","1")=0

7 set ~d("3","2")=4

8

9 set "e("1","1")=5

10 set ~e("1","2")=-2

11 set ~e("1","3")=4

12 set ~e("1","4")=7

13 set ~e("2","1")=-6

14 set ~e("2","2")=1

15 set ~e("2","3")=-3

16 set ~e("2","4")=0

17

18 set %=%$zzMultiply(~d,~e,”f)
19

20 for i="":$order(~f(i)):"" do
21 . for j="":%$order(~f(i,j)):"" do
22 .. write 4i," ",j," ",~f(i,j),!
output:

11 -8

12 -1

13 -1

14 14

2111

22 -3

237

247

31-24

324

33 -12

340

Figure 22 $zzMultiply() Example
1 #!/usr/bin/mumps
2 for i=1:1:10 set ~a(99,i)=1i
3 set i=$zzSum(”~a(99))
4 write "sum=",1i,!
output:
55

Figure 23 $zzSum() Example

1 #!/usr/bin/mumps

47

kill ~f

2

3

4 Set Ad(lllll’lllll
5 Set /\d(lllll , Il2|l
6 Set /\d(ll2|l,|l1|l
7 Set /\d(llzll’llzll
8

I
o~ WN

9 set %=$zzTranspose(~d,”f)

11 for i="":$order(~f(i)):"" do
12 . for j="":$order(~f(i,j)):"" do
13 .. write i," *,j," ",~f(i,j),!

Figure 24 $zzTranspose() Example

#!/usr/bin/mumps
write "Please enter a telephone number:",!
read phonenum

1

2

3

4

5 set p=""(1-)?2(\(?\d{3}\)?)?(-|)?\d{3}-?\d{4}3$"

6 if $zperlmatch(phonenum,p) do

7 . write "+++ This looks like a phone number.",!

8 . write "The area code is: ",$2,!

9 else do

10 . write "--- This didn't look like a phone number.",!

output:

Please enter a telephone number:
(123) 456-7890

+++ This looks like a phone number.
The area code is: (123)

Please enter a telephone number:
(123) 456-7890
+++ This looks like a phone number.

Figure 25 $zPerlMatch() Example

7.7.4 $zReplace(string,pattern,replacement)

The regular expression in pattern is evaluated on string and, if there is a match, the matching
section is replaced by replacement. Figure 26 contains an example. In the first part, the word 'is' is
replaced by 'IS'. In the second part, a match is sought for any content between two sets of matching
brackets ([[...]]). The matched section is in back reference $2. This is then used as a pattern to be
replaced.

7.7.5 $zShred(string,length)

7.7.6 $zShredQuery(string,length)

The $zShred() function segments the input argument string into fragments of length size upon
successive calls. The function returns a string of length zero when there are no more fragments of
size length remaining (thus, short fragments at the end of a string are not returned).

48

$zShred copies the input string to an internal buffer upon the first call. Subsequent calls retrieve
from this buffer. When the buffer is consumed, the function will copy the contents of the next string
submitted to the buffer. Figure 27 contains an example.

1 #!/usr/bin/mumps

2 set a="now is the time for all"
set a=$zReplace(a,"is","IS")
write a,!

3
4
5
6 set a="[[now is the time]]"
7 if $zPerlMatch(a, " (\[\[)(.*)(\]I\]1)") do
8 . set a=%$zReplace(a,$2,"ABC")

9 . write a,!

output:

now IS the time for all
[[ABC]]

Figure 26 $zReplace() Example

1 #!/usr/bin/mumps

2 set a="now is the time for all good men to "
3 set a=a "come to the aid of the party"

4 for do quit:j=""

5 . set j=%$zShred(a,5)

6 . if j="" quit

7 . write j,!

output:

nowis
theti
mefor
allgo
odmen
tocom
etoth
eaido
fthep

Figure 27 $zShred() Example

The $zShredQuery function segments length shifted copies of the input string into fragments
of size length upon successive calls. That is, the function first returns all the fragments of size
length of the string in the same manner as $zShred. However, it then shifts the starting point of
the input string to the right by one and returns all the fragments of size length relative to the
shifted starting point. If repeatedly called, it repeats this process a total of length times. When
there are no more combinations, the empty string is returned as shown in Figure 28.

49

1 #!/usr/bin/mumps

2 set a="now is the time for all good men to come to "
3 set a=a "the aid of the party"

4 for do quit:j=""

5 . set j=$zShredQuery(a,5)

6

7

. if j="" quit
. write j,!
output:

nowis tothe goodm
theti aidof entoc
mefor thepa ometo
allgo wisth theai
odmen etime dofth
tocom foral epart
etoth lgood isthe
eaido mento timef
fthep comet orall
owist othea goodm
hetim idoft entoc
efora hepar ometo
11lgoo isthe theai
dment timef dofth
ocome orall epart

Figure 28 $ShredQuery() Example
7.7.7 $zzSoundex(sl)

Returns the Soundex code for the argument string as follows:

All letters are converted to lower case;

Non-alphabetic characters are removed;

Adjacent duplicate letters are replaced by a single occurrence;
The first letter is retained;

The letters b, f, p, and v are replaced by the number 1;

The letters c, g, j, k, q, s, X, and z are replaced by the number 2;
The letters d and t are replaced by the number 3;

The letter 1 is replaced by the number 4;

The letters m and n are replaced by the letter 5;

10 the letter r is replaced by the number 6;

11. The is truncated to four characters.

CEoNoORWNE

7.7.8 $zSmithWaterman(s1,s2,algn,mat,gap,noMatch,match)

Computes the Smith Waterman score between two strings. Result returned is the highest
alignment score achieved. String lengths are limited by STR_MAX in the interpreter. If you
compare very long strings (>100,000 characters), you may exceed stack space. This can be
increased under Linux with the command:

ulimit -s unlimited
Figure 29 gives an example.
1 #!/usr/bin/mumps
2 set sl="now is the time"
3 set s2="now i th time"
4 set i=$zSmithWaterman(sl,s2,1,0,-1,-1,2)
5 write "score=",1i,

output:

50

score=23
Figure 29 $zSmithWaterman() Example
Parameters:

If algn is zero, no printout of alignments is produced. If algn is not zero, a summary of the
alternative alignments will be printed.

If mat is zero, intermediate matrices will not be printed.

The parameters gap, noMatch and match are the gap and mismatch penalties (negative integers)
and the match reward (a positive integer).

If insufficient memory is available, a segmentation violation will be raised. Try increasing your
stack size.

7.7.9 $zzIDF(global,doccount)

Calculates the Inverse Document Frequency score of words contained in the argument global.
The parameter doccount is the total number of documents. The index of each element of the global
vector is a word and the value stored is the number of times the word occurs in the collection.
Figure 30 gives and example. The vector argument global must be a top level array.

1 #!/usr/bin/mumps

set ~a("now")=2

set ~a("is")=5

set ~a("the")=6

set ~a("time")=3

set j=4

set %=$zzIDF("a,j)

for i="":$order(”a(i)):"" write i," ",%a(i),!

oNOULS WN

output:

is 0.7

now 2.0
the 0.4
time 1.4

Figure 30 $zzIDF() Example

7.7.10 Correlation Functions

7.7.10.1 $zzTermCorrelate(globall,global2)

Calculates the Term-Term co-occurrence matrix for the Document-Term matrix in globall. The
result is placed in global2.

A Term-Term matrix has terms (words) as the indices of its rows and columns. A Term-Term
matrix gives, for each position, the degree to which the term corresponding to the row is similar to
the term corresponding to the column. The diagonal, which is the degree a term is related to itself, is
ignored. Both operands must be top level arrays.

In both the doc-doc and term-term matrices, the upper and lower diagonal matrices are mirror
images of one another. Figure 31 gives an example. The order of words in the output will depend
upon which data base facility is in use and what it's collating settings are. The Native global array
handler collates according to ASCII-7.

51

#!/usr/bin/mumps

1
2 kill ~A,"B
3
4 set "A("1","computer")=5
5 set ~A("1","data")=2
6 set "A("1","program")=6
7 set ~A("1","disk")=3
8 set ~A("1","laptop")=7
9 set "A("1","monitor")=1
10
11 set ~A("2","computer")=5
12 set ~A("2","printer")=2
13 set ~A(' 2","program")=6
14 set ~A("2","memory")=3
15 set ~A("2","laptop")=7
16 set ~A("2","language")=1
17
18 set ~A("3","computer")=5
19 set AA("3" "printer")=2
20 set "A("3","disk")=6
21 set ~A("3","memory")=3
22 set AA("3" "laptop")=7
23 set ~A("3","USB")=1
24
25 set %=%$zzTermCorrelate(”™A,”"B)
26
27 for i="":$order(”B(i)):"" do
28 . write 1i,!
29 . for j="":$order(”B(i,j)):"" do
30 .. write ?10,j," ",”B(i,j),!
output:
USB
computer 1
disk 1
laptop 1
memory 1
printer 1
computer
USB 1
data 1 laptop
disk 2
language 1
laptop 3
memory 2
monitor 1
printer 2
program 2
data
computer 1
disk 1 memory
laptop 1
monitor 1
program 1
disk
USB 1
computer 2
data 1
laptop 2
memory 1

A square Document-Document matrix gblref2 is calculated from the Document-Term matrix
gblrefl according to method mthd (Cosine, Sim1, Dice, Jaccard). The value of elements in the
Document-Document matrix will not exceed threshold (thrshld) and the cells associated with

monitor 1
printer 1
program 1
computer 1
laptop 1

memory 1

printer 1
program 1

USB 1
computer 3
data 1
disk 2
language 1
memory 2
monitor 1
printer 2
program 2

USB 1
computer 2
disk 1
language 1
laptop 2
printer 2
program 1

language

monitor

printer

program

Figure 31 $zTermCorrelate() Example

7.7.10.2 $zzDocCorrelate(gblrefl,gblref2, mthd,thrshld)

coresponding document numbers will not exist.

computer 1
data 1
disk 1
laptop 1
program 1

USB 1
computer 2
disk 1
language 1
laptop 2
memory 2
program 1

computer 2
data 1
disk 1
language 1
laptop 2
memory 1
monitor 1
printer 1

52

A Document-Document matrix has document id's as its row and column indices. A cell in the
matrix indicates the degree to which the row document is related to the column document. The
diagonal is ignored. Figure 32 gives an example.

7.7.11 Stop and Synonym Functions
7.7.11.1 $zStoplnit(arg)

7.7.11.2 $zStopLookup(word)
7.7.11.3 $zSynlnit(fileName)

7.7.11.4 $zSynLookup(word)

A call to $zStoplnit(file_name) will open and load a file of stop words into a C++ container. The
file should consist of one word per line. If the file cannot be opened or there is insufficient memory to
hold the list of words, the program will halt with an error message. $zStopInit() converts all words
to lower case.

#!/usr/bin/mumps
kill ~A,”B

1

2

3

4 set "A("1","computer")=5
5 set "A("1","data")=2

6 set "A("1","program")=6
7 set "A("1","disk")=3

8 set "A("1","laptop")=7

9 set "A("1","monitor")=1

10
11 set ~A("2","computer")=5
12 set ~A("2","printer")=2
13 set AA("2" "program")=6
14 set ~A("2","memory")=3
15 set ~A("2","laptop")=7
16 set ~A("2","language")=1
17
18 set ~A("3","computer")=5
19 set ~A("3","printer")=2
20 set ~A("3","disk")=6
21 set ~A("3","memory")=3
22 set ~A("3","laptop")=7
23 set ~A("3","USB")=1
24
25 set %=%$zzDocCorrelate(”A,”B,"Cosine",.5)
26
27 for i="":$order(”B(i)):"" do
28 . write 1i,!
29 . for j="":%$order(”B(i,j)):"" do
30 .. write ?10,j," ",”B(i,j),!
output:
1
2 0.887096774193548
3 0.741935483870968
2
1 0.887096774193548
3 0.701612903225806
3

1 0.741935483870968

53

2 0.701612903225806
Figure 32 $zDocCorrelate()Example

A call to $zStopLookup(word) will return 1 if word is in the stop list, 0 otherwise. Words
presented to $zStopLookup(word) should be in lower case.

$SynInit() opens a synonym file. The file should consist of two or more words per line separated
by from one another by one blank. The words are treated as synonyms with the first word on each
line as the primary synonym. The primary synonym may be a code or category number. This word or
code will be returned if any of the remaining words are passed as arguments to $SynLookup().
Figure 33 gives an example.

7.8 SQL functions

These functions are peculiar to this implementation..'
Assume that the file “stop” contains the word “and”

set %=$zStopInit("stop")
if $zStopLookup("and") write "yes",!

Writes yes
Assume that the file “synonyms” contains a line with the text:
compression compressions compress compressed compresses

set %=$zSynInit("synonyms")
write $zSynLookup("compressions"), !

output:
compression

Figure 33 Stop List Functions
7.8.1 $zsqlOpen
Returns true if a connection to the SQL server is open, false otherwise.
7.8.2 $zNative
$znative returns true if globals are being stored in the native global array.
7.8.3 $zSqlite[command],option]]

$zsqlite with no arguments returns 1 if globals are being stored in Sqlite3, 0 otherwise.

7.8.3.1 $zSqlite(“begin transaction”)

Send a BEGIN TRANSACTION; command to Sqlite.
7.8.3.2 $zSqlite(“commit transaction”)

Send a COMMIT TRANSACTION ;command to Sqlite.
7.8.3.3 $zSqlite(“savepoint”[,savepoint])

If the second argument is omitted, send a SAVEPOINT default; command to Sqlite.
If the second argument is present, send a SAVEPOINT savepoint; command to Sqlite where
‘savepoint’ is the value passed as the second argument.

54

7.8.3.4 $zSqlite(“rollback”[,savepoint])

If the second argument is omitted, send a ROLLBACK TRANSACTION to default; command to
Sqlite.

If the second argument is present, send a ROLLBACK TRANSACTION to savepoint; command to
Sqlite where ‘savepoint’ is the value passed as the second argument.

7.8.3.5 $zSqlite(“pragma”,option)

A PRAGMA command will be sent to Sqlite with option as its argument. If the PRAGMA results
in a returned value, it will be the returned result of the finction. Otherwise, the function will return
1 (success) or 1 (failure).

55

8 GTK Desktop GUI Apps

Several simplified GTK functions are included. These will alow you to create desktop GUI
applications. These are functions that control GTK widgets in a graphical application.

8.1 Glade GUI Design Tool

The open source program Glade allows the user to design the layout of a desktop GUI app by
dragging and dropping GUI widgets (buttons, text boxes, etc.) onto a canvas. Figure 34 gives an
example that includes several widget types.

- mumps.glade 3 =
Eeen o 6 o /Desktop/mumpsc/gtk-glade ‘ swve 2 R|I=
& [|Q Toplevels | Containers | Control Display | v | } || General | Packing | Common | signals | @
3 adjustment1 Gekadiustment 1D: treel
O Sl (R Private Ubuntu extension: o
= freestore O radiol | toggle example o -t Tree View Attributes
~ [window tkWindo radio2 B
~ E fixed1 GtkF radiog || checkbutton oo treeStore Ef
clearstore GtkButto Level
9 togglel tkToggleButt: array indices separated by a space Indentation: |5
™ entryl GtkEnts Tooltip - |
» [E scrolledrwindow1 Gkscr. Clear TreeStore Find show/Hide Tree Column:
" Enable Grid
""" label1 L Load TreeStore || Load Table prt None ~
@~ checkl B
Test label F‘Enable Search — |+
~ [oB scrolledwindow2 tkser &g arch | O
= 1 Global Array Subject heading Terminal Code
| ‘E‘Shnw Expander B
= select1 GtkTreeselect. “Expanders Column:
v Eeh dam : B9 EHeaders clickable
& color R isible
. ot GkTreevie Reorderable [_|Fixed Height Mode
colir ¢ R Rules Hint Enable Tree Lines
~ Bl GikTreclionc MR e
Bl col2r R
findButton zgsgirg Single Click Activate
@ tkRadioButto n q
bl Rl Scrolling Attributes
@- radio2 Butte N .
Horizontal: A | Policy: | Minimur~
@=- radio3 .
OB spin1 GtkspinButton Vertical: # | Policy: | Minimur v
=) loadTree
loadTable
ED show Tc

Figure 34 Glade Canvas

When you save a Glade canvas it appears in your directory as a file with the .glade extension.
This is an XML file giving the details on your design.

Included with the Mumps distribution in the directory gtk-glade is a script file named
appBuild,script and a Mumps program named extractWidgets.mps. The script file:

1. runs the Mumps file which reads the file .glade file from above and builds several files;

2. compiles (using the Mumps compiler) the file gtk.mps which includes the files from the
previous step and creates an executable named gtk which will render the GUI application on
the screen.

Among the files created by extractWidgets.mps are several files containing Mumps programs to
service the actions to be performed by interacting with the on-screen GUI. There will be a file for
each signal defined for each widget. The files will have names of the form:

on.widgetName.clicked.mps

where widgetName is the name of the widget as given in the ID field in the glade app and clicked
is a signal established for that widget. The file will be invoked if the action associated with the signal
is detected (for example, a button is clicked).

56

8.2 GTK Example

8.2.1 Glade Design Tool

O entryl GekEnty
» [F scrolledrwindow1
el [abell
®- checkl eckE
~ [screlledwindew?2
v EJ tree1 GtkTreevie

= select1 eeSe
~ B colo GtkTreeViewC
= color
v colt
col1r
- col2
B col2r
findButton
@=- radio1
@- radio2
@=- radio3
0B spin1
=) loadTree
loadTable
= show

Clear TreeStore Find

Load TreeStore Load Table
Test label

Global Array

show/Hide Tree

mumps.glade

Subject heading

Terminal Code

Button Attributes
Border relief: Normal
child alignments:

[E)Foeus on click Active
Inconsistent
Button Content
Add custom content

Stock Button

© Label with optional image

toggle example

Image:

Position: | Left

Draw Indicator

#

Open | > | [0 G et ~/Desktop/mumpsc/gtk-glade ‘ sve | LIRS
Search Widgets & || Toplevels | Containers | Control | Display | v General | Packing | Common || signals | @
+3 adjustment1 ID: | toggle1
& Eiiliar] Activatable / Actionable
= B O radiol - | oggle example o |—|+ :
~ [window radio2 o
- i checkbutton
B fixedt radios e Action Appearance !
= dearStore
— e Action Name:

Use underline

Always show
image

Figure 35 Toggle Button Screen 1

In Figure 35 you see the a Glade layout page. The center panel is the layout for the on-screen app
that is being built. The various entities (widgets) have been dragged and dropped into their positions

from widgets available in dropdown menus shown at the top named Toplevel, Containers, Control,

and Display.

The leftmost panel contains the user assigned names (IDs) of the widgets along with an indication

of their data types.

Some widgets are nested within others according to the display hierarchy. This, the
GtkToggleButton named togglel is contained within the GtkFixed container named fixed1 which in

turn is contained within the GtkWindow named window.

The rightmost panel contains tabs which show options for a selected widget. In this case, the
selected widget is the togglel button which is highlighted in green in upper left of center panel and

also as a row in panel one.

As can be seen in panels 1 and 3, the ID of the widget is togglel (user assigned), The widget is a
GtkToggleButton (as seen in panel 1).

The text displayed in the button is set in panel 3 under Label with Optional Image. No image is

assigned in this case.

Except for assigning the ID name of the widget and entering the text to appear in the button, the
remainder of the options are defaults which are suitable for most ordinary applications.

57

[]]

[}

-]

mumps.glade
~/Desktop/mumpsc/gt-glade

Enpne

‘ < Search Widgets >

v |[a]

»3 adjustment1
textbuFfer1

treestore
~ [window
* [E Ffixed1

=1 entry1

et [abell
@- checkl

- tree1

colo

4 col1

col2

@- radiol
@- radio2
@- radio3
OB spin1
=1 loadTree
=] loadTable
ED show

» [scrolledrwindow1

~ [serolledwindow?2
select1
colOr
colir

col2r
=2 findButton

GtkAdjustment
GtkTextBuffer

GtkTreeStore
GtkWindow
GtkFixed
= clearStore

| m togglel GtkToggleButton |

GtkButton

GtkEntry
GEkScr. .
GtkiLabel
GtkCheckButton
GtkScro.
GtkTreeView
GtkTreeSelect.
GtkTreeViewCol..

GtkCellRender.
GtkTreeViewCol.. |

GtkCellRender.

GtkButton
GtkRadieButton
GtkRadioButton
GtkRadioButton

GtkSpinButton

GtkButton

GtkButton

GtkToggleButton

GtkCellRender. |,
GtkTreeViewCol..|[t

Toplevels

Containers ‘ Contral I Display

-

[General " Packing " Common " Signals ” @ I

X position: ‘ 80

"] checkbutton
() radio3 t

© radio1 toggle example ‘ 0o |- | +
() radio2

| array indices separated by a space

| cearreestore || Find |

| showide Tree |

| LoadTreestore || Load Table

Test label

Global Array

‘ Subject heading

Terminal Code

Project 'mumps.glade’ saved
C

¥ position: ‘ 12

BE

Figure 36 Toggle Button Screen 2

In Figure 36 the second tab of panel 3 has been selected. This panel determines the location of
the widget within the window. Changing these numbers moves the widget accordingly.

L

& 8N

o)

B e

Top: ‘ 0 - ‘ +
Bottom: ‘ 0 - ‘ +
Width request;

Height reguest:

ML . ® = ilpf=| =«
|<Search widgets > M ‘ Q| Toplevels | Containers I Control } Display } - | H General | Packing | common | signals | @ |
3 adjustment1 Gtkadiustment RccEt b
= textbufferl GtkTextBuffer Wwidget name: ‘
= treeStore GtkTreestore © radiot ‘E _ ‘ = WT
~ [window GtkWindow 3 radio2
~ [fixed1 Gtkrixed 5 radiod [checkbutton Style Classes:
= clearStore GtkButton
I m toggle1 GtkToggleButton | | array indices separated by a space |
™ entryl GtkEntry Tooltip:
» [F scrolledrWindow1 Gkser.. | Clear TreeStore || Find ‘ ‘ show/Hide Tree ‘ O custom
o labell Gtkiabel | Load Treestore ‘ ‘ Load Table |) Use markup
@- check1 GtkCheckButton Test label . . .
~ [B scrolledwindow2 Gtkscro. EpEalyEr L ‘1'00
= (zm) (TR Global Array ‘ Subject heading Terminal Code Acc ‘7|
= select! GtkTreeSelect. e
~ col0 GtkTreeViewCol.. | Events: ‘Stm(lure
color GtkcellRender.)
~ coll GtkTreeViewCol..) Resize mods: ‘Pmemi
colir GtkceliRender.|: : Widget Flags
- col2 GtkTreeViewCol..)|" B visible [[INo show all EDse
col2r GtkCellRender. [E can focus [_IHas focus. (s,
B findButton GlkEutton []can default [JHas default 8%
©- radiol GtkRadioButton
®- radio2 GtkRadioButton () Application paintable [ElDouble Buffered
©- radio3 GkRadioButton Widget Spacing
OB spin1 GtkSpinButton Expand Alignment
(= loadTree GtkButton m Horizontal: \:I[\ (] ‘ Harizontal:l Fill
= loadTable GtkButton F B
Oy @i vertical: O[] 0 | Vertical: | Fill
Margins

Left: |u —E
Right: |0 -
o i

Figure 37 Toggle Button Screen 3

In the third tab of panel 3 are many adjustments all of which are defaults except for the height
and width settings. These determine the size of the button. The height and width request boxes have
been unchecked which causes the button to be sized to fit the contained text.

58

- mumps.glade —
Open L ©_ ~/Desktopjmumpsc/gtk-glade i save RS
& || Q Toplevels Containers Control Display | v || & || General | Packing | Common | signals | @

I adjustment1 Gt Signal Detail | Handler User datd

textbuffer1 i
= treeStore tkTreeStare © radioi e o — [+ toggled on_toggle1_toggled <Click ...

- [window Gtk T
v BB fixed1 GtkA iy | checkbutton
= clearStore GtkButton
=]
O entryl E
» [B scrolledrwindow1

“““ label1 Dt Load TreeStore Load Table
@- checkl Butto

~ [B scrolledwindow?2 EkS.
B tree1 kT Global Array Subject heading Terminal Code

<Type here> <Click ...
» GtkButton
* GtkContainer
» Grkwidget
» GObject
Clear TreeStore Find Show/Hide Tree

Test label

= select1
- colo Ti
Bl color Gt
- col1 Ti
&l col1r
e col2 GEKTi
Bl col2r
= findButton
®=- radiol
©®=- radio2
©- radio3
OB spin1
= loadTree 0
= loadTable GtkButt
show

Figure 38 Toggle Button Screen 4

In Figure 38 we see the last tab of panel 3. This is the panel where you select the signals to be
emitted for actions on the widget. Since this is a toggle button, the primary action is to click the
button using the left button on your mouse. This action can emit a toggled signal.

If you want your program to process this signal, you enter the name of the routine to be called
should the signal emit. In this case, the function named on _togglel toggled will be called if the
button is clicked. The GTK GUI manager will cause the button to appear depressed or not depressed
after successive clicks. Your function can determine the state of the button by using a system
function.

When you save a Glade layout, it is saved as an XML file with the extension .glade.

8.2.2 Building A Mumps App from The Glade XML File

The disk representation of a Glade design is a XML file. For purposes of building a Mumps
program from this file, the file needs to be named mumps.glade.

In the above we highlighted the toggll toggle button. The Glade XML for that button looks like:

<child>
<object class="GtkToggleButton" id="togglel">
<property name="label" translatable="yes">toggle example</property>
<property name="visible">True</property>
<property name="can_ focus">True</property>
<property name="receives default">True</property>
<signal name="toggled" handler="on togglel toggled" swapped="no"/>
</object>
<packing>
<property name="x">80</property>
<property name="y">12</property>
</packing>
</child>

The above is a fragment of the larger Glade file which is 299 lines in length. The XML tells us
that the name of the widget (togglel), its data type (GtkToggleButton), its label contents (toggle

59

example), any signals it emits (toggled) and the name of the signal handlers (on togglel toggled). It
also gives the location of the button on the app window and other information concerning its
appearance and performance.

The distro program extractWidgets.mps reads the XML file and generates files that are used to
compile and service an application. These are:

8.2.2.1 gtkl.h

This file contains C declarations for all the widgets defined in the XML file. It also includes the
relevant GTK header files. In the case of the toggle one widget, the line:

GtkToggleButton *togglel;

appears, among others.
8.2.2.2 gtk2.h

This file contains code that will invoke a Mumps signal handler (see below) for each signal
emitted for a widget. In the case of the togglel widget, this code looks like:

togglel=GTK TOGGLE BUTTON(gtk builder get object(builder, "togglel"));
{ char tmp[128]; sprintf(tmp,"%p", togglel);
SymPut ("togglel",tmp); fprintf(f," set togglel=\"%s\"\n",tmp); }

The above code fragment which will be compiled into the base program gtk.mps builds the
internal data structure and screen representation associated with the widget by means of
gtk _builder object(). This function reads the mumps.glade XML file information for the parameter
togglel. The function returns a pointer to the object which is stored in the GtkToggleButton pointer
togglel (the names of the widgets and the internal pointers as usually the same, both are togglel in
this case).

The string value of the pointer is stored in the Mumps symbol table (SymPut()) and a string
containing the Mumps command or the form: set togglel1 =0x123456 is written to the file gtk4.mps.

8.2.2.3 gtk3.h

This file contains the basic signal handlers (written in C) which are used to invoke the
corresponding Mumps programs which will actuall handle the signal. The code for the togglel
widget looks like:

extern "C" void on togglel toggled(GtkWidget *w)

{struct MSV * Ptr = AllocSV(); char tmp[512];
sprintf(tmp,"set widget=\"%p\" g "on.togglel.toggled.mps",w);
Interpret((const char *) tmp, Ptr); free(Ptr);}

This fragment establishes the signal handler (on _togglel toggled()), creates an instance of the
Mumps state vector (MSV *Ptr), creates a string consisting of Mumps set and goto (g) commands
with the string value of the widget w as the right hand side of the set command.

The subject of the goto command is a file named "~on.togglel.clicked.mps which will contain the
Mumps code to process the signal.

Next, it then invokes the mumps interpreter (Interpret()) which executes the commands in tmp.

The first line specifies that the calling conventions for this function will follow C language rules.
This is because the Mumps interpreter is actually a collection of C++ programs and the basic GTK
library is written in C.

8.2.2.4 gtkd.h

This file is created when the actual application is run. It writes, for each widget, a Mumps set
command that establishes the address of the data structure for the widget. In the case of the
togglel example, this looks like:

60

set togglel="0x55ab6337e230"

When the Mumps signal handler is invoked, the file containing this information will be run by
the signal handler thus giving the signal handler the memory references of all widgets in the
application.

8.2.2.5 gtk.mps

This is the main routine that is compiled by the Mumps compiler. It will start the GTK GUI
system. It looks like:

Jan 30, 2022
+ #include "gtkl.h"
zmain
+ #include "gtk2.h"
do ~gtk4.h
+ gtk main();
write "Goodbye!",!
zexit
+ #include "gtk3.h"

The lines that begin with a plus sign are passed directly to the C++ compiler. The function
gtk_main() passes control to the GTK runtime routines. Return is only made upon program
termination.

The first #include brings in the global widget declarations (in C++). The second #include
incorporates all the builder calls which create the widgets on the screen and their associated data
structured. The third #include brings in the C++ signal handlers for all signals used by the widgets.
8.2.2.6 on.togglel.toggled.mps

The actual Mumps signal handler created by extractWidgets.mps, named
on.togglel .toggled.mps looks like:

#!/usr/bin/mumps

Mumps GTK Signal Handler
do ~gtk4.h
write "on.togglel.toggled.mps"," ",widget,!

write $z~mdh~toggle~button~get~active(togglel),!

The function $z~mdh~toggle~button~get~active(togglel) returns 0 or 1 depending if the button
is not depressed or depressed. In this case of the function, it’s Mumps reference (togglel) was used
but the variable widget is also present which contains a pointer to the data structure of the widget
(togglel in this case) which emitted the signal.

You're on your own from here.
8.3 MDH Functions

8.3.1 $z~mdh~toggle~button~get~active(ToggleButtonReference)
Returns 0 if the button is inactive, 1 if active
8.3.2 $z~mdh~toggle~button~set~active(ToggleButtonReference,intVal)

Sets the button to active if intVal is 1, inactive if the value is O.

8.3.3 $z~mdh~dialog~new~with~buttons(ParentWindowRef,dialog)

Raises a Gtk Dialog window displaying the contents of dialog with buttons Yes and No. Returns
1 if Yes is clicked; O if No is clicked; and -1 if the box is dismissed.

61

8.3.4 $z~mdh~entry~get~text(EntryReference)
Returns the current string contents of the referenced Entry box.
8.3.5 $z~mdh~entry~set~text(EntryReference,value)
Sets the contents of the named entry box to value.
8.3.6 $z~mdh~text~buffer~set~text(TextBufferReference,string)
Sets the contents of the referenced text buffer to the value of string.
8.3.7 $z~mdh~label~set~text(LabelReference,string)
Sets the text contents of the label referenced to string. Triggers a value changed signal.
8.3.8 $z~mdh~tree~selection~get~selected (TreeModelReference,column)
Returns value in designated column of referenced TreeModel.
8.3.9 $z~mdh~tree~store~clear(TreeStoreReference)
Clears (deletes) the contents of the referenced TreeStore.
8.3.10 $z~mdh~tree~level~add(TreeStoreReference,treeDepth,index,datal,...])

Add index at tree level treeeDepth to column 1 of TreeStore. Add additional data items in
successive columns.

8.3.11 $z~mdh~spin~button~get~value(SpinButtonReference)
Returns the current value of the referenced SpinButton.
8.3.12 $z~mdh~spin~button~set~value(SpinButtonReference,number)
Sets the current value of the referenced spin button to number.
8.3.13 $z~mdh~widget~hide(widgetReference)
Hides the widget from view.
8.3.14 $z~mdh~widget~show(widgetReference)
Displays (un-hides) the widget.

62

9 Pattern Matching

9.1 Mumps 95 Pattern Matching
Author: Matthew Lockner

Mumps 95 compliant pattern matching (the '?' operator) is implemented in this
compiler/interpreter as given by the following grammar:

pattern = {pattern atom}

pattern atom = count pattern element

count =int | '." | *." int | int '." | int '.' int
pattern element ::= pattern code {pattern code} | string | alternation
pattern code = 'A* | 'C" | ‘E" | 'L" | 'N" | 'P" | U
alternation = '(' pattern_atom {',' pattern atom} ')’

The largest difference between the current and previous standard is the introduction of the
alternation construct, an extension that works as in other popular regular expressions
implementations. It allows for one of many possible pattern fragments to match a given portion of
subject text.

A string literal must be quoted. Also note that alternations are only allowed to contain pattern
atoms and not full patterns; while this is a possible shortcoming, it is in accordance with the
standard. It is a trivial matter to extend alternations to the ability to contain full patterns, and this
may be implemented upon sufficient demand.

Pattern matching is supported by the Perl-Compatible Regular Expressions library (PCRE).
Mumps patterns are translated via a recursive-descent parser in the Mumps library into a form
consistent with Perl regular expressions, where PCRE then does the actual work of matching.
Internally, much of this translation is simple character-level transliteration (substituting '|' for the
comma in alternation lists, for example). Pattern code sequences are supported using the POSIX
character classes supported in PCRE and are mostly intuitive, with the possible exception of 'E',
which is substituted with [[:print][:cntrl:]]. Currently, this construct should cover the ASCII 7-
bit character set (lower ASCII).

Due to the heavy string-handling requirements of the pattern translation process, this module
uses a separate set of string-handling functions built on top of the C standard string functions, using
no dynamic memory allocation and fixed-length buffers for all operations whose length is given by the
constant STR MAX in sysparms.h. If an operation overflows during the execution of a Mumps
compiled binary, a diagnostic is output to stderr and the program terminates. If such termination
occurs too frequently, simply increase the value of STR MAX.

9.2 Using Perl Regular Expressions
Author: Matthew Lockner

In addition to Mumps 95 pattern matching using the '?' operator, it is also possible to perform
pattern matching against Perl regular expressions via the perlmatch function. Support for this
functionality is provided by the Perl-Compatible Regular Expressions library (PCRE), which supports
a majority of the functionality found in Perl's regular expression engine.

The perlmatch function works in a somewhat similar fashion to the '?' operator. It is provided
with a subject string and a Perl pattern against which to match the subject. The result of the function
is boolean and may be used in boolean expression contexts such as the "If" statement.

Some subtleties that differ significantly from Mumps pattern matching should be noted:

1. A Mumps match expects that the pattern will match against the entire subject string, in that
successful matching implies that no characters are left unmatched even if the pattern matched
against an initial segment of the subject string. Using perlmatch, it is sufficient that the entire
Perl pattern matches an initial segment of the subject string to return a successful match.

2. The perlmatch function has the side effect of creating variables in the local symbol table to
hold backreferences, the equivalent concept of $1, $2, $3, ... in Perl. Up to nine
backreferences are currently supported, and can be accessed through the same naming

63

scheme as Perl ($1 through $9). These variables remain defined up to a subsequent call to
perlmatch , at which point they are replaced by the backreferences captured from that
invocation. Undefined backreferences are cleared between invocations; that is, if a match
operation captured five backreferences, then $6 through $9 will contain the null string.

Examples

This program asks the user to input a telephone number. If the data entered looks like a valid
telephone number, it extracts and prints the area code portion using a backreference; otherwise, it
prints a failure message and exits.

Write "Please enter a telephone number:",!
Read phonenum

If $$”perlmatch(phonenum,"~(1-)?2(\(?\d{3}\)?)?(-])?\d{3}-7?\d{4}$") Do
. Write "+++ This looks like a phone number.",!

. Write "The area code is: ",$2,!
Else Do
. Write "--- This didn't look like a phone number.",!

The output of several sample runs of the program follows:

Please enter a telephone number:
1-123-555-4567

+++ This looks like a phone number.
The area code is: 123

Please enter a telephone number:
(123)-555-1234

+++ This looks like a phone number.
The area code is: (123)

Please enter a telephone number:
(123) 555-0987

+++ This looks like a phone number.
The area code is: (123)

As in Perl, sections of the regular expression contained in parentheses define what is contained in
the backreferences following a match operation. The backreference variables are named in a left-to-
right order with respect to the expression, meaning that $1 is assigned the portion matched against
the leftmost parenthesized section of the regular expression, with further references assigned names
in increasing order. For a much more in-depth treatment of the subject of Perl regular expressions,
refer to the perire manpage distributed with the Perl language (also widely available online).

64

10 Mumps Compiler

Included in the distribution package is (1) a beta version compiler for the Mumps language and
(2) the Multi-Dimensional and Hierarchical library (MDH). At present, not all Mumps language
features are implemented but many are. There is a companion document entitled MDH.pdf which
provides additional details on the MDH package.

The Mumps Compiler translates Mumps source code to C++ and then compiles the resulting C+
+ programs into executable binaries.

The MDH package consists of a C++ class library which permits C++ programs to be written
using many of the database and string handling features of Mumps.

10.1 Compiling Programs

The Mumps programs described in this document can be run in either of two ways: either as
interpreted code using the Mumps interpreter or as binary executables resulting from the Mumps
Compiler.

Binary programs run faster than interpreted programs but the difference can be small if the
programs rely heavily on input/output operations.

10.2 How to Compile and Run a Mumps or MDH Program.

Programs written in Mumps must have the extension .mps when used with the compiler.
Programs written for the interpreter, however, may have any extension however .mps is preferred.
MDH programs written in C++ must have the ".cpp" extension.

When you compile a Mumps program, a C++ translation of your program is created and resides
on the disk with the same name but with the .cpp extension. The C++ translation is then compiled
and linked with run-time libraries to build an executable binary.

On MS Windows, the binary will have the same name as your original program but with the .exe
extension. On Linux, the binary will have the same name as your original program but with no
extension. Depending on which system you are using, there will be other, intermediate files
generated by the Mumps and C++ compilers. These are not important and can be deleted.

You may compile a Mumps program of an MDH C++ program by using the executable script
mumpsc. To compile a Mumps or MDH C++ program using the script, type:

mumpsc myprog.mps

If the name of the file presented as an argument to mumpsc has the extension .mps, the script
will first translate the Mumps to C++ and then compile the result and link the output of the C++
compiler with MDH and standard Mumps libraries.

If the name of the file presented as an argument to mumpsc has the extension .cpp, the script
will compile the C++ program and make available the MDH class library.

As noted above, the script mumpsc first translates a Mumps program to C++ and then compiles
the result. The program that translates Mumps to C++ is named mumps2c. You may run this
program standalone:

mumps2c myprog.mps

The result will be a file named myprog.cpp. You may edit or modify this file and then compile it to
binary executable with the mumpsc script. Since the output of mumpsZc requires access not only to
the MDH object libraries but also some uncommon system libraries, usage of the mumpsc script is
required (i.e. don’t use g++).

10.3 Compiler Error Messages

Generally speaking, in most cases you will receive syntax error messages from the Mumps
compiler which will identify the error and the line number in the original Mumps program containing
the error.

65

However, in some cases, an error may not be detected by the Mumps compiler but, instead, by
the C++ compiler.

Consequently, if you get C++ error messages, the line number on the error message will refer to
the line number in the C++ translation of your Mumps program. To reference this to a line number in
your Mumps program, look into the generated .cpp file at the line number given by the C++ error
message and then back track to the nearest prior commented Mumps source line - this shows the
original in your Mumps programs that caused the problem.

For example, if you get a message from the C++ compiler saying that you have an error at line
1234 in the C++ module, open the C++ file and move to line 1234. At that location you may see
something like:

/* *
svPtr->LineNumber=4; // write "the sum is: ", total,!
/* =Y

if (svPtr->out file[svPtr->io]==NULL) ErrorMessage("Write to input file",svPtr->LineNumber);

svPtr->hor[svPtr->io]+=fprintf(svPtr->out_file[svPtr->io],"%s","the sum is: ");

if (sym_ (SYMGET, (unsigned char *) "total", (unsigned char *) tmp0,svPtr)==NULL)
VariableNotFound(svPtr->LineNumber);

svPtr->hor[svPtr->iol+=fprintf(svPtr->out file[svPtr->io],"%s",tmp0);

fprintf(svPtr->out file[svPtr->io],"\n"); svPtr->hor[svPtr->iol=0; svPtr->ver[svPtr->io]++;

Figure 39 Example C++ Code

Notice that each original line of Mumps code and its line number in the original Mumps file
appear in a comment prior to the C++ translation of the line. Note that the translation of a line of
Mumps code may result in many lines of C++ code.

Thus, to locate the line of Mumps code that caused the C++ error, look for the line of Mumps
code preceding the line which the C++ complier flagged as being in error.

Generally speaking, you may receive C++ error messages if you reference non-existent labels or
subroutines, or incorrectly specify indented do blocks (see below).

Also, you may see ™M (control-M) characters in the code. These are visible due the differences
between the operating systems. Under Windows, each line ends in a carriage-return and a line-feed.
Under Linux, each line ends in a line-feed character only. The control-M's you see are the carriage-
returns. They are harmless and may be ignored.

10.4 Global Array Storage in Compiled Programs

Global arrays will be stored in Sqlite or the native Btree database depending on which script
you used to build the interpreter with. Global arrays created by compiled programs are
interchangeable with global arrays created by the interpreter.

10.5 Compiler Implementation Overview

The compiled modules execute faster than the same code executing on the interpreter depending
upon the nature of the code and the amount of database activity. Programs will large amounts of
database or I/O activity will run at about the same speed.

One advantage of full compilation is interoperability with other languages and with the host
operating system. Programs written in C++ have full access to all system features and can be
manually edited to improve performance.

66

11 Multi-Dimensional and Hierarchical Database Class Library (MDH)

The Multi-Dimensional and Hierarchical Toolkit (MDH) is a Linux-based, open sourced, toolkit of
libraries that support access to the Mumps database and other services. The package is written in C
and C++ and licensed under the GNU GPL/LGPL licenses. Full details are provided in a companion
document (MDH.pdf)

The toolkit permits manipulation of very large, character string indexed, multi-dimensional, sparse
matrices from C++ programs. The toolkit supports access to SQL relational data base servers, the
Perl Compatible Regular Expression Library, and the Glade GUI builder.

The toolkit makes Mumps data base and functions available as C++ classes and permits execution
of Mumps scripts directly from C++ programs. The toolkit is provided with the Mumps distribution
and is available if Mumps is installed. No further installation beyond the basic Mumps installation
described above is required.

The class, function and macro libraries primarily operate on global arrays. Global arrays are
undimensioned, string indexed, disk resident data structures whose size is limited only by available
disk space. They can be viewed either as multi-dimensional sparse matrices or as tree structured
hierarchies.

To compile an MDH/C++ program using the script, type:

mumpsc myprog.cpp

11.1 MDH Class Library Header File

To use the class libraries, add the following to the beginning of your C++ program:
#include <mumpsc/libmpscpp.h>

This statement inserts in the necessary header files for you C++ program. In addition to the
MDH class libraries, the following standard systems headers will be included as well:

#include <iostream>
#include <iomanip>
#include <string>
#include <string.h>
#include <math.h>
#include <stdlib.h>

11.2 MDH Data Types

The MDH is built upon two data classes. One is for global arrays (global)and the other is a
string data type (mstring) which mimics Mumps strings.

11.2.1 Mstring Data Objects

The mstring class provides functionality similar to the basic typeless string data type in
Mumps. Objects of mstring may contain text, integers and floating point values. Operations on
mstring objects include addition, multiplication, subtraction, division, modulo, concatenation and
so forth. Objects of type mstring are declared in the normal manner such as:

mstring mvarl,var2,var3;

They may be initialized with int, long, float, double, char * and string and mstring values
such as:

mstring varl(10),var2(10.123),var3("test"),vard4(stringVvar);

Objects of type mstring may be assigned to most data types and most data types may be
assigned to objects of type mstring.

Objects of type mstring, string, and null terminated character strings are the only legal indices
for objects of class global.

67

11.2.1.1 Arithmetic Operations on Mstring Objects

When mstring objects contain numeric values, you may apply arithmetic operators directly to
the mstring object or objects.

Both extended precision and basic hardware precision are available.

In hardware precision mode, floating point numbers are processed by the machine's arithmetic
processing hardware. Floating point numbers are treated as 64-bit double values and integers are
treated as signed 64-bit long integer values. Thus, integers may range from:

-9,223,372,036,854,775,808 (-2%+1) to 9,223,372,036,854,775,807 (2%-1)

Hardware floating point numbers utilize a one bit sign, an 11 bit exponent and a 52 bit fraction.

This translates into approximately 16 decimal digits of precision in the range of = ~103%3 to +
~10308.3.

Extended precision is available through use of the GNU multiple precision arithmetic library!!
and the GNU MPFR library'?. For integers, this means effectively unlimited precision. For floating
point, the exponent is 64 bits and the fraction is user specified (default of value of 72 bits).

Hardware arithmetic will be selected during system build if (1) configure does not find the
extended precision libraries or (2) the user specifies the configuration option:

--with-hardware-math.

If the extended precision libraries are found and the above option has not been specified,
extended precision will be in effect.

If extended precision is used, the number of bits in the fraction of a floating point number can
be set with:

--with-float-bits=value
where value is the number of bits. The default value is 72.

For extended precision floating point numbers, the number of digits of precision that may be
printed is controlled by:

--with-float-digits=value
where value is the number of digits. The default is 20.

When printing an extended precision floating point number, the number of digits being printed
should be consistent with the number of bits in the fraction. If the number of digits is too large,
insignificant, random low-order digits may appear in the output.

11.3 Global Data Objects

Objects of class global provide access to the global array database. The class includes functions
to create, delete (kill), and navigate global arrays.

In your C++ program, you must declare each global array that the program will use. Normally,
these declarations will appear at the beginning of the program. A global declaration has the form:

global program ref(database name);
Where program_ref is the name by which the global array will be referred to in your program

and database name is the name of the actual global array in the file system. Both may be the same.
The value for database name may be expressed as a pointer to a character string constant.

11 http://www.mpfr.org/
12 http://gmplib.org/manual/index.html

68

For example, if your program uses a Mumps global array stored in the file system with the
name patient, you might have the following C++ declaration in your program:

global patient("patient");
Once declared, a global array object may be used to access the contents of the global array
database. For example, for the global array object patient declared above, the following reference

might be made:

patient(ptid, test,date,time)=result;

where ptid, test, data, result and time are mstring or char * null terminated variables or

constants.

Although objects of class mstring may be C++ arrays, objects of class global may not.

Objects of class global may not be initialized in declaration statements.

11.4 Operators Defined on Mstring & Global Objects

Objects of class mstring may appear as the operands of most C++ builtin operators by means
of C++ operator overloading.

In the cases of binary operators, the other operand may be most other builtin data types as well
as global and mstring objects.

Figure 40 contains the full list of C++ operators that have been overloaded for use with objects
of types mstring and global. In these examples, assume the declarations:

mstring ms, msa[1l0];
global gb("test");

Unary

Operators Description Examples
- - Suffix/postfix increment and ms++;
decrement gb("123")++;
[] Array subscripting®® mstring msa[10]; msa[l] = "abc";
L ++ms ;
++ -- Prefix increment and decrement ++gb("123");
. cout << +gb("123") << endl;
+ - Unary plus and minus cout << -ms << endl:
I ms = "123"
(type) C-style explicit cast int k = (int) ms("123");
global *pl = &gb;
. . (*pl) ("111") = 10;
* Indirection (dereference) mstring *p2 = msa;
(*p2)[3] = "abc";
& (unary) Address-of mtstring *pl = &ms;
global *p3 = new global("xxx");
. . (*p3) ("xxx") =2 2;
new, new[] |Dynamic memory allocation mstring *p4 = new mstring;
*p4=123;
delete, . .]
delete[] Dynamic memory deallocation delete pl;
Binary o
Operators® Description Examples
o . L ms = ms * 2;
x /o Tg;;iﬁééiatlon, division, and ms = gb("123") / ms;
ms = gb("123") % 5;

13 Only with an mstring operand.
14 One operand, the first, may be of type mstring or global and the other may be of type mstring,
global, float, double, int, long, char*, or string.

69

+ - Addition and subtraction mz _ g;(tlgé") _ ms:
<< >> stream insertion / extraction cout << ms; cin >> gb("123");
_ For relational operators < and = }f (ms <= g?(1%3)
< <= respectively?’ }f (ms < gb®abc)) ...
if ("abc" < gb("123") ...
For relational operators > and = }f (ms >= gb(123")
z 7= respectively?® it (ms > gb("abc")) ...
if ("abc" > gb("123"))
1 For relational operators = and # if (ms == gb("123")
T respectively?® if (ms != gb("abc"))
&& Logical AND if (ms && gb("123"))
[Logical OR if (ms || gb("123"))
ggg?:{gr Description Examples
?: Ternary conditional ms ? ms :y
Assignment® | Description Examples
ms = 123
= Direct assignment gb("123") = 1.3456
ms = "test"
o Compound assignment by sum and ms-?n mS"T_ 123
== difference ms+="123";
gb("123")=0; gb("123") -= 10
¥e /e 9 Compound assignment by product, mg??izgf)fie}23b("123") /= 10
= %= quotient, and remainder gb("123");10; gb("123") %; 10
Concatenate. First operand must be of
& (binary) type global or mstring'’. The second |mstring i="aaa",j="bbb", k="ccc";

operand may be string, mstring,
global, char* int, long, or double.

i=i&jé&k; // i -> aaabbbccc

Figure 40 Operators Defined on mstring and global

11.5 Example Arithmetic Operations on global and mstring Objects

The operations of add, subtract, multiply, divide, pre/post increment and pre/post decrement
are defined (overloaded) for global and mstring variables either together (in binary or the ternary
operator) or in connection with other builtin data types. The contents of the global array node or
mstring variable must be compatible with the dominant data type of the operation. If the contents
not compatible with the operation (example, incrementing a string of text), the value of the global
will be interpreted as zero. Examples:

Code Examples

Results

gbl.Kill();

global gbl("gbl");

int i, j=10;

string a = "10", b = "20", ¢ = "30";

char aa[] = "10", bb[] = "20", cc[] = "30";
mstring aaa = "10", bbb = "20", ccc = "30";

15 If one operand is a numeric type (long, float etc.), the mstring or global will be interpreted as a
numeric value rather than as a string. If both operands are of type global or mstring, they will be compared
as strings. If one operand is of type global or mstring and the other is of type char* or string, they will be
compared as strings.

16 The left-hand-side must be of type mstring or global while the right-hand-side may be of types
mstring, global, float, double, int, long, char*, or string. When arithmetic assignment operators are used,
right-hand-side string, char*, and global operands will be converted to numeric following the default Mumps

conversion rules.

17 Note: because the overloaded bitwise and operator (&) is of lower precedence than the bit shift
operator <<, in output operations (such as when using cout), an expression involving the bitwise & operator
must to be in parentheses.

70

gbl(a,b,c) = 10;
gbl(aa,bb,cc) = 20;
gbl(aaa,bbb,ccc) = 30;

i = gbl(a,b,c) + 20;
cout << i << endl; 50

i =20 + gbl(a,b,c);
cout << i << endl; 50

i = gbl(a,b,c) / j;
cout << i << endl; 3

i =gbl(a,b,c) * 2;
cout << 1 << endl; 60

gbl(a,b,c) ++;

cout << gbl(a,b,c) << endl; 31
gbl(a,b,c) --;

cout << gbl(a,b,c) << endl; 30

i = ++ gbl(a,b,c);

cout << i << " " << gbl(a,b,c) << endl; 31 31
i =gbl(a,b,c) ++;

cout << 1 << " " << gbl(a,b,c) << endl; 31 32
gbl(a,b,c) += 10;

cout << gbl(a,b,c) << endl; 42
gbl(a,b,c) -= 10; 32

cout << gbl(a,b,c) << endl;

gbl(a,b,c) *= 2;
cout << gbl(a,b,c) << endl; 64

gbl(a,b,c) /= 2;
cout << gbl(a,b,c) << endl; 32

aaa="aaa"; bbb="bbb"; ccc="ccc";
cout << (aaadbbb&ccc) << endl; aaabbbccc

Figure 41 Code Examples

11.6 Functions for Global and Mstring Objects

As is the case with Mumps functions, characters in strings are counted beginning with one, not
zero. Thus, the substring beginning at position 3 through and including position 5 in the string
"abcdef" is "cde".

If an object of type mstring contains a string that is to be used as a global array reference in
connection with one of the functions below, the global array reference must be preceded by a
circumflex character () as is the case in Mumps and, also, the indices must be constants. Example:

mstring x=""g(1)";
cout x.Qlength() << endl; // prints 1

Function Parameters

INT An expression involving int, long, float, double, mstring or global the result
of which can be interpreted as an integer. Data of type char* may not be used.

71

STR An expression involving

int, long, float, double, mstring or global the result

of which can be interpreted as a string. Data of type char* may be used but not
as part of an expression.

Function

Description

int mstring::Ascii([INT])
int global::Ascii([INT])

Returns the decimal value of the first ASCII character in
the invoking global or mstring. If an integer argument is
given, it returns the decimal value of the character at the
offset designated by the argument. mstring and global
arguments will be interpreted as integers.

mstring sl="abcdef";
sl.Ascii() -> 97
sl.Ascii(2) -> 98

void
void
void
void
void
void
void

mstring:
mstring:
mstring:
mstring:
mstring:
mstring:
mstring:

:Assign(global)
:Assign(mstring)
:Assign(string)
:Assign(char*)
:Assign(int)
:Assign(long)
:Assign(double)

Assign a value to the global array reference containg in
the invoking mstring. Contents of invoking mstring must
conform to Mumps global array naming conventions and
all indices must be constants, global array references, or
variables previously defined in the Mumps Interpreter
symbol table (see: SymPut()). Items placed in the
Mumps Interpreter symbol table are discarded when the
program ends. This function throws a
MumpsGlobalException in the event of error.

mstring x=""g(1,1)";

global g("g");

X.Assign("test test");

cout << g(1,1) << endl; // -> test test

SymPut("a","1"); // a put in symTab
x=""g(a,a)"; // reference uses a
x.Assign("abc");

cout << g(1,1) << endl; // -> abc

g(l)=1;

x=""g("g(1),%g(1))";
x.Assign("xyz");

cout << g(1,1) << endl; // -> xyz

double global::Avg()

Returns the average of the values of data bearing nodes
beneath the given global array reference.

global a("a");
for (i=0; 1i<1000; i++)
for (j=1; j<10; j++)
a(i,j) = 3;

a("100").Avg() -> avg below node a("100")
a().Avg() -> average of all nodes

void global::Centroid(global B)

A centroid vector B is calculated from the invoking two
dimensional global array matrix. An element of the
centroid vector is the average of the values of each for
the corresponding column of the matrix. Any previous
contents of the global array named to receive the
centroid vector are lost. The invoking global array must
contain at least two dimensions.

global A("A");
global B("B");
mstring 1i,j;

for (i=0; i<10; i++)

72

for (j=1; j<10; j++)
A(i,j) =5;
A().Centroid(B());
mstring a="";
while (1) {
a=B(a).0rder();
if (a=="") break;
cout << a << " --> " << B(a) << endl;

}
Yields:

CooNOULTA, WN -
1
1
\'

(OO, 0, O, O, N0, O, N0, N0,

mstring mstring::Concat(char *)
mstring mstring::Concat(global)
mstring mstring::Concat(mstring)
mstring mstring::Concat(string)
mstring mstring::Concat(int)
mstring mstring::Concat(long)
mstring mstring::Concat(double)
mstring global::Concat(string)
mstring global::Concat(global)
mstring global::Concat(char *)
mstring global::Concat(mstring)
mstring global::Concat(int)
mstring global::Concat(long)
mstring mstring::Concat(double)

Returns mstring consisting of the value from the
invoking object concatenated with the value of the
parameter

mstring a="aaa",b="bbb",c;

c=a.Concat(b); // c contains aaabbb

long global::Count()

Returns the number of data bearing nodes beneath the
given global array reference.

global a("a");
mstring 1i,j;
for (i=1; i<11; i++)
for (j=1; j<11; j++)
a(i,j) =5;
a().Count() -> 100
a("5").Count() -> 10

void global::DocCorrelate(global B,
mstring fcn, double threshold)

void global::DocCorrelate(global B, char *
fcn, double threshold)

DocCorrelate() builds a square document-document
correlation matrix from the invoking global array
document-term matrix. The name of the function to be
used in calculating the document-document similarity is
given by fcn and may be Cosine, Jaccard, Dice, or Sim1.
The minimum correlation threshold is given in threshold
which defaults to 0.80 if omitted.

global A("A");
global B("B");

long 1,7;

73

||1|| , ||Computerll)=5;

ulu’udatau)=2;
||1|| , llprogramll)=6;
||1|| , "diSk")=3;

II1II , Illaptopll)=7;
“1","monitor")=1;

—~ o~~~ o~ o~

2", "computer"

)=
“2","printer")=2;
"2","program")=6
2", "memory")=3;
"2","laptop")=7;

"2","language")=1;

“3","computer")=5;
“3","printer")=2;
"3","disk")=6-
“3","memory")=3;
"3","laptop")=7;
"3","USB")=1;

>r>r>>>> >r>>>>> >rX>>>>>

—~ o~~~ o~ o~

A().DocCorrelate(B(),"Cosine",.5);
B.TreePrint();

Yields

1

0.887096774193548
0.741935483870968

2
3
2

0.887096774193548
0.701612903225806

w =

3
1=0.741935483870968
2=0.701612903225806

mstring global::Extract(
mstring mstring::Extract(

[INT [,INT]]
[INT [,INT]]

)

)

Returns the substring of the invoking global or mstring
beginning at the position designated by the 1%
argument and ending at the position designated by the
second argument, inclusive. If no second argument is
given, the single character designated by the first
argument is returned. If the second argument specifies
a position beyond the end of the string, the remainder
of the string including and following the character
designated by the first argument is returned.

global gl("gl");

gl(ll lI)_llabcdefll.
gl("1").Extact(2) -> b
gl("1l").Extact(2,4) -> bcd

gl("1").Extract(2,99) -> bcdef

mstring mstring::Eval()

Evaluates the Mumps expression in the invoking
mstring object and returns the result in an mstring. If
an error occurs, an InterpreterException is thrown. The
invoking mstring object may contain a valid mumps
expression.

mstring x="5*%2";
x.Eval() -> 10

global g("g");

74

g(lllll’ II1II)=22;
X=Ill\a(1’1)ll;
x.Eval() -> 22

int global::Find(STR [,INT])
int mstring::Find(STR [,INT])

Searches the invoking string for the firts instance of the
STR argument and, if STR is found, returns the
character position of the character immediately following
the instance of STR. If an INT argument is provided, the
search begins at that character offset in the invoking
string. Returns -1 is STR is not found.

mstring p="abcdefabcdef";
p.Find("def") -> 7
p.Find("def",5) -> 13

mstring Horolog()

Returns an mstring of the form "x,y" where x is the
number of days since December 31, 1840 and y is the
number of seconds since midnight.

void global::IDF(double DocCount)

The IDF() function calculates for the invoking global
array vector the inverse document frequency weight of
each term. The vector indices should be words and have
as stored values the number of documents in which each
word occurs. The document count for each element will
be replaced by the calculated IDF value. The IDF is
calculated as: log2(DocCount/W,)+1 where W, is the
number of documents in which a term appears (the
document frequency). The value DocCount is the total
number of documents present in the collection.

global a("a");

a("now")=2;
a("is")=5;
a("the")=6;
a("time")=3;
a().IDF(4);

a().TreePrint();
Yields:

is=0.678072
now=2.000000
the=0.415037
time=1.415037

mstring global::Justify (INT [,INT]
mstring mstring::Justify (INT [, INT]

)

)

Right justifies the invoking object in an mstring field
whose length is given by the first argument. If the second
argument is present and a positive integer, the invoking
object is right justified in a field whose length is given by
the first argument with the number decimal places as
specified by the second argument. The two argument
form imposes a numeric interpretation upon the first
argument. Rounding occurs in the two argument case.

mstring p=123.456
p.Justify(10) -> 123.456

p.Justify(10,2) -> 123.46
p="abcdef";
p.Justify(p,10) -> abcdef

void global::Kill()

Kill (delete) the named global array node and all

75

descendants. To kill and entire global array use:

global gb("gb");
gb().Kill;

int global::Length([STR])
int mstring::Length([STR])

Returns the length of the invoking string. If an argument
STR is given, the number returned is the number of
invoking string segments divided by the argument.

mstring p="abc & def";
p.Length() -> 9
p.Length("&") -> 2

double global: :Max()

Returns the maximum numeric value of the data bearing
nodes beneath the given reference. Non-numeric values
are treated as zeros.

global a("a");
mstring 1i,j;
for (i=1; i<11; i++)
for (j=1; j<11; j++)
a(i,j) = rand()%1000;

a().Max() -> 996 (results will vary)
a("le").Max() -> 932

double global::Min()

Returns the minimum numeric value of the data bearing
nodes beneath the given reference. Non-numeric values
are treated as zeros.

global a("a");
mstring 1i,j;
for (i=1; i<11; i++)
for (j=1; j<11; j++)
a(i,j) = rand()%1000;
a().Min() -> 11 (results will vary)
a("10").Min() -->12

void global::Multiply(global, global)

The invoking global array matrix is multiplied by the first
argument global array matrix and the result is placed in
the second argument global array matrix. The number of
columns of the invoking global array matrix must equal
the number of rows of the first argument global array
matrix. The resulting matrix (second argument) will have
n rows and m columns where n is the number of rows of
invoking global array matrix and m is the number of
columns of the first argument global array matrix.

The contents of the second argument, if any, will be
deleted before the operation begins. The data stored at
each node in the invoking matrix and the first argument
matrix must be numeric. All calculations are performed in
double precision arithmetic. Each input matrix must be
two dimensional. The output matrix is also two
dimensional.

global d("d");
global e("e");
global f("f");
d("1","1")=2; d("1","2")=3;
d("2","1")=1; d("2","2")=-1
d("3","2")=0; d("3","2")=4

76

e("1","1")=5; e("1","2")=-2;
e("1","3")=4; e("1","4")=7;
e("2","1")=-6; e("2","2")=1;
e("2","3")=-3; e("2","4")=0;

d().Multiply(e(),f());
f().TreePrint();

Yields:
1

- 1
B e e]

w N
TR TR SRR AT
] N~

N w R

N

2=4
3=-12
4=0

mstring global: :Name()

Returns an mstring containing of the global reference
with all variables and expressions in the indices
evaluated.

global a("a");
mstring b="1",c="2",d="3";
a(b,C,d,C+d) .Name() -> a(||:|-||'||2||’||3||,||5||)

int global::Pattern(STR)
int mstring::Pattern(STR)

Evaluates the invoking string according to the pattern
string STR (see Mumps documentation) and returns 0
(does not match) or 1 (does match).

mstring p=12345;
p.Pattern("5N" -> 1

mstring global::Piece(STR, INT [,INT]
mstring mstring::Piece(STR, INT [,INT]

)

)

Returns a substring of the invoking object delimited by
the instances of the first STR argument. The STR
delimiter divides the invoking object into pieces. The
substring returned in the two argument case is the ™
substring of the invoking object there i is the value of the
first INT argument. In the three argument form, the string
returned begins at the ™ piece and ends at the j® piece
where j is the value of the second INT argument. If only
one argument is given, i is assumed to be 1.

mstring p="abc.def.ghi";
p.Piece(".") -> abc
p.Piece(".",2) -> def
p.Piece(".",2,3) -> def.ghi

int global::Qlength(mstring ref)
int mstring::Qlength(char * ref)

Returns the number of subscripts in the global array
reference. mstring global array references must include
the circumflex (*) character.®

global g("g");
g(1,2,3,4,5).Qlength() -> 5

77

mstring x=""g(1,2,3,4,5,6)";
x.Qlength() -> 6

mstr
mstr

ing mstring: :Query()
ing global: :Query()

Returns an object of type mstring containing the next
global array reference in the data base following the
invoking global array reference or the empty string if
there are none. The invoking object is either a global
array reference or an mstring containing a string
corresponding to a global array reference. mstring
global array references must include the circumflex (%)
character.*®

mstring 1i,j;
global g("g");
for (i=1; i<10; i++)
for (j=1; j<10; j++)
g(i,j)=1+1;

9()Quer‘y() -> Ag("].","]_")
g(2).0uery() -> ’\g("2ll’u1u)
g(2,2).Query() -> ~g("2","3")

i="~g()"
i.Query() -> ~g("1","1")

i=i.Query();
i.Query() -> ~g("1","2")

mstring mstring::Qsubscript(int)
mstring global::Qsubscript(int)

Returns the subscript of a global array reference
designated by the argument. mstring global array
references must include the circumflex () character.®

global g("g");
g(9,8,7).Qsubscript(3) -> 7

mstring x=""g(9,8,7)";
X.Qsubscript(3) -> 7

bool
bool
bool

bool
bool
bool

global: :ReadLine()
global: :ReadLine(FILE *)
global: :ReadLine(istream

mstring::ReadlLine()
mstring: :ReadLine(FILE *

&)

)

mstring::ReadLine(istream &)

Reads the next input line into the invoking objsect. If no
argument is given stdin is used. Otherwise, the inout file
is determined by the argument.

int

int

int

sw(mstring s, mstring t,

[int

show aligns=0, int show mat=0, int

gap=-1, int mismatch=-1,

sw(string s, string t, [i

int match=2])

nt

show _aligns=0, int show mat=0, int

gap=-1, int mismatch=-1,

sw(char *s, char *t, [int

int match=21])

show _aligns=0, int show mat=0, int

gap=-1, int mismatch=-1,

int match=21)

Calculate the Smith-Waterman Alignment between
strings s and t. Result returned is the highest alignment
score achieved. Parameters other than the first two are
optional. If only some of the optional parameters are
supplied, only trailing parameters may be omitted, as per
C/C++ rules.

If you compare very long strings (>100,000 character),
you may exceed stack space. This can be increased
under Linux with the command:

ulimit -s unlimited

Other options are: ulimit -a and ulimit -aHto
show limits.

If show_aligns is zero, no printout of alternative

18 See example in Figure 44 on page 87.

78

alignments is produced (default). If show_aligns is not
zero, a summary of the alternative alignments will be
printed. If show_mat is zero, intermediate matrices will
not be printed (default).

The parameters gap, mismatch and match are the gap
and mismatch penalties (normally negative integers) and
the match reward (a positive integer). If insufficient
memory is available, a segmentation violation will be
raised.

The first character of each sequence string MUST be
blank.

In the printed output, a colon represents a match, a
hyphen represents a stretch of the associated string and
a blank indicates mismatch.

char s[]=" now is the time for all good
men to come to the aid of the party";

char t[]=" time for good men";
int i=sw(s,t,1,0,-1,-1,3);
cout << "Score: " << i << endl;

Results in:

score=48

int
int
int

SQL_Command(mstring)
SQL _Command(string)
SQL Command(char *)

Passes the string argument to the SQL database server.
See Mumps sq/ command for a description of the
argument. The results are written to a file named
mumps.tmp where columns are <tab> separated.

int
int
int

SQL _Connect(char *)
SQL_Connect(string)
SQL Connect(mstring)

Establishes connection with the database server.

int

SQL Disconnect();

Disconnects from the database server.

mstring SQL Message()

Returns most recent SQL database server returned
message or the empty string if there is none.

bool SQL Native()

Returns true if the global arrays are being stored in a
native database.

bool SQL Open()

Returns true if there is a connection to the database
server, false otherwise.

mstring SQL Table()

mstring SQL Table(mstring,
mstring SQL Table(string,
mstring SQL Table(char *,

[int])

[int]
[int]

)
)

Returns an mstring containing name of the current
global array table (default: mumps), followed by a
comma, followed by the maximum number of columns
permitted in the table (default is 10). If arguments are
provided, they set the name of the table and the
maximum number of columns in the table (maximum of
10). If the second argument is omitted, it defaults to 10.

double global: :Sum()

The global array nodes beneath the invoking referenced
global array are summed. Non-numeric quantities are
treated as zero.

79

global a("a");
mstring i, j;
for (i =1; i < 11; i++)
for (j =1; j < 11; j++)
a(i, j) =5;
cout << a().Sum() << endl; // -> 500
cout << a("5").Sum() << endl; // -> 50

mstring SymGet(T1l name)

Retrieves the value of the variable whose name is
contained in name from the Mumps Interpreter symbol
table. Throws MumpsSymbolTableException if the
variable is not found. The data type T1 may be global,
mstring or char*. See also: SymPut().

SymPut("k","100");
cout << SymGet("k") << endl; // -> 100

bool SymPut(Tl name, T1 value)

Insert into the Mumps Interpreter symbol table a variable
whose name is contained in name with the value
contained in value. The data type T1 and T2 may be any
combination of global, char* or mstring. Returns true if
successful, false otherwise. Variables in the Mumps
Interpreter symbol table may be accessed by
expressions passed to the function mstring::Eval() or
mstring::Assign(). See also: SymGet().

mstring i="3*k";
SymPut (n kll , n 100") ;
cout << i.Eval() << endl; // -> 300

void global::TermCorrelate(global B)

TermCorrelate() builds a square term-term correlation
matrix in global array B from the invoking global array
document-term matrix.

global A("A");

global B("B");
int main() {
long 1i,j;

(
(
(Illll , llprogramll)=6;
(II1II , Ildiskll)=3;
(Illll , ll'l-ap.topll)=7;
(

“1","monitor")=1;

A

A

A

A

A
A("2","computer")=5;
A("2","printer")=2;
A("2","program")=6;
A(II2II , "memory") 3’
A("2","laptop")=7;
A("2","language")=1;
A("3","computer")=5
A("3","printer")=
A II3II,IId:i-Sl(II)= .
A "3","memory")=3;
A ||3|| , ||'Laptop||)=7’
A("3","USB")=1;

2;

A.TermCorrelate(B);

mstring a;

80

mstring b;
a=ll n ;

while (1) {
a=B(a).0rder();

if (a=="") break;
cout << a << endl;
b="";

while (1) {
b=B(a,b).0rder();
if (b=="") break;
cout <<" " << b << "(" << B(a,b)

<< ")" << endl;

}

}

return 0;

}
Yields:

UsB
computer(1)
disk(1)
laptop(1)
memory (1)
printer(1)
computer
USB(1)
data(1l)
disk(2)
language(1)
laptop(3
memory (2
monitor(
printer(
program(
data
computer(1)
disk(1)
laptop(1)
monitor(1l)
program(1l)
disk
USB(1)
computer(2)
data(1l)
laptop(2)
memory (1)
monitor(1)
printer(1)
program(1)
language
computer(1)
laptop(1)
memory (1)
printer(1)
program(1)
laptop
USB(1)
computer(3)
data(1l)

)

(
)
)
1)
2
2)

81

disk(2)
language(1)
memory(2)
monitor(1l)
printer(2)
program(2)
memory
USB(1)
computer(2)
disk(1)
language(1)
laptop(2)
printer(2)
program(1l)
monitor
computer(1)
data(l)
disk(1)
laptop(1)
program(1)
printer
USB(1)
computer(2)
disk(1)
language(1)
laptop(2)
memory(2)
program(1)
program
computer(2)
data(1l)
disk(1)
language (
laptop(2)
memory (1)
monitor(1l)
printer(1)

1)

void global::Transpose(global)

The invoking two dimensional matrix global object is
transposed and the result is placed in two dimensional
global array object given as the argument. Any prior
contents of the output array out are deleted before the
operation commences.

|),

global d("d");
f*);

global f("

Illll’lllll)
"1",2")
)

d(2;
(3;
(I2II’II1II 4’
(
(

I2II’II2II) O
) . Transpose(f());
.TreePrint();

Results:
1

I
BN

1
2
2

o w

1
2

82

void global::TreePrint([int, [char]]

)

Prints the invoking global array as a tree. If a the first int
argument is given, it is the number of spaces to indent
each level (default is 1 if not specified). If the second
argument is given, it is the character used to indent
(default is blank character). See example in
global::Multiply() above.

bool ZSeek(FILE *file, mstring offset)
bool ZSeek(FILE *file, global offset)

bool ZTell(FILE *file)

These functions are used in connection with direct
access files opened with FILE pointers (see: fopen()).
They are compatible with 64 bit file systems. ZSeek()
positions the file designated by file to the offset specified
in offset, a positive integer contained in a variable of type
mstring or global.

ZTell() places the current file offset in the file designated
by file to the integer value in the mstring or global
variable represented given by offset.

Both functions return true if successful. Ordinarily, file
offsets will be obtained by ZTell() and these will be
stored in a data base. These values will be subsequently
used by ZSeek() to reposition the file to the point it was
at when the ZTell() was performed. After re-positioning,
the next input or output operation on the file will occur at
the point designated by offset.

All offsets are positive integers relative to the start of the
file.

Figure 42 Functions Defined on mstring and global

Some Function Examples

Results

char gname[]="doc";
global doc(gname);

doc("1")="abcdef";

mstring ppp = "abcdef";

mstring aaa;

cout << ppp.Ascii() << endl;

cout << doc("1").Ascii() << endl;
cout << ppp.Ascii(l) << endl;

cout << doc("1").Ascii(1l) << endl;
cout << ppp.Length() << endl;

cout << doc("1").Length() << endl;

ppp="aaa & bbb";
aaa:u&u;

cout << ppp.Length("&") << endl;
cout << ppp.Length("*") << endl;
cout << ppp.Length(aaa) << endl;

dOC(II1II)=II&II;
cout << ppp.Length(doc("1")) << endl;

string strng="&";
cout << ppp.Length(strng) << endl;

ppp = "123abc456abc";
doc("1")="123abc456abc";

97

97
97

NN

83

doc("9")="abc";

cout << ppp.Find("abc") << endl;

cout << doc("1").Find("abc") << endl;

cout << ppp.Find("abc",5) << endl;

cout << doc("1").Find("abc",5) << endl;
cout << doc("1").Find(doc("9"),5) << endl;
strng="abc";

cout << ppp.Find(strng,5) << endl;

cout << Horolog() << endl;

doc("1").ReadLine();
cout << "readline global " <<doc("1l") << endl;

ppp.ReadLine();
cout << "readline mstring " <<ppp << endl;

ppp=ll 123 n ;
doc("1")=ppp;
strng="3N";

cout << ppp.Pattern("3N") << endl;

dOC(II9II)=II3NII;
cout << ppp.Pattern(doc("9")) << endl;
cout << doc("1").Pattern("3N") << endl;

doc(lllll)=II3NII;
cout << ppp.Pattern(doc("1")) << endl;

cout << doc("1").Justify(10,2) << endl;
cout << doc("1").Justify(10) << endl;
cout << ppp.Justify(10,2) << endl;

cout << ppp.Justify(10) << endl;

cout << doc("1").Data() << endl;

doc(llzll , II3II)=123;
cout << doc("2").Data() << endl;

ppp="abcdef";
mstring off="2";

cout << ppp.Extract(2,3) << endl;

cout << ppp.Extract(off,off+l) << endl;
cout << ppp.Extract(2) << endl;

cout << ppp.Extract() << endl;

doc("1")=ppp;

cout << doc("1").Extract(2,3) << endl;
cout << doc("1").Extract(2) << endl;
cout << doc("1").Extract() << endl;

ppp=-123.45678;
cout << ppp.Fnumber("P","2") << endl;
cout << ppp.Fnumber("P") << endl;

doc("1")=-123.45678;
cout << doc("1").Fnumber("P","2") << endl;
cout << doc("1").Fnumber("P") << endl;

ppp="abc.def.ghi";

7
7
13
13
13

13
63815,68346

abcdef [input]
readline global abcdef

abcdef [input]
readline mstring abcdef

3.00
3N
123.00
123

11

(123.46)
(123.457)

(123.46)
(123.45678)

84

cout << ppp.Piece(".",2) << endl; def

cout << ppp.Piece(".",2,3) << endl; def.ghi
strng=".";

cout << ppp.Piece(strng,2,3) << endl; def.ghi
doc("9")=strng;

cout << ppp.Piece(doc("9"),2,3) << endl; def.ghi
dOC(II1II)=II . II;

cout << ppp.Piece(doc("1"),2) << endl; def
cout << ppp.Piece(doc("1"),2,3) << endl; def.ghi
long d=1;

float e=1.0;

int f=1;

doc("9")="abcdef";

cout << doc("9").Ascii(e) << endl; 97
cout << doc("9").Ascii(f) << endl; 97
cout << doc("9").Ascii(d+1l) << endl; 98
cout << doc("9").Ascii(e+l) << endl; 98
cout << doc("9").Ascii(f+1) << endl; 98
off=1;

cout << doc("9").Ascii(off+d) << endl; 98
cout << doc("9").Ascii(off+e) << endl; 98
cout << doc("9").Ascii(off+f) << endl; 98
mstring g=1;

cout << doc("9").Ascii(off+g) << endl; 98
cout << doc("9").Ascii(off+g) << endl; 98
cout << doc("9").Ascii(off+g) << endl; 98

Figure 43 Function Examples

Assume that the following entries have been made into the global array data base:

set "mesh("A01")="Body Regions"

set “mesh("AO1","047")="Abdomen"

set “mesh("A01","047","025")="Abdominal Cavity"
set “mesh("A0O1","047","025","600")="Peritoneum"
set “mesh("AO1","047","025","600","225")="Douglas' Pouch"
set “mesh("A0O1","047","025","600","451")="Mesentery"
set “mesh("AO1","047","025","600","451","535")="Mesocolon"
set “mesh("AO1","047","025","600","573")="0mentum"
set “mesh("AO1","047","025","600","678")="Peritoneal Cavity"
set “mesh("AO1","047","025","750")="Retroperitoneal Space"
set “mesh("A01","047","050")="Abdominal Wall"
set “mesh("AO1","047","365")="Groin"
set “mesh("A0Q1","047","412")="Inguinal Canal"

set “mesh("AO1","047","849")="Umbilicus"

set “mesh("AO1","176")="Back"

set "mesh("AO1","176","519")="Lumbosacral Region"
set “mesh("AO1","176","780")="Sacrococcygeal Region"
set “mesh("AO1","236")="Breast"

set “mesh("AO1","236","500")="Nipples"

set “mesh("AO1","378")="Extremities"

set “mesh("A01","378","100")="Amputation Stumps"

set “mesh("AO1","378","610")="Lower Extremity"

set “mesh("A01","378","610","100")="Buttocks"

85

set “mesh("A0O1","378","610","250")="Foot"

set “mesh("AO1","378","610","250","149")="Ankle"

set “mesh("AO1","378","610","250","300")="Forefoot, Human"
set “mesh("AO1","378","610","250","300","480")="Metatarsus"
set /\mesh llAOllI'II378II,II610II'II250II'II300II’II792II)=IIT0esII

set “mesh("A01","378","610","250","300","792","380")="Hallux"
set “mesh("AO1","378","610","250","510")="Heel"

set “mesh("A0O1","378","610","400")="Hip"

set “mesh("A0O1","378","610","450")="Knee"

set “mesh("AO1","378","610","500")="Leg"

set “mesh("AOQ1","378","610","750")="Thigh"

set “mesh("A01","378","800","075")="Arm"

set “mesh("AO1","378","800","090")="Axilla"

set “mesh("A01","378","800","420")="Elbow"

set “mesh("AO1","378","800","585")="Forearm"

set “mesh("AO1","378","800","667")="Hand"

set “mesh("AO1","378","800","667","430")="Fingers"

set “mesh("A01","378","800","667","430","705")="Thumb"
set “mesh("A01","378","800","667","715")="Wrist"

set “mesh("A01","378","800","750")="Shoulder"

(
(
(
(
(
(
(
(
(
E
set “mesh("A01","378","800")="Upper Extremity"
(
(
(
(
(
(
(
(
(
h

global mesh("mesh");

mstring x;
int i,3;
x = ""mesh()"; // initial global array reference - beginning of array
X = X.Query(); // find first real reference
while (1) {
if (x == "") break; // nothing to print
i = x.Qlength(); // how many subscripts
for (j=0; j<i; j++) cout << " "; // indent by number of subscripts
cout << x.Qsubscript(i) << " " << x.Eval() << endl; // show index & value
X = X.Query(); // get next
}

The above code yields:

047 Abdomen
025 Abdominal Cavity
600 Peritoneum
225 Douglas' Pouch
451 Mesentery
535 Mesocolon
573 Omentum
678 Peritoneal Cavity
750 Retroperitoneal Space
050 Abdominal Wall
365 Groin
412 Inguinal Canal
849 Umbilicus
176 Back
519 Lumbosacral Region
780 Sacrococcygeal Region
236 Breast
500 Nipples
378 Extremities
100 Amputation Stumps
610 Lower Extremity
100 Buttocks
250 Foot
149 Ankle

86

300 Forefoot, Human
480 Metatarsus
792 Toes

380 Hallux

510 Heel

400 Hip

450 Knee

500 Leg

750 Thigh

800 Upper Extremity
075 Arm

090 Axilla

420 Elbow

585 Forearm

667 Hand

430 Fingers
705 Thumb

715 Wrist

750 Shoulder

Figure 44 Query(), Qsububscript() and Qlength() Example

11.7 Examples

#include <fstream>
#include <mumpsc/libmpscpp.h>

global doc("doc");
global idf("idf");
global indx("index");

int main() {
FILE *ul;

ofstream u2 ("document-term-matrix-
weighted.txt", ios::out);
assert (u2 !=0);

mstring d,tt,w,null;
double x,idfmin=6.0;

null="";
indx () .Kill();

for (d=doc(null).Order(); d != null; d =
doc(d).Order()) {
u2 << "doc=" << d << " "
for (w doc(d,null).Order(); w != null;
w doc(d,w).0rder()) {
if (idf(w) < idfmin) {
doc(d,w).Kill();
}
else {
x = idf(w)*doc(d,w);
doc(d,w)=x;
indx(w,d)=x;
U2 << w << "(" << x << ") "

} ’

#!/usr/bin/mumps
weight.mps December 26, 2011

open 2:"document-term-matrix-
weighted. txt, new"

idfmin=6.0;

kill ~index
for d=$order(~doc(d)) do
. use 2 write !,"doc=",d,?15
. for w=$order(~doc(d,w)) do
. 1f ~idf<w<idfmin kill ~doc(d,w)
. else do
. set x="idf(w)*~doc(d,w)
. set ~doc(d,w)=x
. set "index(w,d)=x

. write w,"(",x,") "
. write !

87

u2 << endl << endl;

}

u2.close();

ofstream u3
("term-document-matrix-weighted.txt",
ios::out);
assert (u3 !=0);

for (w=indx(null).Order(); w !'= null;
w=indx(w).0rder()) {
uld << w << " "
for (d=indx(w,null).Order(); d !'= null;
d=indx(w,d).0Order()) {
ud << d << "(" << indx(w,d) << ") ";
}
u3 << endl << endl;

}

u3.close();
return 0;

}

close 2

open 2:"term-document-matrix-
weighted. txt, new"

use 2

for w=$order(~index(w)) do

. write w,?726
. for d=$order(”~index(w,d)) do

. write d,"(",~index(w,d),") "

. write !

close 2

Figure 45 Document Weighting

88

12 Licenses

12.1 GNU Licenses

12.1.1 GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

89

The precise terms and conditions for copying, distribution and
modification follow.
<>
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

<>

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

90

sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

<>

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

91

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
<>

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

92

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
<>

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPQSE. See the

93

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type “show w'.
This is free software, and you are welcome to redistribute it

under certain conditions; type “show c' for details.

The hypothetical commands “show w' and “show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than “show w' and “show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
“Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

12.1.2 GNU Free Documentation License

GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

94

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The "Document", below, refers to any
such manual or work. Any member of the public is a licensee, and is
addressed as "you".

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding

them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is
not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100,
and the Document's license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the
general network-using public has access to download anonymously at no
charge using public-standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

96

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. 1In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the

Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to
it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications",
preserve the section's title, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section as "Endorsements"
or to conflict in title with any Invariant Section.

mo

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History"
in the various original documents, forming one section entitled
"History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

98

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one quarter
of the entire aggregate, the Document's Cover Texts may be placed on
covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the
original English version of this License. 1In case of a disagreement
between the translation and the original English version of this
License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such

parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions

of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

99

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections"
instead of saying which ones are invariant. If you have no
Front-Cover Texts, write "no Front-Cover Texts" instead of
"Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,

to permit their use in free software.

12.1.3 GNU LESSER GENERAL PUBLIC LICENSE

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these

100

rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of

101

free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").

Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

102

2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

103

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

104

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining

105

where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,

106

so that distribution is permitted only in or among countries not thus
excluded. 1In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. 1If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the

107

"copyright" line and a pointer to where the full notice is found.

Copyright (C)

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPQSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library “Frob' (a library for tweaking knobs) written by James Random Hacker.

, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

12.2 Perl Compatible Regular Expression Library License

Programs written with the MDH may call upon the Perl Compatible Regular Expression Library.
In some cases, this library is distributed with the Mumps Compiler. The PCRE Library is not
covered by the GNU GPL/LGPL Licenses but, rather, by the license shownn below. The following is
the PCRE license:

PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax

and semantics are as close as possible to those of the Perl 5 language.

Written by: Philip Hazel

University of Cambridge Computing Service,

Cambridge, England. Phone: +44 1223 334714.

Copyright (c) 1997-2001 University of Cambridge

Permission is granted to anyone to use this software for any purpose on any

computer system, and to redistribute it freely, subject to the following

restrictions:

1. This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

2. The origin of this software must not be misrepresented, either by
explicit claim or by omission. In practice, this means that if you use
PCRE in software which you distribute to others, commercially or
otherwise, you must put a sentence like this

Regular expression support is provided by the PCRE library package,
which is open source software, written by Philip Hazel, and copyright
by the University of Cambridge, England.
somewhere reasonably visible in your documentation and in any relevant
files or online help data or similar. A reference to the ftp site for

108

the source, that is, to
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/
should also be given in the documentation.

3. Altered versions must be plainly marked as such, and must not be
misrepresented as being the original software.

4. If PCRE is embedded in any software that is released under the GNU
General Purpose Licence (GPL), or Lesser General Purpose Licence (LGPL),
then the terms of that licence shall supersede any condition above with
which it is incompatible.

The documentation for PCRE, supplied in the "doc" directory, is distributed

under the same terms as the software itself.

End

109

Alphabetical Index

52 Dit fraction..........oeiiiiiiiiiie

AlIGNIMENT...eeeiiiiiiieiie e
All Configure Options.........coeevvvveiiiieeeeeeeeeeeeieiiieeeeeen.
arc cosine
Arc sine..... 37 Integer arithmetic
37 internal Duffer..........coooiiiiiiiiiiiii s

backreferences........cooiiviiiiiiiiiiie e 111 T USSP

Base 10 10G...ccciiiiiiiiiiiiieiee e 37 left justifies......coovviiiiiiiiiiieiiiii e,

L2y (o o USSP 37 Length([STR])....

DASENAME. .. .cieeieieieeeeeeeire e 36 libmpscpp.h..cccoeeviiiiiiiiiieiei,

Bash FUNCHIONS.......coooiiiiiiiiiiiie e 36 limit to integer PrecisSion.......vvviiiiiiiiiiiiciee e 21

Begin TranSaction.........coiviiiiiiiiiiiieieee et eeeeeeei e 10 Linux time.....ccuveuveereeeeeerieeennnnnn.
DIANKS....ciiiiiiiiieiee e ...38, 40 Lock Command..........ccceeeeeeeeeeeeereeennennnns
D00l ZTell(FILE *I1€)....uuiiiiiiieiie e 83 logarithm..............
Boyer-Moore-Gosper Function............coeeeevevviiiiiinreeniineeiinneennn. 46 logarithms..........

DErEe..cociiiiiii 39 Math Functions.....

o101 Y USSP UURRRPRPUUPRRRRRRRRPPRRRY” & 1Y -5 { § FETRUORO

010N CY T URURRPPPRRRRRRPRRRUPRRRPC 1 B 1Y I 1 o | FEURRO SRRt

CH 4 CONEAINETciiiiiiieeeiiiee e e e e eanes 53 ModUulo OPETrator........uuoeiiiiiiieiiiiiieeeeeiee et e e e e e eaaaans
cache hit ratio........ccouuuiiiiiiiiiiiii 39 Mstring Data ODbJecCtS.......covviiiiiiiiiiiiiieeeeeeiceeiiiie e
CENEIOid VECEOTciiiiiiiiiiiee e e e 43 multiple blanks..........cccoviiiiiiiiiiiiiieeee e
Centroid(global B).....ccovvvviiiiiiiieeeeeeeeeeeeee e 72 Multiply(global, global)

COI-DIN. e 39 Mumps CLI Interpreter

Commit... e e ettt e aaaas 10 MUMPS PrOgTamS. ..ccuuuueuiiereeeeeeiietiiiiiiree e e eeeeeeeeeiiiiieae e e eeeen
CompileSqliteMumps.SCriPt.....uuueeceieeeeeeeeeeeeiiiee e e 11 Naked indicator

Compiling Large Programs.........cccceeeeeeeeeveereevieeiiienneeeeeereeneeeee. 31 NAME().oeiiiiiiiiiiiiiiiiie e

Concat(Char *)....cooiiiiiiicie e
ConfigureSqliteMumps.SCTipt.......ccoeeeeeeeveviriiiiiciieeeeeeeeeeeeeene... 11 Natural log...............

Correlation Functions................

COSINE. .. eiiiiiieeeiiie et

COUNE() uuneeeeeeeeeeiiiiiiiiire e e e e e e eteerereirseeeeeeeeeeeeeees

database.......cccccieiiiiiiii

Date functions..........cceeeeeeviviiiiiiciieeeeeeeeeees

I DICY o) F-) F S SPRRPRN

DCE. it

DocCorrelate(global B,

document vectors.................... Perl Compatible Regular Expression Library License........... 108
Document-Document matrix... Piece(STR, INT [LINT])euueieiiieiiie e 77
AUIMP . e e e e e e e e Power fUNCHION.........cuieiiiiiiie e 37
AUMP 1€t TS I o) /Y0 15310 o FOU U UPPR PR 14
EVALO) i 74 Qlength(MString ref).....ccceeeeeeii i 77
(53 q010) 0 1) 4 | AN PP UUPPPRUUPPPPRRR AN O 1101 0 T-Yo3 o1 o111 01) ISP 78
EXPONENEIAL .. iiiiiiiiiiiiie e QUETY () eeeeeiiiiiiiie e e e e et ettt e e e e e e et e et e e et e e e e e e e e eaieeeanneees 78
Exponential.......c.ccoouiiiiiiiiiiniiiiiie e = Yo L 1o TP OPT PP PURRRN 37
Exponential base 10.... random number generator..........ccccceeeeeeeeeeieeeiiiie e 41
Exponential base 2... TEAALINE. ...ceiiiiiiiiciee e 18
exponential format... ReEAALINE()..euuuniiiiiiiieei et e e e eva e e e eanes 78
extended precision...) (0 4 TSRO PUPPPRPN 39
EXtract([INT [LINTT T)it T4 ROIIDACK.....uiiiiie e eaas 10
file.eeeeiiiieiiee e ROUNAING.....ciiiiiiiiiiiiieee e e e e e e e e e e e eaaeeeees 21
File Names Running a Mumps Program............cccceeiieiiiiiiiiiiiinniiiiiieceeeenn 18
File Names Containing Directory Information.............ccc......... 28 Scan FUuNCIONS.uuuuiieieeeiiieieiiiiire et 42
fI1€ POINLETciieiiiieieeecee e e 40 seed.........cevvuunnnn.. e 41
1Y UUPPR RPN 35 Shell. oo 41
FINA(STR [LINTT)euoeeeiieieeiiiiiieiee e 75 Shell Commands........ccuuuuuuiiiiieeeeeereiieiiiiiiiiiee e e eeeeeineeeineeeaanes 34
floating point NUMDbETrS..........uuiiiiiiiiiiiiiiiii e 13 SIML ettt e ea e ee 45
fractional PreCiSioN.. ..o e e iieeeeicee e 21 similarity coefficients.........ccceeeeeeiiiiiiiiiiciiee e 45
Y o TN Similarity FUNCEIONS.uuiieeiee i
FUunCHiONS.cooviiiiiiiiee e i

General Relational Database Options........cccccceevuneenn.

Global Data Objects

GNU MPFR library......

GNU MPFR library6

GNU multiple precision arithmetic library......cc....cccceeeeeinienn. 68 SQL Command(mstring).........eeueeeereeeeeeeeeeennnennnnn.

GNU multiple precision arithmetic library5..........cccccocevunenenee. 14 SQL _Connect(mstring)...cccccceeeeerieiiiiuirriiiiereeeeenens
GPL/LGPLe..cciiiiiiiiiiiieee e 67 SQL Native()........c........

(€ 4<T0 (0] o - s OSSO TP RRT PRSPPI 38 SQL Open()...cceeeeeeveeennnnnen

Gregorian date. it 38 SQL Table(mstring, [int])...

GTK DeSKtOD GUI APDS..cceveeiiiiiiiiiieeeeeeeeeeeriiriniiieaaeeeeeeseeeeersennnns 56 SQUATE TOOT...ceiiuiniiiiiiieee ittt ettt e et e e et e e eea e e eaaaeeens

110

Stop and Synonym Function..
stop words

SymGet(T1 Name).....c..eeeiiiiiieiiiiiiee et
SymPut(T1 name, T1 value)............

TermCorrelate(global B)......c.cuuvvviiiireiiiiiiiiiiiiiinnnnn. .80 $zexp.....cccvvvnnnnne
Text Processing Functions...........cccceeevevvviiviiiiceieeeeeeeeeceneneee.... 45 $zexpl0............

with-float digitS......ceuvvueiiereereeiiiiiiiiiiiiieiee e 1A $ZhEE

WOTA SEEIML...euuiiiiiiiiei et e et e et e et e e b e e v e e s aeanes

Z FUNCEIONS. ... ittt e e e et e e e e e anes 36 $zlog

ZDASEIIAINIC ... cveiiie i aas 36 $z10g10......cccevvevrrrrnnnee.

--with-hardware-math 14, 68 $zl0g2.....cccovvvvvvrirnnnnnnnn.

—sWIth-10CalE....coiiiiiiii e 17 $zlower..........cccoeeeeennne.

JACCATA. .o e 45 $znative........c..ouueennn.

|10 £=1 o 11 1 o o DRSPS 37 $zNative

Smith-Waterman Alignment............ouueeieiierereeieiieeiiiineeiiineeeannns 78 $zNoBlanks(arg)..

WA e aaaas 15 $znormal

== WIth-DlOCK...cciiiiiiiiie e 1O $ZD

—-With-cache.........cccooeiiiiii e 16 $ZPA

--With-data SIZE.....ccoeeeiiiiiiiiiiiiiiie e

-~With-dbfile......coooviiiiiiie e 1D $ZPOW ..
~-With-dDName........ooiviiii s 15 $ZREPLACE....ctuiiiiiiiie e

- WIth-float-DitS......uiiieiiieieee e R A TSI 4 o 1] 7 0} < R
--with-float-digits........covvriiiiiiiiiiieee e 14, 17, 68 $zrestore[
--with-hardware-math............cccoceeeeiiiiniiiiiiniiiiinincennn. 13, 17 $zseek..nniiiiieeiiinnnnnii,

--With-1buf...oe e evieeeeaeenen. 17 $ZShTed..

~~WIth-INCIUAES...ooviccie e

--with-index SiZe........cooovriiiiiiiiiiiiiieeieee, .15 $zsin.....oooeveeviiennnnnnn.

—WIth-INt-32... e .

ScWIEh-LDTaATIES . 17 $zSqlite...cueeiiiiiiiiiiiiiiiieiiiiieeeeis .
--with-long-double..........ccoieieeiiiiiice e 14 $zSqlite(“begin transaction”).................. ..20
—~WIth-NO-INlINE.. ..ot 17 $zSqlite(“commit transaction”).................. .20
—=WILh-PIrOfile. ...t 17 $zSqlite(“pragma”,option)..........ccceevvvvnnnnn. .20
—-With-TeadOonlY......viiiiiiiiiiiiee e 17 $zSqlite(“rollback”[,savepoint]).........ccccveeveriiiinneeennnns .20
B 02 11 8 BE=] (oL TP 15 $zSqlite(“savepoint”[,savepoint namel)........cccccevuueee .
—~WIER-SEIMAX. ..o 17 $zSqlite(“SQL”,sql command)

--with-terminate-on-error...........ccooeeeiiiiiieeiiiiiieeeee e 17 $zsqlOpen......c.ccevvveeeeviiinneennnnn.

$justify()
$random
$select()

$z~mdh~dialog~new~with~buttons

$z~mdh~entry~get~text........ccccvvvnnnnnn. 62 $ZWi.oveerrieeeieieenn
$z~mdh~entry~set~text..........ccccceeeeenee. 62 $ZWN....cccvvvennenn.
$z~mdh~label~set~text..........ccooevvunrernnnne. 62 $ZWD....ceeveeeen
$z~mdh~spin~button~get~value.......... 62 $ZWS....eeuennn..
$z~mdh~spin~button~set~value........ 62 $zws(string)...

$z~mdh~text~buffer~set~text........... 62 $ZZ.cuueiirnennnnnnnn.

$z~mdh~toggle~button~get~active 61 $zzAvg
$z~mdh~toggle~button~set~active.........cccccceeeeeereririennnnn. 61 $ZZBMGSEATCh....cceiiiiiiiiiiiiiee e
$z~mdh~tree~level~add...........ccceeervvvrrininnnnnnnn.. 62 $zzCosine .
$z~mdh~tree~selection~get~selected 62 $zzCount
$Z~mdh~tree~store~Clear..........ccoevvvueiiieiiiieiiie s 62 $ZZDICC.. v .
$z~mdh~widget~hide.........cceerriiiiiiiiiieeiie e 62 $ZZDOCCOITEIALE.eeeeeieiiiieiiiiiceee e
$Z~mdh~Widget~ShOW........cooiiiiiiiiiiiiiiiiiee e 62 $ZZINDPUL(VAT) . uuieeeeeeiiiiiiiiiiiiiee ettt e e e e eeeeeaaeaaans
Y451 o1 SRR WAV A I- Lol oF-Y o ¢ DTSR

A4 $ZZSIM L .eeniiiiiiiiiiee e e e
44 $zzSoundex(sl)...
45 $zzSum...................
42 $zzTermCorrelate......

42 $7ZTTanSPOoSe.......cccvveueeeevvenneennnnn.

112

	1 Installation
	1.1 Installation Overview
	1.2 Interpreter vs Compiler
	1.2.1 Interpreting a Program
	1.2.2 Compiling a Program

	1.3 Required System Software
	1.4 Basic Software Installation
	1.5 SQLite3 Software
	1.6 Building the Software
	1.6.1 Quick Start
	1.6.1.1 Single User Native Data Base
	1.6.1.2 Shared (Multi-User) Native Data Base
	1.6.1.3 Multi-User Sqlite3 Data Base

	1.6.2 Native Database Options
	1.6.3 Sqlite3 Database Option
	1.6.4 Sqlite3 Database Server Stored Global Arrays
	1.6.5 Basic Sqlite3 Database Configuration

	1.7 Optimal Compilation Configure options
	1.7.1 Single User Native Database
	1.7.2 Shared Native Database
	1.7.3 Sqlite3 Database

	1.8 Math Options
	1.9 Numeric Configuration Options
	1.9.1 Hardware Math
	1.9.2 Extended Precision Math

	1.10 All Configure Options
	1.10.1 configure prefix=/usr
	1.10.2 General Relational Database Options
	1.10.2.1 --with-dbname=name
	1.10.2.2 --with-index_size=number
	1.10.2.3 --with-data_size=nbr
	1.10.2.4 --with-dbfile=name
	1.10.2.5 --with-slice=value
	1.10.2.6 --with-server
	1.10.2.7 --with-alarm=value
	1.10.2.8 --with-cache=VAL
	1.10.2.9 --with-block=blksize
	1.10.2.10 --with-readonly

	1.10.3 --with-ibuf=
	1.10.4 --with-strmax=
	1.10.5 --with-locale=locale
	1.10.6 --with-terminate-on-error
	1.10.7 --with-includes=DIR
	1.10.8 --with-libraries=DIR
	1.10.9 --with-float-bits=val
	1.10.10 --with-float-digits=val
	1.10.11 --with-hardware-math
	1.10.12 --with-no-inline
	1.10.13 --with-profile

	2 Running a Mumps Program
	2.1 Format the Global Array Sqlite3 Server
	2.2 Mumps CLI Interpreter
	2.2.1 Mumps CLI Special Commands
	2.2.1.1 halt quit h q

	2.3 Mumps Programs (scripts)
	2.4 Source Code Format

	3 Relational Database Commands & Variables
	3.1 $zSqlite
	3.2 $zSqlite(“begin transaction”)
	3.3 $zSqlite(“commit transaction”)
	3.4 $zSqlite(“savepoint”[,savepoint_name])
	3.5 $zSqlite(“rollback”[,savepoint])
	3.6 $zSqlite(“SQL”,sql_command)
	3.7 $zSqlite(“pragma”,option)
	3.8 $zsqlOpen
	3.9 $zNative

	4 Implementation Notes
	4.1 Modulo Operator
	4.2 Goto Command
	4.3 Notes on Arithmetic Precision
	4.3.1 $fnumber()
	4.3.2 Exponential format numbers
	4.3.3 Arithmetic Precision
	4.3.3.1 Floating Point Precision
	4.3.3.2 Integer Precision
	4.3.3.3 Performance

	4.3.4 Rounding

	4.4 New Command
	4.4.1 Runtime Symbol Table
	4.4.2 Forms of the New Command
	4.4.2.1 New Command with No Arguments
	4.4.2.2 New Command with Arguments
	4.4.2.2.1 New Command with Comma List of Variable Names
	4.4.2.2.2 New Command with Parenthesized List of Variable Names

	4.5 Kill Command
	4.6 For Command Extensions
	4.7 Break and Quit
	4.8 Lock Command with SQL
	4.9 Lock Command in Shared Native Database Mode
	4.10 Naked indicator
	4.11 Job command
	4.12 File Names Containing Directory Information
	4.13 File Names
	4.14 Array Index Collating Sequence
	4.15 Subroutine & Function Calls
	4.16 $Fnumber() Function
	4.17 $Select() Function
	4.18 Compiling Large Programs
	4.19 Embedded Expressions
	4.20 Functions
	4.20.1 Call by Value
	4.20.2 Call by Reference.

	5 Shell Commands
	5.1 shell/p
	5.2 shell/g
	5.3 shell
	5.4 Epression Substitution

	6 Added Commands
	6.1 Database expr
	6.2 Zhalt return_code
	6.3 Declare

	7 Z Functions and System Variables
	7.1 System Variables
	7.1.1 $zProgram

	7.2 Bash Functions
	7.2.1 $zbasename(arg1[,arg2])
	7.2.2 $zfiletest(arg1,arg2)

	7.3 Math Functions
	7.3.1 $zabs(arg) absolute value
	7.3.2 $zacos(arg) arc cosine
	7.3.3 $zasin(arg) Arc sine
	7.3.4 $atan(arg) Arc tangent
	7.3.5 $zcos(arg) Cosine
	7.3.6 $zexp(arg) Exponential
	7.3.7 $zexp2(arg) Exponential base 2
	7.3.8 $zexp10(arg) Exponential base 10
	7.3.9 $zlog(arg) Natural log
	7.3.10 $zlog2(arg) Base 2 log
	7.3.11 $zlog10(arg) Base 10 log
	7.3.12 $zpow(arg1,arg2) Power function
	7.3.13 $zsqrt(arg) Square root
	7.3.14 $zsin(arg) Sine function
	7.3.15 $ztan(arg) Tangent function

	7.4 Date functions
	7.4.1 $zdate(or $zd) formatted date string
	7.4.2 $zd1 numeric internal date
	7.4.3 $zd2(InternalDate) date conversion
	7.4.4 $zd3(Year,Month,Day) Julian date
	7.4.5 $zd4(Year,DayOfYear) Julian to Gregorian
	7.4.6 $zd5(Year, Month, Day) comma listed date
	7.4.7 $zd6 hour:minute
	7.4.8 $zd7 hyphenated date
	7.4.9 $zd8 hyphenated date with time

	7.5 Special Purpose Functions
	7.5.1 $zb(arg) remove blanks
	7.5.2 $zchdir(directory_path) change directory
	7.5.3 $zCurrentFile Current Mumps File
	7.5.4 $zdump[(filename)] dump global arrays
	7.5.5 $zrestore[(arg)] restore globals
	7.5.6 $zfile(arg) file exists test
	7.5.7 $zflush flush Btree buffers
	7.5.8 $zgetenv(arg) get environment variable
	7.5.9 $zhtml(arg) encode HTML string
	7.5.10 $zhit global array cache hit ratio
	7.5.11 $zlower(string) convert to lower case
	7.5.12 $znormal(arg1[,arg2]) word normalization
	7.5.13 $zNoBlanks(arg) remove all blanks
	7.5.14 $zpad(arg1,arg2) left justify with padding
	7.5.15 $zseek(arg)
	7.5.16 $zsrand(arg)
	7.5.17 $zstem(arg)
	7.5.18 $zsystem(arg)
	7.5.19 $ztell
	7.5.20 $zu(expression)
	7.5.21 $zwi(arg)
	7.5.22 $zwn extract words from buffer
	7.5.23 $zwp extract words from buffer
	7.5.24 $zws(string) initialize internal buffer
	7.5.25 Scan Functions
	7.5.25.1.1 $zzScan
	7.5.25.1.2 $zzScanAlnum
	7.5.25.1.3 $zzInput(var)

	7.6 Vector and Matrix Functions
	7.6.1 $zzAvg(vector)
	7.6.2 $zzCentroid(gblMatrix,gblRef)
	7.6.3 $zzCount(gblVector)
	7.6.4 $zzMax(gbl)
	7.6.5 $zzMin(gbl)
	7.6.6 $zzMultiply(gbl1,gbl2,gbl3)
	7.6.7 $zzSum(gblVector)
	7.6.8 $zzTranspose(gblMatrix1,gblMatrix2)

	7.7 Text Processing Functions
	7.7.1 Similarity Functions
	7.7.1.1 $zzCosine(gbl1,gbl2)
	7.7.1.2 $zzSim1(gbl1,gbl2)
	7.7.1.3 $zzDice(gbl1,gbl2)
	7.7.1.4 $zzJaccard(gbl1,gbl2)

	7.7.2 $zzBMGSearch(arg1,arg2)
	7.7.3 $zPerlMatch(string,pattern)
	7.7.4 $zReplace(string,pattern,replacement)
	7.7.5 $zShred(string,length)
	7.7.6 $zShredQuery(string,length)
	7.7.7 $zzSoundex(s1)
	7.7.8 $zSmithWaterman(s1,s2,algn,mat,gap,noMatch,match)
	7.7.9 $zzIDF(global,doccount)
	7.7.10 Correlation Functions
	7.7.10.1 $zzTermCorrelate(global1,global2)
	7.7.10.2 $zzDocCorrelate(gblref1,gblref2,mthd,thrshld)

	7.7.11 Stop and Synonym Functions
	7.7.11.1 $zStopInit(arg)
	7.7.11.2 $zStopLookup(word)
	7.7.11.3 $zSynInit(fileName)
	7.7.11.4 $zSynLookup(word)

	7.8 SQL functions
	7.8.1 $zsqlOpen
	7.8.2 $zNative
	7.8.3 $zSqlite[command[,option]]
	7.8.3.1 $zSqlite(“begin transaction”)
	7.8.3.2 $zSqlite(“commit transaction”)
	7.8.3.3 $zSqlite(“savepoint”[,savepoint])
	7.8.3.4 $zSqlite(“rollback”[,savepoint])
	7.8.3.5 $zSqlite(“pragma”,option)

	8 GTK Desktop GUI Apps
	8.1 Glade GUI Design Tool
	8.2 GTK Example
	8.2.1 Glade Design Tool
	8.2.2 Building A Mumps App from The Glade XML File
	8.2.2.1 gtk1.h
	8.2.2.2 gtk2.h
	8.2.2.3 gtk3.h
	8.2.2.4 gtk4.h
	8.2.2.5 gtk.mps
	8.2.2.6 on.toggle1.toggled.mps

	8.3 MDH Functions
	8.3.1 $z~mdh~toggle~button~get~active(ToggleButtonReference)
	8.3.2 $z~mdh~toggle~button~set~active(ToggleButtonReference,intVal)
	8.3.3 $z~mdh~dialog~new~with~buttons(ParentWindowRef,dialog)
	8.3.4 $z~mdh~entry~get~text(EntryReference)
	8.3.5 $z~mdh~entry~set~text(EntryReference,value)
	8.3.6 $z~mdh~text~buffer~set~text(TextBufferReference,string)
	8.3.7 $z~mdh~label~set~text(LabelReference,string)
	8.3.8 $z~mdh~tree~selection~get~selected(TreeModelReference,column)
	8.3.9 $z~mdh~tree~store~clear(TreeStoreReference)
	8.3.10 $z~mdh~tree~level~add(TreeStoreReference,treeDepth,index,data[,...])
	8.3.11 $z~mdh~spin~button~get~value(SpinButtonReference)
	8.3.12 $z~mdh~spin~button~set~value(SpinButtonReference,number)
	8.3.13 $z~mdh~widget~hide(widgetReference)
	8.3.14 $z~mdh~widget~show(widgetReference)

	9 Pattern Matching
	9.1 Mumps 95 Pattern Matching
	9.2 Using Perl Regular Expressions

	10 Mumps Compiler
	10.1 Compiling Programs
	10.2 How to Compile and Run a Mumps or MDH Program.
	10.3 Compiler Error Messages
	10.4 Global Array Storage in Compiled Programs
	10.5 Compiler Implementation Overview

	11 Multi-Dimensional and Hierarchical Database Class Library (MDH)
	11.1 MDH Class Library Header File
	11.2 MDH Data Types
	11.2.1 Mstring Data Objects
	11.2.1.1 Arithmetic Operations on Mstring Objects

	11.3 Global Data Objects
	11.4 Operators Defined on Mstring & Global Objects
	11.5 Example Arithmetic Operations on global and mstring Objects
	11.6 Functions for Global and Mstring Objects
	11.7 Examples

	12 Licenses
	12.1 GNU Licenses
	12.1.1 GNU General Public License
	12.1.2 GNU Free Documentation License
	12.1.3 GNU LESSER GENERAL PUBLIC LICENSE

	12.2 Perl Compatible Regular Expression Library License

