

Introduction to the Mumps Language

A Quick Introduction to the
Mumps Programming Language

Kevin C. O'Kane
Professor Emeritus

Department of Computer Science
University of Northern Iowa

Cedar Falls, IA 50614
kc.okane@gmail.com

A full text on this topic in both print and ebook formats is available on Amazon.com

Videos are available on youtube.com:

https://www.youtube.com/channel/UC5oHS9h-prWeBrBNzXm8rYA

Copies of the software used in this tutorial are are available at:

http://www.cs.uni.edu/~okane/
http://threadsafebooks.com/

November 4, 2017

Mumps History 1

Mumps (Massachusetts General Hospital Utility Multi-programming System) is a
general purpose programming language environment that provides ACID (Atomic,
Consistent, Isolated, and Durable) database access by means of program level
subscripted arrays and variables. The Mumps database allows schema-less, key-value
access to disk resident data organized as trees that may also be viewed as sparse
multi-dimensional arrays.

Beginning in 1966, Mumps (also referred to as M), was developed by Neil Pappalardo
and others in Octo Barnett's lab at the Massachusetts General Hospital (MGH) on a
PDP-7, the same architecture on which Unix was being implemented at approximately
the same time.

Initial experience with Mumps was very positive and it soon was ported to a number of
other architectures including the PDP-11, the VAX, Data General, Prime, and,
eventually, Intel x86 based systems, among others. It quickly became the basis for
many early applications of computers to the health sciences.

Mumps History 2

When Mumps was originally designed, there were very few general purpose database
systems in existence. The origin of the term 'database' itself dates from this period.
Such systems as existed, were mainly ad hoc application specific implementations that
were neither portable nor extensible. The notion of a general purpose database design
was just developing.

One of the first attempts to implement of a general purpose database system was
GE/Honeywell's initial IDS - Integrated Data Store - which was developed in the mid-
60s. Experience with this system lead to the subsequent creation of the CODASYL
DBTG (Committee on Data Systems Languages - Data Base Task Group) whose
Network Model database was proposed (1969).

The Network Model was very complex and was implemented, in varying degrees, by
only a few vendors. All of these were mainframe based. Most notable of these were
GE/Honeywell's IDS/2, Cullinet's Integrated Database Management System (IDMS),
Univac's DMS-1100, and Digital Equipment Corporation's DEC-10 based DBMS32.

Mumps History 3

At about the same time, IBM's IMS (Information Management System), was being
developed in connection with the NASA Apollo program. It was first placed into service
in 1968 running on IBM 360 mainframes. IMS, which is still in use today, is, like Mumps,
a hierarchically structured database.

The table-based relational database model was initially proposed by E. F. Codd in 1970
but it wasn't until 1974 that IBM began to develop System R, the first system to utilize
the model, as a research project. The first commercially available relational database
system was released by Oracle in 1979.

Mumps History 4

In late 1960s mini-computers, although expensive, were becoming more widely
available but they were still mainly confined to dedicated, mostly laboratory,
applications. The operating systems available on these systems were primitive and, for
the most part, single user. On many, the user was the operating system, flipping
switches to install boot code, and manually loading compilers, linkers and programs
from paper or magnetic tape.

DEC's RSX-11, the first commercial multi-user system on the PDP-11, was introduced in
1972. RSTS/E, a time sharing system mainly used for BASIC language programming,
was implemented in 1970. Other language support was limited to a small set of
languages such as FORTRAN, BASIC and Assembly Language. Although Unix existed at
this time, it was not available outside AT&T until 1984.

Thus, in 1966 when a DEC PDP-7 arrived at the Massachusetts General Hospital (MGH),
there was very little in the way of software, operating system or database support
available for it. So, as there were few other options available, people at MGH started
from scratch and designed Mumps to be not only a multi-user operating system, but
also a language, and a database, all in one.

Mumps History 5

For their database design, they selected a hierarchical model as this closely
matched the tree structured nature of the medical record. To represent database
trees in the language, they decided to use array references where each
successive array index was part of a path description from the root of the array
to both intermediate and terminal nodes. They called these disk resident
structures global arrays.

While in those days, Mumps, out of necessity, was its own standalone operating
system, this is not the case today where Mumps programs run in Unix, Linux,
OS/X, and Windows based environments.

The early Mumps operating system divided the very limited memory available on
early mini-computers into small partitions, each assigned to a separate user.
The system allocated and managed the memory partitions and granted time-
slices to each user partition usually in a round-robin protocol. The Mumps
operating system itself provided the Mumps language interpreter (Mumps was
not compiled), centralized I/O, and managed access to the hierarchical
database through a centralized Global Array File Manager, as outlined in the
following figure.

Mumps History 6

Mumps History 7

Memory on early mini-computers was limited, sometimes only a few thousand
characters. Mumps programs were loaded into memory as source code rather than as
compiled binary. This was done because it was determined that compiled Mumps
programs would be far larger than the corresponding source code versions, especially if
the source code employed size reducing abbreviations.

While interpreted programs ran slower, the time lost was more than made up by the
time saved by not needing to page in and out large binary modules which, initially, was
done from magnetic tape. Further, as is the case with most database applications,
most program time is spent waiting for database access so the interpretation overhead
factor was not really very large.

As an added benefit, small source code modules used less disk space which, when it
became available, was very expensive.

Mumps History 8

The legacy of small memory machines can still be seen to this day, as Mumps
programmers tend to abbreviate their code, sometimes excessively, although the
original reason for doing so is long past.

Because of its simplicity, low cost, and ease of use, Mumps quickly became popular
and was used in many medical applications. COSTAR (COmputer-STored Ambulatory
Record), for example, was a medical record, fiscal management and reporting system,
developed in the mid-1970s for use in ambulatory care settings and it was widely used
and adapted worldwide.

Mumps History 9

Today, Mumps programs are employed extensively in financial and clinical applications.
If you've been to a doctor, been seen at a hospital, or used an ATM machine, your data
has probably been processed by a Mumps program.

Mumps programs are the basis of the U.S. Veterans Administration's computerized
medical record system VistA (Veterans Health Information Systems and Technology
Architecture), the largest of its kind in the world. VistA is a collection of 80 different
software subsystems that support the largest medical records system in the United
States. It supports the medical records of over 8 million veterans, is used by 180,000
medical staff at 163 hospitals, more than 800 clinics, and 135 nursing homes.

Mumps is used by many health care organizations including Allscripts, Epic, Coventry
Healthcare, EMIS, Partners HealthCare (including Massachusetts General Hospital),
MEDITECH, GE Healthcare (formerly IDX Systems and Centricity), Sunquest Information
Systems, DASA, Quest Diagnostics, and Dynacare, among others.

Mumps History 10

Some of the largest and most well known hospitals use Mumps based electronic health
records systems. These include: Kaiser Permanente, Cleveland Clinic, Johns Hopkins
Medicine Hospitals, UCLA Health, Texas Health Resources, Massachusetts General
Hospital, Mount Sinai Health System in New York City and the Duke University Health
System.

Among financial, institutions it is used by Ameritrade, the Bank of England and
Barclays Bank, as well as others.

Mumps History 11

Mumps has remained viable by providing:
● In addition to sequential and direct file access, Mumps also implements, as an

integral part of the language, a hierarchical and multi-dimensional database
paradigm. When viewed as trees, data nodes can addressed as path descriptions in
a manner which is easy for a novice programmer to master in a relatively short time.
Alternatively, the trees can be viewed as sparse n-dimensional matrices of
effectively unlimited size.

● Mumps supports built-in string manipulation operators and functions that provide
programmers with access to efficient methods to accomplish complex string
manipulation and pattern matching operations.

● Mumps runs on inexpensive, commodity servers and is easily scaled as demand
grows.

● Mumps can handle Big Data quantities of information that are beyond the
capabilities of many RDBMS systems with very high levels of performance and
throughput.

● Mumps is easily managed without the need for database administrators.
● Mumps databases are ACID (Atomicity, Consistency, Isolation, Durability)

Compliant.

Mumps Implementations

The implementations currently available are:

1. Intersystems (Caché)
http://www.intersystems.com/ (called Caché®)

2. FIS (GT.M)
http://www.fisglobal.com/products-technologyplatforms-gtm

3. MUMPS Database and Language by Ray Newman
http://sourceforge.net/projects/mumps/

4. Open Mumps
http://www.cs.uni.edu/~okane/

The dialects and extensions accepted by these implementations vary so you should
consult the documentation of the version you are using for further details. The
examples used here are drawn from GPL Mumps.

http://www.cs.uni.edu/~okane/

Open Mumps Interpreter

The examples in this introduction were written and tested with the Open Mumps Interpreter, a free, open
source distribution for Linux licensed under the GPL V2 License. The distribution is available at:

 http://www.cs.uni.edu/~okane/

Once installed, the interpreter may be executed in interactive command line mode by typing:

 mumps

To exit, type halt. Mumps commands may be entered and executed immediately. To execute a program
contained in a file, to the interpreter type:

 goto ^filename.mps

You may also, to a command window, type:

 mumps filename.mps

Alternatively, in Linux, a file of Mumps code may be executed directly if you set the file's protections to
executable and have on its first line:

 #!/usr/bin/mumps

The program may now be executed by typing its name to the command prompt.

Additional documentation is available at the site referenced above.

http://www.cs.uni.edu/~okane/

Interpreter Examples

The first image shows execution of Mumps code directly in the
command line interpreter in a Linux terminal window. The
command mumps invokes the interpreter and the user enters an
iterative Mumps command and then exists the interpreter (halt).

The second image, also a Linux terminal window, shows in the first
division (Contents of test.mps) a small Mumps program named
test.mps.

The program can be executed by typing it’s name as and argument
to the name of the interpreter (mumps test.mps) as shown in
Example 1.

The program can be executed by typing it’s name if it’s file is listed
as executable and, consistent with Linux/Bash usage, on line one,
the name of the interpreter to use is given (/usr/bin/mumps)
(Example 2)

The program can also be executed from the Mumps CLI with a
Mumps goto (g) command (Example 3)

Mumps Syntax Warning

Mumps syntax will be discussed in detail below but it is important at this time to point
out that standard Mumps code may not contain embedded blanks except within quoted
strings.

In Mumps, a blank is a delimiter.

 set var=3*x+y
 set var = 3 * x + y ; blanks not allowed

Variables 1

Mumps has two types of variables: local and global.

Global variables are stored on disk and continue to exist when the program that
created them terminates.

Local variables are stored in memory and disappear when the program that created
them terminates.

A Mumps variable name must begin with a letter or percent sign (%) and may be
followed by letters, percent signs, or numbers.

Variable names are case sensitive. The underscore (_) and dollar sign ($) characters
are not legal in variable names.

Global variable names are always preceded by a circumflex (^), local variables are not.

The contents of all Mumps variables are stored as varying length character strings. The
maximum string length permitted is determined by the implementation but this
number is usually at least 512 and often far larger (normally 4096 in Open Mumps).

Variables 2

In Mumps there are no data declaration statements. Variables are created as needed
when a value is assigned to a variable name for the first time.

Values may be assigned to variables by either a set, merge or read command.

Variables may also be created if they appear as arguments to the new command.

Once created, local variables normally persist until the program ends or they are
destroyed by a kill command. Global variables persist until destroyed by a kill
command.

In its original implementation, Mumps did not have a means to pass parameters to
invoked routines. Consequently, to this day, variables are, ordinarily, known to all
routines.

Variables 3

Mumps variables are not typed. The basic data type is string although integer, floating point and
logical (true/false) operations can be performed on string variables if their contents are
appropriate.

The values in a string are, at a minimum, any ASCII character code between 32 to 127 (decimal)
inclusive. Some implementations permit additional character codings for other languages.

In Open Mumps, some characters outside this range can be generated in write commands with
the $char() function (discussed below).

Variables receive values by means of the set, merge or read commands.

Array references are formed by adding a parenthesized list of indices to the variable name such
as:

name("abc",2,3)

Indices may evaluate to numbers or strings or both. Strings constants must be quoted, numeric
constants need not be quoted.

Example Variables

 set %=123 ; a scalar local variable

 set ^x1("ducks")=123 ; ^ducks is a global array

 set fido="123" ; Local variable

 set Fido="dog" ; Names are case sensitive

 set x("PI")=3.1414 ; x is a local array reference

 set input_dat=123 ; underscore not permitted

 set $x=123 ; $ sign not permitted

 set 1x=123 ; must begin with a letter or %

 read ^x(100) ; read value into global array element

 read %%123 ; read value into scalar

 read _A ; underscore error

String Constants

String constants are enclosed in double quote marks (").

A double quote mark itself can be inserted into a string by placing two immediately
adjacent double quote marks ("") in the string.

The single quote mark (') is the not operator with no special meaning within quoted
strings.

The C/C++/Java convention of preceding some special characters by a backslash does
not apply in Mumps.

"The seas divide and many a tide"
"123.45" (means the same as 123.45)
"Bridget O'Shaunessey? You're not making that up?"
"""The time has come,"" the walrus said."
"\"the time has come" (mismatched quotes)
'now is the time' (single quote means NOT)

Numeric Constants

Numbers can be integers or floating point. Quotes are optional.

100
1.23
­123
­1.23
"3.1415"

Some implementations permit scientific notation. Each implementation has limits on accuracy and
range. Consult implementation documentation for details.

In Open Mumps, constants in scientific notation are a special case of strings and must be enclosed
in quotes as strings and a numeric operator (such as unary +) is needed to impose a numeric
interpretation on the contents:

> set i="123E4" set j="100E4"
> write i+j," ",+i," ",+j,!
2.23e+06 1.23e+06 1e+06

In GTM, however, quotes are not required

GTM>WRITE 8E6
8000000
GTM> WRITE 8E­6
.000008

Mixed Strings & Numeric Constants

Mumps has some peculiar ways of handling strings when they participate in numeric
calculations.

If a string begins with a number but ends with trailing non-numeric characters and it is
used as an operand in an arithmetic operation, only the leading numeric portion will
participate in the operation. The trailing non-numeric portion will be ignored.

A string not beginning with a numeric character is interpreted numerically as having
the value of zero.

Numeric Interpretation of Strings

1+2 is evaluated as 3
"ABC"+2 is evaluated as 2
"1AB"+2 is evaluated as 3
"AA1"+2 is evaluated as 2
"1"+"2" is evaluated as 3

"" is evaluated as 0

+"­12AB" is evaluated as ­12

+"123.45e4" is evaluated as 1.2345e+06

Logical Values

Logical values in Mumps are special cases of strings.

A numeric value of zero, any string beginning with a non-numeric character, or a string
of length zero is interpreted as false.

Any numeric string value other than zero is interpreted as true.

Logical expressions yield either the digit zero (for false) or one (for true).

The result of any expression can be used as a logical operand.

Logical Expressions

Logical expressions yield either zero (for false) or one (for true). The result of any
numeric expression can be used as a logical operand.

The not operator is the single quote (')

1 true '1 false
0 false '0 true
"" false '"" true
"A" false '"A" true
"99" true '"99" false
"1A" true '"1A" false
"000" false '"000" true
"­000" false '"­000" true
"+000" false '"+000" true
"0001" true '"0001" false

Arrays 1

Arrays in Mumps come in two varieties: local and global.

Global array names are always prefixed by a circumflex (^) and are stored on disk.
They retain their values when a program terminates and, once set, can be accessed by
other programs executing at the same time. They can only be deleted by the kill
command.

Local arrays are destroyed when the program creating them terminates or when they
are the subject of a kill command. Local arrays are not accessible to other programs
unless the other programs are invoked by the program that created them.

Arrays (both global and local) are not declared or pre-dimensioned.

Arrays (both global and local) elements are created by set, merge or read statements
when referenced for the first time.

The indices of an array (both global and local) are given by a comma separated list of
numbers, or strings, or both, surrounded by parentheses.

Arrays 2

Arrays (both local and global) are sparse. That is, if you create an element of an array, let us say
element 10, it does not mean that Mumps has created any other elements. In other words, it does
not imply that there exist elements 1 through 9. You must explicitly create these it you want them.

Array indices may be positive or negative numbers, character strings, or a combination of both.

Arrays in Mumps may have multiple dimensions limited by the maximum line length (at least 512
characters and generally much longer).

Arrays may be viewed as either matrices or trees.

When viewed as trees, each successive index is part of a path description from the root to an
internal or leaf node.

Data may be stored (or not stored) at any node along the path of a tree.

Global array names are prefixed with the circumflex character (^) and local arrays are not.

Local arrays are destroyed when the program ends while global arrays, being disk resident,
persist.

Arrays 3

 set a(1,2,3)="text value" ; local array
 set ^b(1,2,3)="text value" ; global array

 set a("text string")=100 ; local array
 set ^b("text string")=100 ; global array

 set i="testing" set a(i)=1001 ; local array
 set i="testing" set ^b(i)=1001 ; global array

 set a("Iowa","Black Hawk County","Cedar Falls")="UNI"
 set ^b("Iowa","Black Hawk County","Cedar Falls")="UNI"

 set a("Iowa","Black Hawk County",Waterloo")="John Deere"
 set ^b("Iowa","Black Hawk County",Waterloo")="John Deere"

 set a[1][2][3]=123 ; brackets not used for array refs
 set a(1, 2, 3)=123 ; no embedded blanks
 set a[1,2,3]=123 ; brackets again

Array Examples

 set a=”1ST FLEET”
 set b=”BOSTON”
 set c=”FLAG”
 set ^ship(a,b,c)="CONSTITUTION"
 set ^captain(^ship(a,b,c))="JONES"
 set ^home(^captain(^ship(a,b,c)))="PORTSMOUTH"
 write ^ship(a,b,c) CONSTITUTION→
 write ^captain("CONSTITUTION") JONES→
 write ^home("JONES") PORTSMOUTH→
 write ^home(^captain("CONSTITUTION")) PORTSMOUTH→
 write ^home(^captain(^ship(a,b,c))) PORTSMOUTH→

Hierarchical Data

Mumps was originally written to manage medical records which are often viewed as hierarchically
organized. For that reason, the designers needed a convenient means to store data in a tree
structure and developed the notion of global arrays as a result.

Arrays As Trees 1

In Mumps, both global and local arrays can be viewed as trees. When viewed as a tree, each successive
index in an array reference is interpreted as part of a path description from the root of the array to a
node. Nodes along the path may optionally contain data. In the diagram below, the array is named root.
Numeric indices have been used for simplicity but string indices are also legal.

Arrays as Trees 2

One way data may be inserted into the tree by assignment
statements. Not all nodes need have data.

 set ^root(1,37)=1
 set ^root(1,92,77)=2
 set ^root(1,92,177)=3
 set ^root(5)=4
 set ^root(8,1)=5
 set ^root(8,100)=6
 set ^root(15)=7
 set ^root(32,5)=8
 set ^root(32,5,3)=9
 set ^root(32,5,8)=10
 set ^root(32,123)=11

Tree Structured Data

String Indices

 set ^lab(1234,”hct”,”05/10/2008”,38)=””
 set ^lab(1234,”hct”,”05/12/2008”,42)=””
 set ^lab(1234,”hct”,”05/15/2008”,35)=””
 set ^lab(1234,”hct”,”05/19/2008”,41)=””

Mumps permits both numeric and string indices.

Sometimes the indices themselves are the data and nothing is actually stored at the
node ("" is the empty string). That is the case in the above where the last index values
are the actual test results. Using the functions $data() and $order() it is easy to
navigate through nodes at any level of a tree and retrieve the values of the indices.

In the code above, the Hematocrit (hct) results for patient 1234 are stored for several
dates. The actual hct results for each observation are the last index value.

Access to Mumps Arrays 1

Mumps array nodes can be accessed directly if you know all the indices.

Alternatively, you can navigate through an array tree by means of the $data() and
$order() builtin functions.

The first of these, $data(), tells you if a node exists, if it has data, and if it has
descendants.

The second, $order(), is used to navigate, at a given level of a tree, from one sibling
node to the next node with an alphabetically higher (or lower) index value.

Access to Mumps Arrays 2

For example, given:

 set ^a(1)=100,^a(2)=200,^a(3)=300,^a(2,1)=210,^a(4,1)=410

 $data(^a(1)) is 1 (node exists, has no descendant)
 $data(^a(1,1)) is 0 (node does not exist)
 $data(^a(2)) is 11 (node exists, has data, has descendant)
 $data(^a(4)) is 10 (node exists, has no data, has descendant)

 $order(^a(“”)) is 1 (first index at level 1)
 $order(^a(1)) is 2 (next higher index)
 $order(^a(2,””)) is 1 (first index at level 2 beneath index 2)
 $order(^a(4)) is “” (no more indices at level 1)

Global Array Examples 1

Building a conventional three dimensional global array ^mat1:

 for i=1:1:100 do ; store values only at leaf nodes
 . for j=1:1:100 do
 .. for k=1:1:100 do
 ... set ^mat1(i,j,k)=0

The do without an argument causes the block following the command to be executed. Blocks have
leading decimal points to indicate their level of nesting.

The matrix ^mat1() in this example is similar to a three dimensional matrix in a language such as
C or Fortran. There are 1,000,000 cells each initialized with the value zero. The global array may
be though of as 100 planes of matrices each 100 by 100.

Access to each element of the matrix requires three indices (^mat1(i,j,k)).

Global Array Examples 2

 for i=1:1:100 do ; store values at all node levels
 . set ^mat(i)=i
 . for j=1:1:100 do
 .. set ^mat(i,j)=j
 .. for k=1:1:100 do
 ... set ^mat1(i,j,k)=k

This version of the matrix is best thought of as a tree of depth three. At the first level under the
root ^mat, there are 100 nodes at each of which is stored a value from 1 to 100, inclusive. For
each node at level 1, there are 100 descendant nodes at level two each containing a value from 1
to 100. Finally, for each node at level two, there are 100 descendant nodes at level 3 likewise
containing values between 1 and 100.

In total, there are 100 level one nodes, 10,000 level two nodes, and 1,000,000 level three nodes.
The tree contains 1,010,100 values in total (100 + 10,000 + 1,000,000).

Access to a node requires one, two or three indices depending on the the level of the tree at which
the node sought is stored.

Global Array Examples 3

 for i=10:10:100 do ; sparse matrix ­ elements missing
 . for j=10:10:100 do
 .. for k=10:10:100 do
 ... set ^mat1(i,j,k)=0

Note: for i=10:10:100 means iterate with i beginning at 10 and incrementing by 10 up to and including
100. Thus, i will have the values 10, 20 ... 100.

In this version of the matrix, the array is also a tree but, unlike the other examples, many elements do
not exist. At level one, there are only ten nodes (10, 20, 30, ... 90, 100). Each level one node has ten
descendants and each level two node likewise has ten descendants.

In total, the tree has 10,110 (10 + 100 + 10,000) nodes.

For example, the node ^a(15,15,15) does not exist. You may, however, create it with something of the
form:

 set ^mat1(15,15,15)=15

Now the tree has 10,111 nodes.

Mumps Commands

A Mumps program consists of a sequence of commands. Most commands have
arguments that are to be executed although some commands do not have arguments.

In most cases, more than one command may appear on a line.

Some examples common commands that have arguments are:

● set (assignment)
● for (loop control)
● if (conditional execution)
● read (input)
● write (output)
On the other hand, the halt command does not have an argument (if it does, it
becomes the hang command).

Each Mumps command begins with a keyword that may, in most cases, be
abbreviated. Most abbreviations are a single letter. Excessively abbreviated Mumps
code is compact but difficult to read.

The complete list is given below.

Postconditionals 1

Mumps commands may optionally be followed by what is known as a postconditional.

Postconditionals are truth-valued expressions that immediately follow a command.
There are no spaces between a command and a postconditional however, a
postconditional is delimited from the command word (or command abbreviation) by a
colon.

If the postconditional expression is true, the command and its arguments are executed.
If the expression is false, the command and all of its arguments are skipped and
execution advances to the next command.

The following is an example of a post-conditional applied to the set command:

 set:a=b i=2

The set command argument (assign 2 to variable i) will be executed only if a equals b.
Some commands permit individual arguments to be postconditionalized.

Postconditionals 2

One use of postconditionals of Mumps is for loop control (for). The scope of a for
command is the current line only (although the argumentless do and blocks can
effectively extend this).

A for loop with current line scope creates a problem if a loop needs to terminate for a
condition not established in the loop control expression. If you attempt to use an if
command to remedy the problem, because the scope of an if command is also the
remainder of the line on which it appears, a similar problem exists.

For example, assume you have a global array named ^a which has an unknown
number of nodes. Assume that each node is indexed sequentially beginning with 1 (1,
2 , 3 , ...).

If you attempt to print out the values in the nodes with the following:

 for i=1:1 write ^a(i),!

You will encounter an error when you eventually attempt to access a node of the array
that does not exist.

Postconditionals 3

If you add an if command:

 for i=1:1 if ‘$data(^a(i)) quit write ^a(i),!

you still have a problem (single quote is the NOT operator in Mumps).

The expression ‘$data(^a(i)) is TRUE if the node ^a(i) does NOT exist and false otherwise.

The intent is to quit the loop when there are no more nodes in ^a (note the two blanks after the
quit command - since it has no arguments, two blanks are required if there is another command
on the line).

However, the if command has scope of the remainder of the line on which it occurs.

Thus the write will not execute if a node does exist because the expression in the if will be false
($data(^a(i)) is true which is then made false by the not operator) and the remainder of the line is
skipped.

Likewise, if the node does not exist ($data(^a(i)) is false but becomes true because of the not
operator), the loop will terminate due to execution of the quit command.

Thus, nothing at all will be printed.

Postconditionals 4

An else command will not help since it will still be on the same line as the if and will be ignored if
the if expression is false (else also has single line scope):

 for i=1:1 if ‘$data(^a(i)) quit else write ^a(i),!

Note the two blanks after the else.

If ^a(i) exists, the remainder of the line is skipped (including the else). If ^a(i) does not exist, the
loop is terminated.

Hence the postconditional was invented.

 for i=1:1 quit:‘$data(^a(i)) write ^a(i),!

The quit will execute only when the postconditional expression is true which occurs when there
are no more nodes of the array. Otherwise, the quit is not executed.

Problem solved!

Operator Precedence

Expressions in Mumps are evaluated strictly left-to right without precedence. If you
want a different order of evaluation, you must use parentheses.

This is true for all Mumps expressions in all Mumps commands. It is a common source
of error, especially in if commands with compound predicates.

 For example, a<10&b>20 really means (((a<10)&b)>20) when you probably wanted
(a<10)&(b>20) or, equivalently, a<10&(b>20).

 Basic Operators 1

Assignment: =
Unary Arithmetic: + ­
Binary Arithmetic + addition

­ subtraction
* multiplication
/ full division
\ integer division
modulo
** exponentiation

Arithmetic Relational
> greater than
< less than
'> not greater / less than or equal
'< not less / greater than or equal

String Binary _ concatenate

 Basic Operators 2

String relational operators

= equal
[contains ­ left operand contains right
] follows ­ left operand alphabetically follows

 right operand
? pattern
]] Sorts after

'= not equal
'[not contains
'] not follows
'? not pattern
']] not sorts after

Pattern Match Operator

A for the entire upper and lower case alphabet.
C for the 33 control characters.
E for any of the 128 ASCII characters.
L for the 26 lower case letters.
N for the numerics
P for the 33 punctuation characters.
U for the 26 upper case characters.
A literal string.

The letters are preceded by a repetition count. A dot means any number. Consult
documentation for more detail.

 set A="123­45­6789"
 if A?3N1"­"2N1"­"4N write "OK" ; writes OK
 if A'?3N1"­"2N1"­"4N write "OK" ; writes nothing

 set A="JONES, J. L."
 if A?.A1",".A write "OK" ; writes OK
 if A'?.A1",".A write "OK" ; writes nothing

Logical Operators

Logical operators: & and
! or
' not

1&1 yields 1
2&1 yields 1
1&0 yields 0
1&(0<1) yields 1
1!1 yields 1
1!0 yields 1
0!0 yields 0
2!0 yields 1
'0 yields 1
'1 yields 0

 '99 yields 0 ; any non­zero value is true
'"" yields 1 ; strings are false except if they

; have a leading non­zero numeric

Indirection Operator

The indirection operator (@) causes the string in the expression to its right to
be executed and the result replaces the indirect expression.

 set a="2+2"
 write @a,! ; writes 4

 kill ^x
 set ^x(1)=99
 set ^x(5)=999
 set v="^x(y)"
 set y=1
 set x=$order(@v) ; equivalent to ^x(1)
 write x,! ; writes next index of ^x(1): 5
 set v1="^x"
 set x=$order(@(v1_"("_y_")")) ;
 write x,! ; writes 5

Commands 1

break Suspends execution or exits a block (non-
standard extension)

close release an I/O device

database set global array database (non-standard
extension)

do execute a program, section of code or block

else conditional execution based on $test

for iterative execution of a line or block

goto transfer of control to a label or program

halt terminate execution

hang delay execution for a specified period of time

html write line to web server (non-standard
extension)

Commands 2

if conditional execution of remainder of line

job Create an independent process

lock Exclusive access/release named resource

kill delete a local or global variable

merge copy arrays

new create new copies of local variables

open obtain ownership of a device

quit end a for loop or exit a block

read read from a device

set assign a value to a global or local variable

Commands 3

shell execute a command shell (non-standard
extension)

sql execute an SQL statement (non-standard
extension)

tcommit commit a transaction

trestart roll back / restart a transaction

trollback Roll back a transaction

tstart Begin a transaction

use select which device to read/write

view Implementation defined

write write to device

xecute dynamically execute strings

z... implementation defined - all begin with the
letter z

Syntax Rules 1

A line may begin with a label. If so, the label must begin in column one.

If column one has a semi-colon (;), the line is a comment. If a semi-colon appears in a
position where a command word could appear, the remainder of the line is a comment.

After a label there must be at least one blank or a <tab> character before the first
command.

If there is no label, column one must be a blank or a <tab> character followed by some
number of blanks, possibly zero, before the first command.

After most command words or abbreviations there may be an optional post-conditional.
No blanks or <tab> characters are permitted between the command word and the
post-conditional.

If a command has an argument, there must be at least one blank after the command
word and its post-conditional, if present, and the argument.

Syntax Rules 2

Expressions (both in arguments and post-conditionals) may not contain embedded
blanks except within double-quoted strings.

If a command has no argument and it is the final command on a line, it is followed by
the new line character.

If a command has an argument and it is the final command on a line, its last argument
is followed by a new line character.

If a command has an argument and it is not the last command on a line, it is followed
by at least one blank before the next command word.

If a command has no argument, there must be two blanks after the command word if
there is another command on the line. If it is the last command on a line, it is followed
by the new line character.

Open Mumps Syntax Extensions

In Open Mumps:

If a line begins with a pound-sign (#) or two forward slashes (//), the remainder of the
line is taken to be a comment (non-standard extension).

If a line begins with a plus-sign (+), the remainder of the line is interpreted to be an in-
line C/C++ statement (non-standard compiler extension).

After the last argument on a line and at least one blank (two if the command has no
arguments), a double-slash (//) causes the remainder of the line to be interpreted as a
comment (non-standard extension).

Line Syntax Examples

label set a=123
 set a=123
 set a=123 set b=345
 set:i=j a=123

; standard comment
 set a=123 ; standard comment
non­standard comment
 set a=123 // non­standard comment
+ printf("hello world\n"); // non­standard C/C++ embed

set a=123 ; only labels, ;, #, or // in col 1
 label set a=123 ; label must be in col 1
 set a = 123 ; no blanks allowed in arguments
 halt:a=b set a=123 ; Halt needs 2 blanks after

; the postconditional

Blocks 1

Originally, all Mumps commands only had line scope. That is, no command extended beyond the
line on which it appeared. In later years, however, a block structure facility was added to the
language.

This resulted in the introduction of the argumentless do command. Originally, all do commands
had arguments consisting of either a label, offset, file name or combination of these, that
addressed a block of code to be invoked as a subroutine.

An argumentless do command also invokes a block of code. The block invoked consists of the lines
immediately following the line containing the do command if they are at a line level one greater
than the line level of the do. The block ends when the line level declines to the line level of the
invoking do or lower.

Mumps lines are normally at line level one. A higher line level is achieved by preceding the code
on a line with one or more periods. A line with one period is at line level two, one with two periods
is at level three and so on.

Execution of a Mumps program normally proceeds from a level one line to the next except as if,
else, and goto commands may alter flow. If execution encounters a line at a level greater than
the current level, the line is skipped unless it is entered by means of an argumentless do
command.

Blocks 2

For example:

1) set a=1
2) if a=1 do
3) . write "a is 1",! ; block dependent on do
4) write "hello",!

The do on line 2, at line level one, if executed, invokes the one line block on line 3
which is at line level two. If the do is not executed, the block consisting of line 3 is
skipped and line 4 is executed after line 2.

Code at line levels greater than one should only be entered by means of an
argumentless do command. The goto command should not be used to enter or exit
blocks of code with line levels greater than one.

Blocks 3

1) set a=1
2) if a=1 do
3) . write "a is 1",!
4) . set a=a*3
5) else do
6) . write "a is not 1",!
7) . set a=a*4
8) write "a is ",a,!

Because a on line 2 has a value of 1, lines 3 & 4 will be executed and lines 6 & 7 will
not be executed. Line 8 is executed in either case.

Blocks 4

1) if a’=0 do
2) . write "a is 1",!
3) . set a=a*3
4) . if a>10 do
5) .. write "a is greater than 10",!
6) .. set a=a/2
7) . set a=a+a
8) write "a is ",a,!

The block beginning on line 2 is entered if variable a is not zero. Otherwise, execution
skips to line 8

The block beginning at line 5 is entered if variable a is greater than 10. Otherwise line
5 & 6 are skipped and execution resumes at line 7.

Blocks and $Test 1

$test is a builtin system variable that indicates if certain operations succeeded (1) or
failed (0).

For example, if a read command fails to read data (end of file, for example), $test will
be 0 after the read command, otherwise, 1.

The open command sets $test to be 1 if a file is successfully opened, 0 otherwise. The
if is another command sets $test based on the result of its predicate.

Argumentless if and else commands where execution of the command is determined
by the current value in $test (the else command is always argumentless).

An oddity in Mumps is that the else command is thus not necessarily connected to a
preceding if command. The else command, in fact, is standalone. If the value in $test
is false, the remainder of the line on which the else appears is executed. If the value is
true, execution skips to the next line. No if is required.

Blocks and $Test 2

For example:

 read x
 else write "end of file",! halt

The else executes based on the value of $test set as the result of the read command.
If the read fails ($test becomes 0), the code on the line following the else will
execute and the program will halt. If the read succeeds ($test becomes 1), the
program will not halt.

However, in practice, an else command is often used with a preceding if command
where $test is set by the if’s predicate.

In the case of an argumentless if command, the value of $test determines if the
remainder of the line is executed.

Both the argumentless if and else require at least two blanks following the command
word or abbreviation.

Blocks and $Test 3

The value of $test is restored upon exit from a block:

1) set a=1,b=2
2) if a=1 do ; $test becomes true
3) . set a=0
4) . if b=3 do ; $test becomes false
5) .. set b=0 ; not executed
6) . else do ; executed
7) .. set b=10 ; executed
8) . write $test," ",b,! ; $test is false
9) write $test," ",b,! ; $test restored to true

In the above, line 2 sets $test to be 1 (the predicate is true). Lines 3 & 4 are executed. Line 4 sets
$test to be 0 (the predicate is false). Line 5 is not executed.

Line 6 is executed and, since $test is false, the do is executed and line 7 is executed. Line 8 is
executed with $test as 0 and b as 10.

Line 9 is executed. $test is restored to the value it had in line 2 (1). The value of b is 10.

Quit 1

A quit command in standard Mumps causes:

1) A single-line scope for command to terminate, or
2) A subroutine or function invoked by an entry reference to return, or
3) A code block to be exited.

A quit command without arguments requires at least two blanks after it if there are
more commands on the line. This case only occurs when a quit has a postconditional.
If a quit does not have a postconditional, the line it is on is terminated unconditionally.

Quit 2

Using quit to terminate a for command:

 for i=1:1 quit:i>100 write i," ",i*i,!

When i becomes 101, the loop will terminate.

; read and write until no more input ($test becomes 0).
 set f=0
 for read a quit:’$test write a,! ; quit, when executed, ends the loop

The for command without arguments (note the two blanks following it) loops forever. When there
is no more data to be read (end of file), $test becomes 0 and the quit executes and the for
terminates. If the read succeeds, $test is 1 and the value read is written and the loop iterates.

Quit 3

Using quit to return form a legacy subroutine

Mumps originally used the do command to invoke a local or remote block of code which, when completed,
would return the the line containing the invoking do command. This was similar to the early BASIC gosub
statement. The original Mumps do command did not allow arguments to be passed.

The argument for a do command was either a label, a label with offset, a file name, or a combination of all three
(some systems used different syntax):

 do lab1 ; execute beginning at label lab1
 do lab1+3 ; execute beginning at the 3rd line following lab1
 do ^file.mps ; execute the contents of file.mps
 do lab1^file.mps ; execute contents of file.mps beginning at lab1
 do lab1+3^file.mps ; execute file.mps beginning at 3rd line from lab1

In each case, when the code block thus invoked ended or encountered a quit command, return was made to
the invoking do command. Note: if the invoking do command had additional arguments, they would now be
executed in sequence.

; using quit as a return from a subroutine
 do top
...
top set page=page+1
 write #,?70,"Page ",page,!
 quit ; return to invoking do command

Quit 4

; non­standard use of break instead of quit in Open Mumps

 for do
 . read a
 . if '$test break ; exits the loop and the block
 . write a,!

Quit 5

; loop while elements of array a exist
 for i=1:1 quit:'$data(a(i)) write a(i),!

; display all nodes at level one
 set i=”” for set i=$order(^a(i)) quit:i=”” write ^a(i),!

; nested inner loop quits if an element of array b has the value 99
; outer loop continues to next value of i.
 set x=0
 for i=1:1:10 for j=1:1:10 if b(i,j)=99 set x=x+1 quit

; outer loop terminates when f becomes 1 in the block
 set f=0
 for i=1:1:10 do quit:f=1
 . if a(i)=99 set f=1

; The last line of the block is not executed when i>50
 set f=1
 for i=1:1:100 do
 . set a(i)=i
 . set b(i)=i*2
 . if i>50 quit
 . set c(i)=i*i

Quit 6

Later versions of Mumps permitted functions and subroutines that could pass
parameters and return, in the case of functions, values. Thus, the quit command can
also have an argument:

; returning a value from a function

 set i=$$aaa(2)
 write i,! ; writes 4
 halt

 aaa(x) set x=x*x
 quit x

Break

Originally, break was used as an aid in debugging. See documentation for your system
to see if it is implemented.

In the Open Mumps dialect, a break command is used to terminate a block (non-
standard). Execution continues at the first statement following the block.

; non­standard use of break (Open Mumps)

 for do
 . read a
 . if '$test break ; exits the loop and the block
 . write a,!

Close Command

The close command closes and disconnects one or more I/O units. May be
implementation defined. All buffers are written to output files as needed and released.

No further I/O may take place to closed unit numbers until a successful open
command has been issued on the unit.

The syntax of the arguments to this command varies depending on implementation.

 close 1,2 ; closes units 1 and 2

Do Command

The do command executes a dependent or labeled block of code, either in the current
program or a file on disk.

 if a=b do ; executes the dependent block that follows
 . set x=1
 . write x
­­­

 do abc ; executes the code block beginning at abc
 ... intervening code ...
abc set x=1
 write x
 quit ; returns to invoking do
­­­

 do ^abc.mps ; invokes the code block in file abc.mps
­­­

 do abc(123) ; invokes code at label abc passing an argument

Else Command

The else command executes the remainder of the current line if $test is false (0).

$test is builtin system variable which is set by several commands to indicate if they
were successful. No preceding if command is required. Two blanks must follow the
command.

 else write "error",! halt ; executed if $test is false

 else do
 . write "error",!
 . halt

For Command 1

The for command loops. It can be iterative with the basic format:

 for variable=start:increment:limit

 for i=1:1:10 write i,! ; writes 1,2,...9,10
 for i=10:­1:0 write i,! ; writes 10,9,...2,1,0
 for i=1:2:10 write i,! ; writes 1,3,5,...9
 for i=1:1 write i,! ; no upper limit ­ endless

For Command 2

For commands can be nested:

 for i=1:1:10 write !,i,": " for j=1:1:5 write j," "

output:

1: 1 2 3 4 5
2: 1 2 3 4 5
3: 1 2 3 4 5
.
.
.
10: 1 2 3 4 5

For Command 3

A comma list of values may also be used:

for i=1,3,22,99 write i,! ; 1,3,22,99

Both modes may be mixed:

for i=3,22,99:1:110 write i,! ; 3,22,99,100,...110
for i=3,22,99:1 write i,! ; 3,22,99,100,...

With no arguments, the command becomes loop forever (two blanks required after
for):

set i=1
for write i,! set i=1+1 quit:i>5 // 1,2,3,4,5

For with Quit 1

Quit terminates a for loop. Note the two blanks after for and do

 set i=1
 for do quit:i>5
 . write i,!
 . set i=i+1

writes 1 through 5

For with Quit 2

The quit causes a block to terminate and control to be returned to the invoking line of
code:

 for i=1:1:10 do
 . write i
 . if i>5 write ! quit
 . write " ",i*i,!

output:

1 1
2 4
3 9
4 16
5 25
6
7
8
9
10

Nested For with Quit

 for i=1:1:10 do
 . write i,": "
 . for j=1:1 do quit:j>5
 .. write j," "
 . write !

output:

1: 1 2 3 4 5 6
2: 1 2 3 4 5 6
3: 1 2 3 4 5 6
.
.
.
8: 1 2 3 4 5 6
9: 1 2 3 4 5 6
10: 1 2 3 4 5 6

Goto Command

Transfer of control to a local or remote label. Return is not made.

 goto abc ; go to label abc in current routine
 goto abc^xyz.mps ; go to label abc in file xyz.mps

goto abc:i=10,xyz:i=11 ; argument level postconditionals

Note: the arguments of both the do and goto commands may be individually
postconditionalized as seen above. The commands themselves may be
postconditionalized as well.

Halt Command

The halt command terminates a program.

 halt

The program terminates. Halt takes no arguments but may be postconditionalized.

Two blanks are required after the command if there is another command on the line
(meaningful only if the halt is postconditionalized).

Hang Command

Pause the program for a fixed number of seconds. Both halt and hang have
the same abbreviation (h) but the hang has an argument and the halt does
not. Both may be postconditionalized.

 hang 10 ; pause for 10 seconds

If Command

 Command Output
 set i=1,j=2,k=3
 if i=1 write "yes",! ; yes
 if i<j write "yes",! ; yes
 if i<j,k>j write "yes",! ; yes
 if i<j&k>j write "yes",! ; does not write
 if i<j&(k>j) write "yes",! ; yes
 if i write "yes",! ; yes
 if 'i write "yes",! ; does not write
 if '(i=0) write "yes",! ; yes
 if i=0!(j=2) write "yes",! ; yes
 if a>b open 1:"file,old" else write "error",! halt
 ; the else clause never
 ; executes
 if write "hello world",! ; executes if $test is 1
 else write "goodbye world",! ; executes if $test is 0

If and Else Commands

The if command executes the remainder of the line it appears on if it is followed by an
expression and if the expression is true (evaluates as non-zero).

 if a>b open 1:"file,old"

If sets $test. If the final predicate of the if is true, $test is 1, 0 otherwise. (if
commands may have more than one predicate).

An if with no arguments executes the remainder of the line if $test is true. An if with
no arguments must be followed by two blanks.

The else command is not directly related to the if command. An else command
executes the remainder of the line if $test is false (0). An else requires no preceding if
command. An else command following an if command on the same line will not
normally execute unless an intervening command between the if and else changes
$test to false. The else command never has argumements and is always followed by
two blanks.

Job Command

Creates an concurrently executing independent process. Implementation
defined.

Kill Command

The kill command deletes local and global variables and array elements.

 kill i,j,k ; removes i, j and k from the local
 ; symbol table
 kill (i,j,k) ; removes all variables except i, j and k
 kill a(1,2) ; deletes node a(1,2) and any descendants
 ; of a(1,2)
 kill ^a ; deletes the entire global array ^a
 kill ^a(1,2) ; deletes ^a(1,2) and any descendants
 ; of ^a(1,2)

Lock Command

The lock command marks for exclusive access a global array node and its
descendants.

 lock ^a(1,2) ; requests ^a(1,2) and descendants
; for exclusive access

Lock may have a timeout which, if the lock is not granted, will terminate the command
and report failure/success in $test.

Implementations vary. Lock is a voluntary signaling mechanism and does not
necessarily prevent access. Consult documentation. See also: transaction processing.

Merge Command

The merge command copies one array and its descendants to another.

 merge ^a(1,2)=^b ; global array ^b and its
; descendants are copied
; as descendants of ^a(1,2)

New Command

The new command creates a new copy of one or more variables pushing any previous
copies onto the stack. The previous copies, if any, will be restored when the block
containing the new command ends.

 if a=b do
 . new a,b ; variables local to this block

. set a=10,b=20

. write a,b,!

; the previous values and a and b, if any, are restored.
; the versions of a and b from the block are deleted

Open, Use and Unit Numbers

The format of the open command is implementation dependent. In Open Mumps, unit
numbers are used. Unit 5 is always open and considered to be the console and is
always open for both input and output. In Linux terms, unit 5 is stdin and stdout. Other
unit numbers are available for assignment by the open command.

In Open Mumps, the format of the argument to an open command is the unit number
followed by a colon followed by a string. The string must contain a file name followed
by a comma followed by one of the keywords old, new, or append.

old means that the file exists and is being opened for input.

new means that the file is to be created and is being opened for output.
append means that the file is being opened for output and new data will be appended
to existing data.

Open arguments vary widely depending on implementation.

Open Mumps Open & Use Example

 open 1:"aaa.dat,old" ; existing file
 if '$test write "aaa.dat not found",! halt

 open 2:"bbb.dat,new" ; new means create (or re­create)
 if '$test write "error writing bbb.dat",! halt

 write "copying ...",!

 for do
 . use 1 ; switch to unit 1
 . read rec ; read from unit 1
 . if '$test break
 . use 2 ; switch to unit 2
 . write rec,! ; write to unit 2
 close 1,2 ; close the open files
 use 5 ; revert to console i/o
 write "done",!

Open with Variables

 set in="aaa.dat,old"
 set out="bbb.dat,new"
 open 1:in
 if '$test write "error on ",in,! halt
 open 2:out
 if '$test write "error on ",out,! halt
 write "copying ...",!
 for do
 . use 1
 . read rec
 . if '$test break
 . use 2
 . write rec,!
 close 1,2
 use 5
 write "done",!

I/O Format Codes

The read and write commands have basic format controls for output intended to be
displayed or printed. These codes are embedded among command arguments. While
they are mainly used with the write command, the read command permits a a written
prompt.

! - new line (!! means two new lines, etc.)

- new page

?x - advance to column "x" (newline generated if needed).

Read Command

The read command reads an entire line into the variable. The command may include a
prompt which is written to the device. Reading takes place from the current I/O unit
(see $io). Variables are created if they do not exist.

 read a ; read a line into a
 read a,^b(1),c ; read 3 lines
 read !,"Name:",x ; write prompt then read into x

; prompts: constant strings, !, ?
 read *a ; read ASCII numeric code of char typed
 read a#10 ; read maximum of 10 characters
 read a:5 ; read with a 5 second timeout

; $test will indicate if anything was read

Set Command

The set command is the basic assignment command. Each argument consists of a
variable or function reference on the left hand side of the assignment operator (=) and
an expression to the right. The right hand expression is evaluated and assigned to the
variable or passed to the function on the left.

 set a=10,b=20,c=30,x=”abc.def.ghi”
 set $piece(x,”.”,2)=”000”

In the second example, the second ‘piece’ of x changes from def to 000.

Expressions of the form:

 set a=b=c=10

are not permitted in Mumps.

Database Transaction Commands

Some versions of Mumps permit database transaction commands. The implementation
of these varies so the following commands may or may not be implemented. Check
your implementation's documentation for details.

TCommit
TREstart
TROllback
TSTART

In Open Mumps these are not implemented. However, when used with a SQL backend
store (MySQL or PostgreSQL), the full range of SQL transaction controls are available.

Use Command

The use command selects the I/O unit to be used by the next read or write command.
This unit remains in effect for subsequent I/O activity until changed by another use
command.

Implementation of this command will be vendor specific.

At any given time, one I/O unit is in effect. All read and write operations default to the
current unit until explicitly changed.

 use 2 ; unit 2 must be open

View Command

The view command is vendor defined. It is often used for debugging or similar
activities. It is not implemented in Open Mumps.

Write Command

The write command writes text lines to the current I/O unit.

The format codes !, # and ?exp may be used to skip lines (!), skip to the top of a page
(#), or indent to a specific column (?exp), respectively.

 write "hello world",!
 set i="hello",j="world" write i," ",j,!
 set i="hello",j="world" write i,!,j,!
 write 1,?10,2,?20,3,?30,4,!!

Xecute Command

The xecute command is used to dynamically execute strings as though they
were code.

 set a="set b=10+456 write b"
 xecute a ; 466 is written

 set a="set c=""1+1"" write @c"

 xecute a ; 2 is written

 set b="a"
 xecute @b ; 2 is written

 for read x xecute x ; read and xecute input

Z... Commands

Z commands are commands that begin with the letter Z and are
implementation defined. They have no standard meaning.

Navigating Arrays 1

Global (and local) arrays are navigated by means of the $data() and $order()
functions.

The $data() function determines if a node exists, whether it has data assigned to it,
and if it has descendants.

The $order() permits you to move from one sibling node to another at a given level of
an array tree (global or local).

The function $data() returns a 0 if the array reference passed as a parameter does not
exist. It returns 1 if the node exists but has no descendants, 10 if it exists, has no data
but has descendants, and 11 if it exists, has data and has descendants.

The $order() function returns the next higher (or lower) value of the last index in the
array reference passed to the function.

Navigating Arrays 2

Function $order(), by default, returns indices in ascending collating sequence
order unless a second argument of -1 is given. In this case, the indices are
presented in descending collating sequence order.

$order(“”) returns the first value (or last value when the second argument is
-1) of the last index of the array reference passed to it.

$order() returns an empty string when there are no more nodes at this level
of an array tree.

Navigating Arrays 3

 kill ^a ; all prior values deleted
 for i=1:1:9 set ^a(i)=1 ; initialize

 write $data(^a(1)) ; writes 1
 write $order(^a("")) ; writes 1
 write $order(^a(1)) ; writes 2
 write $order(^a(9)) ; writes the empty string (nothing)

 set i=5
 for j=1:1:5 set ^a(i,j)=j ; initialize at level 2

 write $data(^a(5)) ; writes 11
 write $data(^a(5,1)) ; writes 1
 write $data(^a(5,15)) ; writes 0
 write $order(^a(5,"")) ; writes 1
 write $order(^a(5,2)) ; writes 3

 set ^a(10)=10
 write $order(^a(1)) ; writes 10
 write $order(^a(10)) ; writes 2

 set ^a(11,1)=11
 write $data(^a(11)) ; writes 10
 write $data(^a(11,1)) ; writes 1

Navigating Arrays 4

The following writes 1 through 5 (see data initializations on previous slide)

 set j=""
 for set j=$order(^a(5,j)) quit:j="" write j,!

The following writes one row per line:

 set i=""
 for do
 . set i=$order(^a(i))
 . if i="" break
 . write "row ",i," "
 . if $data(^a(i))>1 set j="" do
 .. set j=$order(^a(i,j))
 .. if j="" break
 .. write j," " ; elements of the row on the same line
 . write ! ; end of row: write new line

Indirection 1

Indirection is indicated by means of the unary indirection operator (@) which
causes the string expression to its right to be executed as a code expression.

Indirection permits strings created by your program, read from a file, or loaded
from a database can be interpretively evaluated and executed at runtime as
expressions.

Note: The xecute command permits entire commands and lines of code to be
executed. The @ operator applies to expressions.

Indirection 2

 set i=2,x=”2+i”
 write @x,! ; 4 is written
 set a=123
 set b="a"
 write @b,! ; 123 is written
 set c="b"
 write @@c,! ; 123 is written
 set d="@@c+@@c"
 write @d,! ; 246 is written
 write @"a+a",! ; 246 is written
 set @("^a("_a_")")=789 ; equiv to ^a(a)=789
 write ^a(123),! ; 789 is written
 read x write @x ; xecute the input expr as code
 set a="^m1.mps" do @a ; routine m1.mps is executed
 set a="b=123" set @a ; 123 is assigned to variable b

Subroutines 1

Originally, subroutines were ordinary local blocks of code in the current routine or in
files of source code on disk. These were (and still can be) invoked by a do command
whose argument is a label indicating the first line of the code block, or the name of a
file, or some combination of these.

With this form of subroutine invocation, there are no parameters or return values.
However, the full symbol table is accessible to such a subroutine and any changes to a
variable made in an invoked block are available upon return. This form of subroutine
call is similar to the early BASIC GOSUB statement.

Later versions of Mumps permitted parameters and, for functions, return values. Both
call by value and call by name are supported.

These later changes to Mumps also permit the programmer to create variables local to
the subroutine (using the new command) which are deleted upon exit.

In most cases, the full symbol table of variables, still remains accessible to a
subroutine.

In all cases, all global variables are available to all routines.

Subroutines 2

; original style of Mumps subroutine invocation

 set i=100
 write i,! ; writes 100
 do block1 ; invoke local code block
 write i,! ; writes 200
 halt

block1 set i=i+i
 quit ; returns to invocation point

Subroutines 3

Invoking a subroutine original style:

 do lab1 ; call local code block
 do ^file1.mps ; call file containing program
 do lab2^file1.mps ; call file, entry point lab2

Invoking a subroutine with parameters (call by value):

 do lab2(a,b,c) ; call local label with params
 do ^file2.mps(a,b,c) ; call file program with params
 do lab2^file2.mps(a,b,c) ; call file with params, at entry point
 ; lab2

If you pass parameters, they are call by name unless you precede their names
with a dot:

 do lab3(.a,.b,.c) ; call local call by name
 do ^file3.mps(.a,.b,.c) ; call file call by name

Subroutines 4

This subroutine creates a variable that is not destroyed on exit. The variable is
accessible after return is made.

 do two
 write "expect 99 1 ­> ",x," ",$data(x),!
 halt

two
 set x=99
 quit

Subroutines 5

Similar to the original style, but this subroutine uses the new command to create new
copy of x which is deleted upon exit from the routine. The variable x is not available
after return is made.

 set y=99
 do one
 write "expect 99 0 ­> ",y," ",$data(x),!
 halt

one new x
 set x=100
 write "expect 99 100 ­> ",y," ",x,!
 quit

Subroutines 6

A Call by value example. Parameter variable d only exists in the subroutine. The
variable and any changes to it are lost on exit. The variable d does not exist after
return is made.

 set x=101
 do three(x)
 write "expect 0 ­> ",$d(d),! ; d only exists in the subroutine
 write “expect 101 ­> “,x,! ; x is unchanged

three(d)
 write "expect 101 ­> ",d,!
 set d=d+1
 quit

Subroutines 7

A Call by name example. Modification of z in the subroutine changes x in the
caller. Note the .x in the call. This signifies call by name.

 kill
 set x=33
 do four(.x)
 write "expect 44 ­> ",x,!

four(z)
 write "expect 33 ­> ",z,!
 set z=44
 quit

Subroutines 8

Using the new command. Subroutine one creates x and subroutine two uses it.
Changes to x in two are seen upon return to one. Variable x is destroyed upon return
from subroutine one.

 set y=99
 do one
 write "expect 99 0 ­> ",y," ",$data(x),!

one new x
 set x=100
 write "expect 99 100 ­> ",y," ",x,!
 do two
 write "expect 99 99 ­> ",y," ",x,!
 quit

two set x=99
 quit

Functions

A function with returns a value. The calling code variable i is not changed by the
subroutine (call by value). The variable i in the function is a temporary copy.

 set i=100
 set x=$$sub(i)
 write x," ",i,! ; writes 500 100
 halt

sub(i)
 set i=i*5
 quit i

Builtin Functions & Variables

Mumps has many builtin functions, called intrinsic functions, and system variables,
called intrinsic variables. These handle string manipulation, tree navigation and so on.

Each function and system variable begins with a dollar sign. Some system variables
are read-only while others can be set.

While most functions appear in expressions only and yield a result, some functions may
appear on the left hand side of an assignment operator or in read statements.

Intrinsic Special Variables 1

$Device Status of current device

$ECode List of error codes

$EStack Number of stack levels

$ETrap Code to execute on error

$Horolog days,seconds time stamp

$Io Current IO unit

$Job Current process ID

$Key Read command control code

$Principal Principal IO device

$Quit Indicates how current process invoked.

$STack Current process stack level

$Storage Amount of memory available

Uppercase characters indicate abbreviations

Intrinsic Special Variables 2

$SYstem System ID

$Test Result of prior operation

$TLevel Number transactions in process

$TRestart Number of restarts on current transaction

$X Position of horizontal cursor

$Y Position of vertical cursor

$Z... Implementer defined

Uppercase characters indicate abbreviations

Intrinsic Functions 1

$Ascii() ASCII numeric code of a character

$Char() ASCII character from numeric code

$Data() Determines variable's definition

$Extract() Extract a substring1

$Find() Find a substring

$FNumber() Format a number

$Get() Get default or actual value

$Justify() Format a number or string

$Length() Determine string length

$NAme() Evaluate array reference

$Order() Find next or previous node

$Piece() Extract substring based on pattern1

Uppercase characters indicate abbreviations.
1. Function may appear on LHS of assignment or in a read command

Intrinsic Functions 2

$QLength() Number of subscripts in an array
reference

$QSubscript() Value of specified subscript

$Query() Next array reference

$Random() Random number

$REverse() String in reverse order

$Select() Value of first true argument

$STack() Stack information

$Text() String containing a line of code

$TRanslate() Translate characters in a string

$View() Implementation defined

$Z...() Implementation defined

Uppercase characters indicate abbreviations.

$Ascii()

$Ascii(arg[,pos])

$Ascii() returns the numeric equivalent of the character argument. If a
second argument is given, it is the position of the character in the first
argument.

$A("A") yields 65 ­ the ASCII code for A
$A("Boston") yields 66 ­ the ASCII code for B
$A("Boston",2) yields 98 ­ the ASCII code for o

$Char()

$Char(nbr[, ...])

$Char() returns a string of characters corresponding to the ASCII codes given
as arguments.

$C(65) yields A ­ the ASCII equivalent of 65
$C(65,66,67) yields ABC
$C(65,­1,66) yields AB ­ invalid codes are ignored

$Data()

$Data(var)

$Data() returns an integer which indicates whether the argument exists, has data, and
descendants. The value returned is 0 if var is undefined, 1 if var is defined and has no
associated array descendants; 10 if var is defined but has no associated value (but
does have descendants); and 11 is var is defined and has descendants. The argument
var may be either a local or global variable.

 set A(1,11)="foo"
 set A(1,11,21)="bar"
 $data(A(1)) ; yields 10
 $data(A(1,11)) ; yields 11
 $data(A(1,11,21)) ; yields 1
 $data(A(1,11,22) ; yields 0

$Extract()

$Extract(e1,i2[,i3])

$Extract() returns a substring of the first argument. The substring begins at the
position noted by the second operand. Position counting begins at one.

If the third operand is omitted, the substring consists only of the i2'th character of e1.
If the third argument is present, the substring begins at position i2 and ends at position
i3.

If only e1 is given, the function returns the first character of the string e1.

If i3 specifies a position beyond the end of e1, the substring ends at the end of e1.

$extract("ABC",2) YIELDS "B"
$extract("ABCDEF",3,5) YIELDS "CDE"

$Find()

$Find(e1,e2[,i3])

$Find() searches the first argument for an occurrence of the second
argument. If one is found, the integer returned is one greater than the end
position of the second argument in the first argument.

If i3 is specified, the search begins at position i3 in argument e1. Position
counting begins with one.

If the second argument is not found, the value returned is 0.

 $find("ABC","B") YIELDS 3
 $find("ABCABC","A",3) YIELDS 5

$FNumber()

$FNumber(a,b[,c])

$Fnumber() is a function used to format numbers using codes based on local
currency flags. See your documentation for details.

 $FN(100,"P") yields 100
 $FN(­100,"P") yields (100)
 $FN(­100,"T") yields 100­
 $FN(10000,",2") yields 10,000.00
 $FN(100,"+") yields +100

$Get()

$Get(var[,default])

$get() returns the current value of a variable, or a default value, if the
variable is undefined. If a default value is not specified, the empty string is
used.

 kill x
 $get(x,"?") yields ?
 set x=123
 $get(x,"?") yields 123
 kill x
 $get(x) yields “”

$Justify()

$Justify(str,fld[,dec]))

$Justify() returns a string in which the first argument is right justified in a field whose
length is given by the second argument.

In the three argument form, the first argument is right justified in a field whose length
is given by the second argument rounded to dec decimal places.

The three argument form imposes a numeric interpretation upon the first argument. If
the field length is too small, it will be extended.

$justify(39,7) yields " 39"
$justify("test",7) yields " test"
$justify(39,7,1) yields " 39.0"
$justify(“test”,7,2) yields “ 0.00”
$justify(123.45,3) yields “123.45”

$Length()

$Length(exp[,str])

$Length() returns the length of the string (in the 1 argument form) or the
number of pieces in the string delimited by the second argument.

 set x="1234 x 5678 x 9999"
 $length(x) yields 18
 $length(x,"x") yields 3 (number parts)

$NAme()

$NAme(arrayVar[,int])

$Name() Returns a string containing an evaluated representation of all or part of the
array variable reference. It does not check to see if the array variable exists. If a
second argument is given, it specifies the portion of the representation to return: if
zero, the name of the array, otherwise the indices 1 through the value of the integer. If
no second argument is provided or if it exceeds the number of indices, the entire
representation is returned.

 set x=10,y=20,z=30,a=”abc(x,y,z)”
 $na(abc(x,y,z)) yields abc("10","20","30")
 $na(abc(x,y,z),1) yields abc("10")
 $na(abc(x,y,z),2) yields abc("10","20")
 $na(abc(10,20,25+5)) yields abc(“10”,”20”,”30”)
 $na(@a) yields abc(“10”,”20”,”30”)

abc() need not exist

$Order()

$Order(vn[,-1])

The $Order() function returns the next ascending or descending index at a
given level of an array reference. The function traverses an array from one
sibling node to the next in key ascending or descending order. The result
returned is the next value of the last index of the global or local array given as
the first argument to $Order().

The default traversal is in key ascending order by default except if the optional
second argument is present and evaluates to "-1" in which case the traversal is
in descending key order.

If the second argument is present and has a value of "1", the traversal will be in
ascending key order which is the default. In Open Mumps, numeric indices are
retrieved in ASCII collating sequence order. Other systems may retrieve
subscripts in numeric order. Check your documentation.

$Order() examples

 for i=1:1:9 s ^a(i)=i
 set ^b(1)=1
 set ^b(2)=­1
 write "expect (next higher) 1 ",$order(^a("")),!
 write "expect (next lower) 9 ",$order(^a(""),­1),!
 write "expect 1 ",$order(^a(""),^b(1)),!
 write "expect 9 ",$order(^a(""),^b(2)),!
 set i=0,j=1
 write "expect 1 ",$order(^a(""),j),!
 write "expect 9 ",$order(^a(""),­j),!
 write "expect 1 ",$order(^a(""),i+j),!
 write "expect 9 ",$order(^a(""),i­j),!

 set i=""
 write "expect 1 2 3 ... 9",!
 for set i=$order(^a(i)) quit:i=”” write i,!

 set i=""
 write "expect 9 8 7 ... 1",!
 for set i=$order(^a(i),­1) quit:i="" write i,!

$Piece()

$Piece(str,pat[,i3[,i4]])

The $Piece() function returns a substring of the first argument delimited by the instances of the
second argument.

The substring returned in the three argument case is that substring of the first argument that lies
between the i3 minus one and the i3 occurrence of the second argument.

In the four argument form, the string returned is that substring of the first argument delimited by
the i3 minus one instance of the second argument and the i4 instance of the second argument. If
only two arguments are given, i3 is assumed to be 1.

The function may appear on the left hand side of an assignment operator in which case the
substring addressed is replaced by the result of the right hand side of the assignment operator.

$piece("A.BX.Y",".",2) yields "BX"
$piece("A.BX.Y",".",1) yields "A"
$piece("A.BX.Y",".") yields "A"
$piece("A.BX.Y",".",2,3) yields "BX.Y"

set x="abc.def.ghi"
set $piece(x,".",2)="xxx" causes x to be "abc.xxx.ghi"

$QLength()

$QLength(string)

$QLength() returns the number of subscripts contained in the array
reference in the string argument

 set x=”a(1,2,3)”
 write $qlength(x)
 write $qlength(“^a(i,j)”),!
 write $qlength(“a”),!

 writes 3, 2 and 0

$QSubscript(string, int)

$QSubscript(string,int)

The $QSubscript() function returns a portion of the array reference given by
the first string. If the second integer argument is -1, the environment is
returned (if defined in your implementation), if 0, the name of the global array
is returned. In Open Mumps, subscripts of arrays are evaluated before being
returned.

For values greater than 0, the value returned is that of the associated
subscript.

If a value exceeds the number of indices, an empty string is returned.

$QSubscript() Examples

 set i=10,j=20,k=30
 set x=”^a(i,j,k)”
 write $qsubscript(x,0),!
 write $qsubscript(x,1),!
 write $qsubscript(x,2),!
 write $qsubscript(“^a(i,j,k)”,3),!

writes ^a, 10, 20, and 30 respectively.

Note that in Open Mumps, unlike other versions, the indices of the array are
evaluated.

$QUery()

$QUery(string)

The $QUery() function returns the next array element in the array space
denoted by the string argument.

The argument to $query(string) is a global or local array reference (not a
string like the other $q... functions). The value returned is a string containing
the next ascending entry in the array space or, if there are no more, the
empty string.

$QUery() Examples

 set a(1,2,3)=99
 set a(1,2,4)=98
 set a(1,2,5)=97

 set x="a"
 set x=$query(@x)
 write "expect a(1,2,3) ",x,!

 set x=$query(@x)
 write "expect a(1,2,4) ",x,!

 set x=$query(@x)
 write "expect a(1,2,5) ",x,!

 write “expect a(1,2,3) “,$query(a(1)),!

$Random()

$Random(int)

$Random() returns a random number between zero and one less than the
integer argument.

 $random(10) yields a random number between 0
 and 9

$Reverse()

$REverse(str)

$Reverse() returns the string passed as the argument in reverse order.

$reverse("abc") yields cba

$Select()

$Select(texp1:exp1[,...])

$Select() evaluates each truth valued expression (texp1, ...) and, if true,
returns the result of the corresponding expression following the colon (:).
Evaluation terminates at the first true expression.

set x=10
$select(x=9:"A",x=10:"B",x=11:"C",1:””) yields B

set x=22
$select(x=9:"A",x=10:"B",x=11:"C",1:””) yields “”

$Stack()

$STack(intexp1[,...])

$Stack() returns information concerning the Mumps stack environment based
on the numeric codes supplied. Consult your documentation for details as the
relate to your implementation. Not implemented in Open Mumps.

$Text()

$Test(entryRef)

$Test() returns a string from the routine at the location given by the entry
reference (label, offset, and/or routine).

Assume the program code:

L1 set a=10
 set b=20
 set c=30
; line of comment

$text(L1) yields "L1 set a=10"
$text(L1+1) yields " set b=20"
$text(4) yields "; line of comment"

$TRanslate()

$TRanslate(exp1[,exp2[,exp3)

Returns exp1 after dropping or substituting characters. If the second and third
operands are omitted, the original string is returned. Characters from the first
operand are selected if they occur in the second and (1) are replaced by the
character from the third operand which positionally corresponds to the second
operand or, (2) dropped if there is no corresponding third operand character
(third operand is shorter than second).

 set x="arma virumque cano"

 $tr(x,"a") yields "rm virumque cno"
 $tr(x,"a","A") yields "ArmA virumque cAno"

$View()

$View()

$View() is implementation defined.

$Z....()

$Z...()

$Z...() functions are added by the implementor and are, thus, implementation
defined. See your documentation.

Programming Example A.1

We have a file of text each very lone line of which is represents an abstract from a medical journal.

The first token (tokens are delimited by a blank) on each line is a number that refers back to the
original journal article. This is followed by the article number (1,2,3...). There then follow an
arbitrary number of word tokens each separated from one another by a blank.

The words are the text of the abstract of the original journal article modified as follows:

1) All words are in lower case and punctuation, except for hyphens, has been removed.
2) Common words (and, or, the ...) have been removed.
3) The resulting lane may be very long if the original abstract was long.

There is a Mumps global array named ^Title indexed by document number that contains the
original article's title.

Programming Example A.2

Example line from the file:

5745 5 platelet affinity serotonin increased alcoholics former alcoholics biological marker dependence?
kinetics serotonin platelet uptake were studied alcoholics former alcoholics see whether differences
found between alcohol-preferring non-preferring rats could reproduced man three groups patients were
studied dependent alcoholics admission treatment dependent alcoholics after days treatment former
dependent alcoholics abstinent years controls were non-alcoholics matched age sex km serotonin
uptake platelets lower patients from three groups compared controls this phenomenon could congenital
induced the previous excessive intake alcohol believe that this increased platelet affinity serotonin the
absence cirrhosis the liver or depression could a marker alcohol dependence enabling therapeutic effort
be focussed these patients

This is article 5. The contents of ^Title(5) are:

Platelet affinity for serotonin is increased in alcoholics and former alcoholics: a biological marker for
dependence?

Programming Example A.3

Objective: Write a Mumps program that will permit Boolean searching of words in the
file.

For example, if we want to find all the articles containing both seratonin and cirrhosis,
we would enter the following to our Mumps program:

 serotonin & cirrhosis

The program will scan the file and locate those abstracts containing both words and
respond by printing the abstract number and title of the corresponding article.

Programming Example A.4

For example:

$./slides.boolean.mps

Enter query terms serotonin & cirrhosis

Mumps expression to be evaluated on the data set: $f(line,"serotonin")&$f(line,"cirrhosis")

5 Platelet affinity for serotonin is increased in alcoholics and former alcoholics

10000 documents searched

(long titles truncated)

Programming Example A.5

Another Example:

$./slides.boolean.mps

Enter query terms serotonin & platelet

Mumps expression to be evaluated on the data set: $f(line,"serotonin")&$f(line,"platelet")

5 Platelet affinity for serotonin is increased in alcoholics and former alcoholics
269 Cooperative mediation by serotonin S and thromboxane A prostaglandin H receptor
2724 The effect of ketanserin on blood pressure and platelets during cardiopulmonary
3804 Hypersensitivity of phospholipase C in platelets of spontaneously hypertensive r
8399 Cerebral vasoconstrictor responses to serotonin after dietary treatment of ather

10000 documents searched

(long titles truncated)

Programming Example A.6

The program:

1) #!/usr/bin/mumpsRO
2) # Copyright 2016 Kevin C. O'Kane
3) # boolean.mps February 14, 2014
4) # assumes that ^titles(docnbr) exists
5)
6) read "Enter query terms ",query
7)
8) set query=$zlower(query)
9) set exp=""
10)
11) for i=1:1 do
12) . set w=$piece(query," ",i)
13) . if w="" break
14) . if $find("()",w) set exp=exp_w continue
15) . if w="|" set exp=exp_"!" continue
16) . if w="~" set exp=exp_"'" continue
17) . if w="&" set exp=exp_"&" continue
18) . set exp=exp_"$f(line,"""_w_""")"
19)
20) write !,"Mumps expression to be evaluated on the data set: ",exp,!!
21)

Programming Example A.7

22) set $noerr=1 // turns off error messages
23) set line=" " set i=@exp // test trial of the expression
24) if $noerr<0 write "Expression error number ",­$noerror,! got to again
25)
26) set M=10000
27)
28) set file="osu.converted,old"
29)
30) open 1:file
31) if '$test write "file error",! halt
32)
33) set i=0
34)
35) for j=1:1:M do
36) . use 1
37) . read line
38) . if '$test break
39) . if @exp do
40) .. set off=$piece(line," ",1)
41) .. set docnbr=$piece(line," ",2)
42) .. use 5
43) .. write docnbr,?10,$e(^title(docnbr),1,80),!
44)
45) use 5
46) write !,M," documents searched",!!
47) halt

Programming Example A.8

The details:

The program initially reads in a query in the form of a logical expression involving words, parentheses and symbols
separated by blanks. For example:

 word1 & word1
 (word1 & word2) | word3
 (word1 | word2) & (word4 | word5)
 (word1 & word2) & ~ word3

where & means and, | means or and ~ means not. Thus, the last expression above would retrieve titles of those
documents that contain both word1 and word2 but not word3.

The program initially converts all query text to lowercase using a built in function. It then extracts each blank delimited
token and builds a Mumps logical expression that corresponds to the input. In place of words, the program substitutes an
expression of the form:

$f(line,"word1")

The end result is an executable Mumps expression (exp). for example, the 3rd expression above would translate to:

($f(line,"word1")!$f(line,"word2"))&($f(line,"word4")!$f(line,"word5"))

Programming Example A.9

The expression in exp is then tested for syntax (a special feature of the Open Mumps Interpreter):

 set $noerr=1 // turns off error messages
 set line=" " set i=@exp // test trial of the expression
 if $noerr<0 write "Expression error number ",­$noerror,! got to again

If the expression parses, the program proceeds to read (up to a limit) lines from the file of abstracts and apply
the expression to each line. The builtin variable $noerr is less than zero if the expression contains a syntax error.

Programming Example A.10

If the expression parses, the program proceeds to read (up to a limit) lines from the file of abstracts and apply
the expression (exp) to each line:

 for j=1:1:M do
 . use 1
 . read line
 . if '$test break
 . if @exp do
 .. set off=$piece(line," ",1)
 .. set docnbr=$piece(line," ",2)
 .. use 5
 .. write docnbr,?10,$e(^title(docnbr),1,80),!

If the expression is true, that is, the words are found (or not found) by $find() and the and / or / not logic is true,
the title corresponding to the abstract number is fetched and printed.

	Mumps Tutorial
	Mumps History
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Mumps Syntax
	Variables 1
	Variables 2
	Variables 3
	Example Variables
	String Constants
	Numeric Constants
	Mixed Strings & Numeric Constants
	Numeric Interpretation of Strings
	Logical Values
	Logical Expressions
	Arrays 1
	Arrays 2
	Arrays 3
	Array Examples
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	String Indices
	Access to Mumps Arrays
	Slide 37
	Global Array Examples
	Slide 39
	Slide 40
	Mumps Commands
	Postconditionals 1
	Postconditionals 2
	Slide 44
	Slide 45
	Operator Precedence
	Operators 1
	Operators 2
	Pattern Match Operator
	Logical Operators
	Indirection Operator
	Commands 1
	Commands 2
	Commands 3
	Syntax Rules 1
	Syntax Rules 2
	Non-Standard Syntax Rules
	Line Syntax Examples
	Blocks 1
	Blocks 2
	Blocks 3
	Slide 62
	Slide 63
	Slide 64
	Blocks and $Test 2
	Quit 1
	Quit 2
	Quit 3
	Quit 4
	Quit 5
	Quit 6
	Break
	Close Command
	Do Command
	Else Command
	For Command 1
	For Command 2
	For Command 3
	For with Quit 1
	For with Quit 2
	Nested For with Quit
	Goto Command
	Halt Command
	Hang Command
	If Command
	If and Else Commands
	Job Command
	Kill Command
	Lock Command
	Merge Command
	New Command
	Open, Use and Unit Numbers
	Open & Use Examples
	Open with Variables
	I/O Format Codes
	Read Command
	Set Command
	Database Transaction Commands
	Use Command
	View Command
	Write Command
	Xecute Command
	Z... Commands
	Navigating Arrays 1
	Navigating Arrays 2
	Navigating Arrays 3
	Navigating Arrays 4
	Indirection 1
	Indirection 2
	Subroutines 1
	Subroutines 2
	Subroutines 3
	Subroutines 4
	Subroutines 5
	Subroutines 6
	Subroutines 7
	Subroutines 8
	Functions
	Builtin Functions & Variables
	Intrinsic Special Variables 1
	Intrinsic Special Variables 2
	Intrinsic Functions 1
	Intrinsic Functions 2
	$Ascii()
	$Char()
	$Data
	$Extract()
	$Find()
	$FNumber()
	$Get()
	$Justify()
	$Length()
	$NAme()
	$Order()
	$Order() examples
	$Piece()
	$QLength()
	$QSubscript()
	$QSubscript() Examples
	$QUery()
	$QUery() Examples
	$Random()
	$Reverse()
	Slide 144
	$Select()
	$Text()
	$TRanslate()
	$View()
	$Z....()
	Programming Example A.1
	Programming Example A.2
	Programming Example A.3
	Programming Example A.4
	Programming Example A.5
	Programming Example A.6
	Programming Example A.7
	Programming Example A.8
	Programming Example A.9
	Programming Example A.10

