MDH: The Multi-Dimensional and Hierarchical
Database Toolkit Programmer's Guide

Version 2.1

Kevin C. O'Kane::que

kc.okane@gmail.com

http://threadsafebooks.com/
http://www.cs.uni.edu/~okane/

June 3, 2020

Note: this document is under construction.

Table of Contents

1 Part I - Programmers GUIde......cccieiiiiiiiiiiiiiiiiiiiiaieiiieceieicerererersssssscessscessssessssesss 4
I R [N =TT (U o 1 T N T PP 4
2 Creating Global ATTaysS.....ccccieiiiiiiiiinininiiiiiiiiiiiiiiiriiisteissssssssasssessssessasessasessasessns 4
2.1 STRUCTURE OF GLOBAL ARRAYS. . euuutttuittettneeetertaeeeteetneestaeesneeteesneetetsteetrestestrtstaessnrsssaesrnsessaersneeneees 5
3 Compiling ProgramsS......cccccieiiiieieiieieceisacetsssecesssssssssscessssssesssssssssscsssssssssssssssssasse 8
4 AccessSing Global ATTaysS.....ccceieiieiiiiieiiiieieiiiseciisecetersscetessscessssesssssssosssssssssssssans 8
4.1 GLOBAL ARRAY INDICES. .. .uuiiuiitiiiiiie ittt e et e et e et et e et e et e et e e et e et e et e e s e et e et e et e e tneean e sneetneetnesnasnaens 8
.2 INAVIGATING GLOBALS. ..etutittneittteetettt et e ettt e et e ettt e et et st eeta e st e et s st aeta e saneetneatnestaestnsssaestnrssnaestnessneesassns 8
4.3 LOCKING THE DATA BASE. .. ittt et et e e et e et e et e e et e et e e et e st e e e eneeneas 12
5 Invoking the Mumps INterpreter......ccccccieiiiiiiiiiieiiiieieiiecesciecescescsscesssscsssossonses 12

6 Writing Active Web Server Pages.......cccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiiercicscenes 12

A O3 F- 11500 1 0 153 1 o 1 o N 14
8 DIreCE BII@e ACCESS...cuiiiuiniieieiiiieiiiesecersecetsssscessssssessacesssssssssssssssssssssssssssssssnse 21

9 Function and Macro LiDrary....c.cccccciieiiiieiiiiiieiiiieciieseceteesecessacesessscessssesesssssnsss 22
9.1 GLOBAL ARRAY OPERATIONS USING CLASS GLOBAL..1tttutiitneirtieeteeetiettaeeetterteeeteesteeetaeesneeeteetaesiesaesaesneeneenees 23
9.1.1 Arithmetic Operations on Global ATTaYS.......cccueiiiiiiieiiiiiiie et e e e e e aeereeaaeeans 23
9.1.2 Assignment Operations on GloDal ATTAYS......c.cviuiiiiiiiiiiiiiiie e e et eie e e e e e e eaeanas 24
9.1.3 Global Array Access and Manipulation FUNCtiONS...........ccuoviiiiiiiiiiiiiiiniie e 25
9.1.3.1 Accessing the Value Stored in a Global Array Element...........c.ccoovviiiiiiiiiiiiieineenne, 25

S0 G T D T - 1 TSRS 26

1S R R TS T I 4 Y=Y o o 0 1 o) P 26

S G TR S U o} o o3 S TSRS 27

1S IR G 8 T 0011 11 1 () PO TP 27
9.1.3.6 GlobalGet(), GlobalData(), GlobalSet().....c.vuininieieiiiiii s 28
9.1.3.7 double HiIitRAtIO(VOIA)uiuinininiiiii ettt ettt et e e te e et nenenaans 28

S IR G % < T G 11) PSR 28

S IR G TS T 1Y 3 Yo 1 o1) TS 29

1S IR NG T O I o ol o) o =1 B3 1o od -« () 29
9.1.3.11 double global::MaX()....ueeuueiieiiieiiee et et e e e iee et e e e et e et e s e e et et et e a e et aaaanaaaas 29

http://threadsafebooks.com/
http://www.cs.uni.edu/~okane/

9.1.3.12 int global::Merge(global).......ccuuiiiiiiiiiii e e 29
9.1.3.13 double global::MiN().....ccueiieiiiiiie ettt e aaaaas 30

S IR R 0 I AV U1 o] 7 () TN 30

S I O TR S T A= 1 1= () TP 31

S IR T T S I 5 e =Y () 31

1S 0 R 01 A\ o { () T PPN 32
9.1.3.18 CleanLocCKs(), CleanAlILOCKS (). .uuiuinieieiiiiiie ettt et et een e eae e e eenens 33

S I T T I €1 o) o =1 [0 Lo F=] < 33

S T O T2 O I = v o =11 () 33
9.1.3.21 QUETY fUNCHIONIS .. itiiieie ettt e e e e et e et e et e et e et e et e eaneeaneanaensanaaaaneanns 34
9.1.3.22 Similarity functions: Sim1(), Cosine(), Jaccard(), Dic€()......ccceevririiiiiiriiiiiiieeineenneenn 36

1S I NG 207G T I =10 1] 1o 1o =Y () P PP 39

1S IR R 7972 S O =Y o 1 oo) (o [() FO O PP P 40
9.1.3.25 Correlation functionsL: TermCorrelate(), DocCorrelate().....cccovvvvvviiiiiiniiiiiiiiininninn.. 41

S I R 707 S T 1 D) o F TP 44

S T O T A A Y U oo Y TP 45

9.2 MSTRING OPERATIONS AND IVIANIPULATIONS. ... cttttnitttneentttesne et tesnsessssnssasanssasansaessnsensssnsensssssnsssssnsensnsenns 45
9.2.1 Arithmetic Operations 0N MSEIINgS.iii i e e et e e e e e e e e eaaanns 45
9.2.2 Assignment Operations 0n MSETINGS.......viiiiiiiiiiiiiiiir et e s e et e e e eeneanes 45
9.2.3 Functions of Class MSEIiNgiiuiiiiiiiiiie e e e e e e e e e et e et et e e e enans 45
1S I TR o1 v4 () T 45

1S IO T ¢ (Yol o) =1 X1 () PP 46

1S J2ANC TS T 5 Voo o 1Y = 1 1LY 1 () O 46

S IO I <Y s [1] () T PP 46

1S G T T 4 <) o] £ Lo Y F PP 46

S IR Y T o 1 of () P 46

1S I T T 1 o PO PP UPTPRUPPRN 46

S TR TR < T o 1 <Y [() T 46

1S I G T © T o 1= To 11 0 £ PR 47

1S I T A R o 1 o TS PPt 47

S IR TR I 1§ 1= o 1 7 PRI 47

1S IR T G T £ =Y o o () FR 48

S IO TN S i 1 s Lo [T O PP PP 48

1S J0Z0C T I T = o] oo [Yo TS 48

1S IO TR S T 01 oA f) F U OO PPTP 48

S TN TR = 1=To3 11 () T 48
9.2.3.18 Evaluate a MUmMPS EXPIeSSION.ttt e e e e e e e e ae e eaeeans 49
1IN T S I o=\ 1 (=) o 1 T 49

S IO T O B Y ol [PP 49

1S I T8 B = T=Yo! =1) F U OO PPS 49
9.2.3.22 SHIEAQUETY (). uuvvrrrrereeeeeeeeeeeeecitieee e e e e e e e e e e eeeeaeeeeeeeeeeeeeeeeeasaassaeaeeeeeeeeeeessssssreseeeeeees 50

1S IR TG T =Y o' |) F P TP 51
9.2.3.24 REAAIIINE() .. ettt ettt ettt et e e e e e e 51

S I G TS T 2 1 L L= o () DTSRt 51

S IR T S T oY <=1 s | TP 51
9.2.3.27 SCANAINUINI() . ..uitiitiiitiieiie ettt e e e e e e et et et e et et es e s ernernernerneneenenennens 51

S IR T S T =Y o' |) T 52

.3 VIISCELANEOUS FUNCTIONS. 111 ttuttetnsensssnssnssssssnsssssnsesssnssassnesssnssssnseasssnsssssssensstssnsstsesnsessssnsensesnsensens 52
9.3.1 Boyer-Moore-GOSPEr FUNCEIONS .. cuuiuiiiiii ittt et et e et e e e e e eaeeae et eae e eneaanan 52
1 IR T o o () F 54
9.3.3 XecUte() and COMIMATIAN) .. uueinin ittt ettt et ea ettt et eneaeaeaettenenensasseeetenenensenenens 54
L0 TR TR A 8 o o) Y =T 77 Vo 1= ST 54
1S JRC TR T 5 v 4 o) all 25 (o] =Y o 1 10 s £ JS TSP 54
LSRG TSI = 1 2= (o] () 55
9.3.7 Hashing fUNCLIONS.t e e e e e et e et e et e et e s e s eaaeaaeenens 55
9.3.8 Dump Global ArTay DatabasSe........ceuuiiiiiiiiiiiie e e e e e e e e aans 56
0.3.9 SETEa@IM OULDUL. .. oniii ettt et et e e e e e et et et et et e e e e e e ean et e anaanans 56
9.3.10 Smith-Waterman Alignment FUNCEION.........c.iiiiiiiii e e s 56
9.3.11 Stop list functions: StOpPINIT(), SEOPLOOKUD().euuieruniirereiieiiinieeieeeineerieeeieeneeieeneeaeeeneennees 57
9.3.12 Synonym Functions: SymInit(), SYN()....ccuoetiuriiiiiiiiiiiiietiiin ettt et et e e e e eaeaaeas 58

N

O.3.13 DT SUOST. ittt ettt e e et 58
9.3.14 XECULE().euuniiiiiiiiiiiiii ittt ettt e et e e eaa e e 58
LS A 1=Y=) O A =) 1 TP 58
1O APPENAIX A..ooiiiiiiiiiiieiiiieiiiiietettececessecessssesessssessnsonse 59
L10.1 CODE EXAMPLES. ... ettt e ettt ettt oottt e oottt oo e e e ettt e e e ettt b e e e e et et b e e e e e et bh e e e e e abb e e eba e eea s 59
11 APPENdix B....cciiiiiiiiiiiiiiiiiiiiiiiieiiiieseiersesetessscessssecssssessssssesssssssssssesssssssssssessasss 80
11.1 PerL CoMPATIBLE REGULAR EXPRESSION LIBRARY LICENSE.....cuuuuiiieiieiiiinieeieiiiinseeeseetiisneeseestinnseeseesnnnnnaeaaees 80
12 APPENAIX C...virviniiiiniiiieiiiiieietiecetessacessasessssscessssssessssesssssssssassssssssssssssssssssssnsonse 81
12.1 USING PERL REGULAR EXPRESSIONS. .. .ciitttiieeieittt e e ettt e et et e e e ettt s e e e ettt e e e e eetb e e e e e eaban e aean e eannaaes 81
12,2 EXAMPLES. «ettttttttte e et oottt oo oot e e e e et e e ettt et e bbb b oo oo e e et et et e et e eeb bt e ettt e et e et e e e et aaees 82
13 APPendix E...occiiriiiiiiiiiiiiiiiiiiiieiiiiiitiitetsstescescessesssssssssssscessessssssssssessssssssssnsssns 82
13.1 MUMPS 95 PATTERN IMATCHING. et tttttuieeieiitt e e eee ettt s s e e e ettt s e e e eeett s e e e e eetaa s e e eeeebba s eeeeeatbanseeeaneeenneantnaes 82
I T N 84

1 Part I - Programmers Guide

1.1 Introduction

The MDH (Multi-Dimensional and Hierarchical) Database Toolkit is a Linux-based, open sourced,
toolkit of portable software that supports fast, flexible, multi-dimensional and hierarchical storage,
retrieval and manipulation of information in data bases ranging in size up to 256 terabytes. The
package is written in C and C++ and is available under the GNU GPL/LGPL licenses in source code
form. The distribution kit contains demonstration implementations of network-capable, interactive
text and sequence retrieval tools that function with very large genomic data bases and illustrate the
toolkit's capability to manipulate massive data sets of genomic information.

The toolkit is distributed as part of the Mumps Compiler Versions for Linux.

The toolkit is a solution to the problem of manipulating very large, character string indexed,
multi-dimensional, sparse matrices. It is based on Mumps (also referred to as M), a general purpose
programming language that originated in the mid 60's at the Massachusetts General Hospital. The
toolkit supports access to the PostgreSQL relational data base server, the Perl Compatible Regular
Expression Library, the Berkeley Data Base, and the Glade GUI builder as well as server-side
development of interactive web pages.

The principal database feature in this project is the global array which permits direct, efficient
manipulation of multi-dimensional arrays of effectively unlimited size. A global array is a persistent,
sparse, undeclared, multi-dimensional, string indexed data disk based structure. A global array may
appear anywhere an ordinary array reference is permitted and data may be stored at leaf nodes as
well as intermediate nodes in the data base array. The number of subscripts in an array reference is
limited only by the total length of the array reference with all subscripts expanded to their string
values. The toolkit includes several functions to traverse the data base and manipulate the arrays.

The toolkit makes the data base and function set available as C++ classes and also permits
execution of legacy Mumps scripts. To use the toolkit, you install the MDH and Mumps distribution
kit and related code.

2 Creating Global Arrays

The class, function and macro libraries primarily operate on global arrays. Global arrays are
undimensioned, string indexed, disk resident data structures whose size is limited only by available
disk space. They can be viewed either as multi-dimensional sparse matrices or as tree structured
hierarchies. Global arrays are a C++ class and must be declared or instantiated in your C++
program as an instance of the global. For example, to create the global named "gbl", do the
following:

#include <mumpsc/libmpscpp.h>
global gbl("gbl");

The instantiation consists of two parts: the name of the global array object and the name of the
global array on disk associated with this object. In the above example, these are both "gbl". Note that
the disk name of the global is enclosed in a parenthesized character string expression following the
object name. The name in the expression need not (but usually does) match the name of the object.
The name given in the parenthesized character string is the disk name of the global array. The global
array object is associated with the disk name when the object is created. When the object is
destroyed, the disk based global array persists.

Note: programs that use global arrays MUST close the array file system with the
GlobalClose; command before exiting. Failure to do so may corrupt the file system.

Global objects may be created through declarations as shown above or dynamically:

global *gptr;
gptr = new global ("gbl name");
(*gptr)(Illll'llzll'll3ll) = Iltestll;

which is equivalent to:

global g("gbl name");
g(II1II’II2II'II3II) = Il.tes.tll;

The #include <mumpsc/libmpscpp.h> statement brings in the necessary header files for you C+
+ program. These include, in addition to the header files necessary to access the toolkit, the standard
system libraries:

#include <iostream>
#include <iomanip>
#include <string>
#include <string.h>
#include <math.h>
#include <stdlib.h>

These are referenced at the beginning of libmpscpp.h.in and you may modify them if your system
uses different naming conventions.

Each global declaration creates a global array name (gbl) to be an object or instance of the
global class. Each global array you use must be first declared to be an object of the global class.
Global names can be any valid C/C++ variable name.

A global array will typically have one or more subscripts as discussed below. These will be of type
mstring, or a null terminated array of char. Subscripts of global arrays must evaluate to a printable
characters in the range of decimal 32 (space) to, but not including, tilde (~).

Note:

« No data types other than mstring, or null terminated array of char (i.e., char *) may be used
as subscripts. Numeric data types (int, short, long, float, double, etc.) may not be used as
global array subscripts.

« Also, in any given global array reference, all the indices must be of the same data type
(mstring or char *

mstring is a data type (class) whose behavior is similar to the basic typeless string data type in
Mumps. Objects of mstring are stored internally as strings but may contain text, integers and
floating point values. Addition, multiplication, subtraction, division, modulo, and concatenation may
be performed directly on mstring objects (see details below). Many of the following examples use
mstring objects.

2.1 Structure of Global Arrays

Global arrays may be viewed either as multi-dimensional matrices or as tree structured
hierarchies. As matrices, data may be stored not only at fully subscripted matrix elements but also at
other levels. For example, given a three dimensional matrix matl, you could initialize it as follows:

#include <mumpsc /libmpscpp.h>
global matl("matl");

int main() {
mstring 1i,j,k;
for (i=0; i<100; i++)
for (j=0; j<100; j++)
for (k=0; k<100; k++) {
matl(i,j,k)=0;

GlobalClose;
return 0;

}

Alternatively, the above can be performed with int but the numeric indices must be converted to
mstring before use:

#include <mumpsc /libmpscpp.h>
global matl("matl");

int main() {
int i,j,k;
for (i=0; i<100; i++)
for (j=0; j<100; j++)
for (k=0; k<100; k++) {
matl(mcvt(i),mcvt(j),mcvt(k))=0;
}
GlobalClose;
return 0;

}

In this example, all the elements of a three dimensional matrix of 100 rows, 100 columns and 100
planes are initialized to zero. The function mcvt() converts from int to mstring.

In the view expressed by the code above, the matrix is a traditional three dimensional structure
with data stored at each fully indexed position or node.

Unlike other programming languages, however, there are additional nodes of the matrix which
could have been initialized such as indicated by the following example:

#include <mumpsc /libmpscpp.h>
global matl("matl");

int main() {
mstring 1i,j,k;
for (i=0; i<100; i++) {
matl(i)=i;
for (j=0; j<100; j++) {
matl(i,j)=j;
for (k=0; k<100; k++) {
matl(i,j,k)=0;
}

}

return 0;

}

In effect, this means that matl can also be a single dimensional vector, a two dimensional matrix
and a three dimensional matrix simultaneously.

Furthermore, not all elements of a matrix need exist. That is, the matrix can be sparse. For
example:

#include <mumpsc/libmpscpp.h>
global matl("matl");

int main() {
mstring i,j,k;
for (i=0; 1<100; i=i+10)
for (j=0; j<100; j=j+10) {

for (k=0; k<100; k=k+10) {
mat2(i,j,k)=0;
}

}

return 0;

}

In the above, only index values 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 are used to create each of

the dimensions of the array and only those elements of the matrix are created. The omitted elements
do not exist.

For example, if you are running a drug protocol on a number of patients and are dosing with
medications M1, M2, M3, ... on patients P1, P2, P3, ... and collecting observations on days D1, D2,
D3, ... you could create a three dimensional matrix named protocol in which each plane consisted of
the observations for each patient on each medication for a given day:

D1 D2 D3 D4
M1 M2 M3 M4 M5 M1 M2 |[M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
P1 P1 P1 P1 X
P2 P2 P2 P2
P3 P3 P3 P3

You could refer to patient P1, medication M2 on day D4 with the reference:
protocol (IIP1II , IIM2II , IID4II)=IIXII ;

Alternatively, you can view the same data base as a tree structure with patient id at the root, followed
by medication, followed by day of study:

root

ﬂ P3

D1 b

Note that at each node in the tree, a data box may appear containing information about the node.
Addressing a node is accomplished by giving its path description such as:

protocol("P2","M2",D2)

3 Compiling Programs

To compile programs written in C++ that use the MDH (multi-Dimensional and Hierarchical)
library, use the command:

mumpsc myprog.cpp

This will invoke the g++ compiler and make available the necessary libraries. The result will be a
program named myprog which is executable. The cgi extension is used as the default because very
often these programs may be used in connection with web servers. You may rename the program as
you see fit, however. The script mumpsc is part of the Mumps Compiler which must be installed prior
to using the toolkit.

4 Accessing Global Arrays

Note: prior to exiting a program that accessed globals arrays, you must execute a GlobalClose
macro to shut down the global array facility. This flushes the system buffers to disk and insures that
the file system if properly closed. Failure to do this will result in data base errors. This appears in
your program as:

GlobalClose;

You may assign global arrray elements to variables of type mstring using the assignment
operator(=).

You may assign values of type int, float, double, mstring, string and char * to global array
elements using the assignment operator (=).

When global array references are passed to function, no more than one instance of the same
global object should be used in the argument list. Each global object maintains a private static
string which contains the most recent value fetched from the data base. When a global object is
passed to a function, its this string value is effectively passed. This means that, in a function
reference where two references to the same global object are passed, even though they have
differing indices, the value passed will be the value for the second instance of the global. This
restriction only applies where there are two or more instances of the same global.

If you use a reference to a global without a parenthesized list following the name of the global,
the reference will be to the most recent referenced global. Effectively, this is similar to the "naked
indicator" from Mumps.

4.1 Global Array Indices

Internally, the indices of global arrays are always stored as character strings. If you initialize a
global array with a loop, you must insure that the indices are represented as either values of type
mstring or null terminated arrays of type char. Indices to globals may be either char* or mstring
but MUST all be of the same type (i.e. all char * or all mstring). For example:

mstring A,B,C;
for (A=0; A<1000; A++)
for (B=0; B<1000; B++)
for (C=0; C<1000; C++) {
arrayl(A,B,C) = "0";
}

The above initializes an array of 1 billion elements to zero.

4.2 Navigating Globals

There are several builtin functions used to navigate the globals. The two most important are the
Data() function and the Order() function. The Data() function tells you if a node exists and if it has
descendants and the Order() function gives you the next higher (or lower) index at a given level in
the global array tree.

8

The Data() function returns an integer which indicates whether the global array node is defined:

1. 0 if the global array node is undefined;

2. 1 if it is defined and has no descendants;

3. 10 if it is defined but has no value stored at the node (but does have descendants);
4. 11 it is defined and has descendants.

A global is defined if data has been stored at it. A "10" is returned for a node at which nothing
has been stored but the node has descendants. For example, assuming the global array has only the
contents created in the example below:

global arrayl("arrayl");
int result;

arrayl(lllll'llllll) = Ilfooll
arrayl(lllll’II11II’I|21II) = Ilbarll

result = arrayl("1").Data() ; // yields 10
result = arrayl("1","11").Data(); // yields 11
result = arrayl("1","11","21").Data(); // yields 1

The other major navigation function is the Order() function. This gives you, for a given global
array index, the next ascending or descending value for the last index. If the parameter to Order() is
1 or missing, the next ascending index is returned. If the parameter is -1, the next descending index
is returned. To get the first (or last if the parameter is -1) value of an index, start with a null (empty)
string. For example:

mstring x, null;
global arrayl("arrayl");

arrayl("100") = "a"; // initialize the array with three entries
arrayl("200") = "b";

arrayl("300") = "c";

null = "";

x = arrayl(null).Order(); // get the first value of the first index: 100
X = arrayl(x).0rder(); // get the second value of the first index: 200
X = arrayl(x).0rder(); // get the third value of the first index: 300
X = arrayl(x).0rder(); // no more indices - returns empty string

x = arrayl(null).Order(-1); // get the last value of the first index: 300

X = arrayl(x).0rder(-1); // get the second value of the first index: 200
X = arrayl(x).0rder(-1); // get the first value of the first index: 100
X = arrayl(x).0rder(-1); // no more indices - returns empty string

for (x = arrayl(null).Order(); x '= null; x = arrayl(x).0rder())
cout x << endl; // writes 100 200 300 on separate lines
for (x = arrayl(null).Order(-1); x != null; x = arrayl(x).0rder(-1))

cout x << endl; // writes 300 200 100 on separate lines

for (x = 10; x < 100; x = x + 10) arrayl("200" , x) = Xx;

for (x = arrayl("200", null).Order(); x !'= null; x = arrayl("200", x).0rder())

cout x << endl; // writes 10 20 30 ... 90 on separate lines

Each call to Order() gives the next value of the last index. The numeric parameter indicates if the
direction is ascending (1) or descending (-1). If omitted, 1 is assumed. To get the first index, the
empty string is supplied and the function returns the first index of the global array. For subsequent
calls, it returns the next ascendant index value until there are no more indices. Then it returns the
empty string.

In the following example, we build a global array vector from an input file consisting of keywords
with one keyword per line, keep a count of each time the keyword is used, and, at the end, print an
alphabetized list of the keywords followed by the number of times each occurs, do the following:

#include <mumpsc/libmpscpp.h>
global key("key");

int main() {

mstring word, null;

long i;
null = nn;
while (1) {
if (! word.ReadLine(cin)) break;
if (key(word).Data()) // 1is word in vector?
key (word)++; // yes, increment count
else key(word) = 1; // not in vector - add

word = null;
while ((word = key(word).Order(1l)) '= null) // next word
cout << word << " " << key(word) << endl; // print word and count

return EXIT SUCCESS;
}

In the above, each line is read into the variable word until the end of file is reached. Each word is
tested with the Data() function of the global array to determine if word exists in the key vector. The
Data() returns zero if the element does not exist, non-zero if it does. In the case where the word is in
the key global array vector, the value stored in the vector for the word is extracted into the variable j,
incremented and stored back into the vector. If the word does not exist in the vector, it is added and
its initial count is set to one.

When all the words have been read and stored into the vector, the program sequences through
the word entries and prints the words and the total number of times each one was present in the
input file. Since global arrays are stored in ascending key order, the display of words will be
alphabetic.

Similarly, given a global array of patient lab data organized hierarchically first by patient id, then
by lab test, then by date, we can print a table of patient id's, labs, dates and results with the
following:

#include <mumpsc/libmpscpp.h>

global Labs("labs");

10

int main() {

mstring null, ptid, lab test, date, rslt;
null = "";

// create dummy example data base

Labs("1000", "hct","July 12, 2003")="45";

Labs("1000", "hct","July 13, 2003")="46";
Labs("1000", "hct","July 14, 2003")="47";
Labs("1000","hct","July 15, 2003")="48";

Labs("1000", "hgb","July 12, 2003")="15";

Labs ("1000","hgb","July 15, 2003")="14";
Labs("1001","hct","July 12, 2003")="35";
Labs("1001","hct","July 13, 2003")="36";
Labs("1001","hct","July 14, 2003")="37";

="38";

)
)
)
)
)
)
)
;
Labs("1001","hct","July 15, 2003")
Labs("1001","hgb","July 13, 2003")="15";
)
)
)
)
)
)
)

Labs("1001","hgb","July 14, 2003")="15";
Labs("1002","hct","Sept 12, 2003")="35";
Labs("1002","hct","Sept 13, 2003")="36";
Labs("1002","hct","Sept 14, 2003")="37";
Labs("1002","hct","Sept 15, 2003")="38";
Labs ("1002","hgb", "Sept 13, 2003")="15";

Labs("1002","hgb","Sept 14, 2003")="15";
ptid = null;
while ((ptid = Labs(ptid).Order(1)) != null) {
lab test = null;
while ((lab test = Labs(ptid,lab test).Order(1l)) != null) {
date = null;

while ((date = Labs(ptid,lab test,date).Order(1)) !'= null) {

cout << ptid << " " << lab test << " " << date ;
cout << " " << Labs(ptid,lab test,date) << endl;
}
}
}
GlobalClose;
return 1;
}

The above begins with an empty string for patient id ptid. This is used at the outer loop level to
cycle through all the patient ids. At the first nexted loop, the program cycles through all the lab test
names (lab test) then at the innermost level, it cycles through all the dates (date). The resulting table
is of the form:

1000 hct July 12, 2003 45
1000 hct July 13, 2003 46

11

1000 hct July 14, 2003 47
1000 hct July 15, 2003 48
1000 hgb July 12, 2003 15
1000 hgb July 15, 2003 14
1001 hct July 12, 2003 35
1001 hct July 13, 2003 36
1001 hct July 14, 2003 37
1001 hct July 15, 2003 38
1001 hgb July 13, 2003 15
1001 hgb July 14, 2003 15

4.3 Locking the Data Base

There are several functions for locking portions of the data base. Following legacy convention, a
lock does not prevent access to an element but merely flags the element as locked. Locking views a
global array as a tree structure. If an element is locked, its descendants are locked. An attempt to
lock a locked element of an element that has a locked parent or a locked descendant will fail. The
primary locking functions are $lock(), Lock() and UnLock():

if ($lock(gbl(a,b,c)) cout << "locked" << endl;
if (gbl(a,b,c).Lock()) cout << "locked" << endl;
gbl(a,b,c).UnLock();

The $lock() and Lock() functions test to see if the node can be locked and locks it if possible. It
returns true (1) if successful and false (0) otherwise ($test is set accordingly). A node can be locked if
it itself is not locked, if it has no descendants that are locked and if it is not the descendant of a
locked node. The UnLock() function releases a lock on a node.

Additionally, there are functions to release all locks for the current process and all locks for all
processes:

CleanLocks(); // release all locks for this process only
CleanAllLocks(); // release all locks for all processes

5 Invoking the Mumps Interpreter

The full facilities of the Mumps interpreter can be invoked from C++ programs. The interpreter
reads, parses and executes commands presented to it at run time. It may also read and execute text
files containing Mumps programs. The interpreter is invoked by means of the Xecute() macro and
xecute() functions:

int Xecute("command")

int xecute(mstring command)
int xecute(string command)
int xecute(char * command)

These functions and macro invoke the Mumps interpreter and execute the text replacing
"command". They return 1 of successful, 0 otherwise. With Xecute(), if the mumps command contains
quotes or other special symbols, they will be automatically prefixed with backslashes (e.g., quote
becomer\").

Xecute("set i="test"));
Xecute("fors i=$order(”a(i)) quit:i="" set sum=sum+"a(i)");

Details on the Mumps Language are contained in the file compiler.html in the mumpsc/doc
subdirectory of the Mumps Compiler distribution. See also: mtring::Eval() for expression
interpretation.

6 Writing Active Web Server Pages

C++ programs can be written with the toolkit to be web server active pages. For example:
12

Web page HTML code:
<html>

<title>Your title goes here</title>

<form method="get" action="quiz2.cgi">

<center>

Name:

<input type="text" name="name" size=40 value="">

</center>

Class:

<input type="Radio" name="class" value="freshman" > Freshman
<input type="Radio" name="class" value="sophmore" > Sophmore
<input type="Radio" name="class" value="junior" > Junior

<input type="Radio" name="class" value="senior" checked> Senior
<input type="Radio" name="class" value="grad" > Grad Student

Major:

<select name="major" size=1>

<option value="computer science" >computer science
<option value="mathematics" >Mathematics

<option value="biology" selected>Biology

<option value="chemistry" >Chemistry

<option value="earth science" >Earth Science
<option value="industrial technology" >Industrial Technology
<option value="physics" >Physics

</select>

<table border>

<tr>

<td valign=top> Hobbies: </td>

<td>

<input type="Checkbox" name="hobbyl" value="stamp collecting" > Stamp
Collecting

<input type="Checkbox" name="hobby2" value="art" > Art

<input type="Checkbox" checked name="hobby3" value="bird watching" > Bird
Watching

<input type="Checkbox" name="hobby4" value="hang gliding" > Hang Gliding

<input type="Checkbox" name="hobby5" value="reading" > Reading

</td></tr>

</table>

<input type="submit" value="go for it">
</form>

A C++ program can accept data from the web page, store the data in global arrays and return a
summary web page to the browser. When using "get" mode data transmission from HTML forms, the
form names and data are concatenated into a string, delimited by ampersands, containing
"name=value" tokens. These are passed in an environment variable named QUERY STRING. The
include file mumpsc/cgi.h contains code to extract data from QUERY STRING and store the data in
the runtime symbol table. The function SymGet() can be used to retrieve values from runtim symbol
table.

#include <mumpsc /libmpscpp.h>
global T("T");

int main() {

13

mstring name;

mstring class;
mstring major;
mstring hobbyl;
mstring hobby2;
mstring hobby3;
mstring hobby4;
mstring hobby5;

#include <mumpsc /cgi.h>
cout << "Content-type: text/html " << endl << endl;
name = SymGet("name");

class = SymGet("class");
major = SymGet("major");

hobbyl = SymGet("hobbyl");
hobby2 = SymGet("hobby2");
hobby3 = SymGet("hobby3");
hobby4 = SymGet("hobby4");
hobby5 = SymGet("hobby5");

cout << "<html>";

if (name == "") {

cout << "Name not specified
 ";

cout << "" << endl; return EXIT_FAILURE; } T(name, mcvt(“class")) =
class; T(name, mcvt("major")) = major; if (hobbyl.Length() != 0) T(name,

mcvt("hobbies"), hobbyl) = ""; if (hobby2.Length() != 0) T(name,
mcvt ("hobbies"), hobby2) = ""; if (hobby3.Length() != 0) T(name,
mcvt("hobbies"), hobby3) = ""; if (hobby4.Length() != 0) T(name,
mcvt ("hobbies"), hobby4) = ""; if (hobby5.Length() != 0) T(name,
mcvt("hobbies"), hobby5) = ""; cout << "Thank you " << name << " for your

input ";
cout << "" << endl; return EXIT SUCCESS; }

Note: you can test code by simulating input from a web browser with the following code:

#!/bin/bash

QUERY_ STRING="abc=xyz&cde=123"
export QUERY_STRING

your program.cgi

The "name=value" sets (delimted by ampersands) will be passed to the program. Note: web
server cgi protocol requires the value strings to be encoded (see EncodeHTML()).

7 Class mstring

The mstring class provides Mumps-like strings that can be used to write programs in C++ that
treat variables in a manner similar to that of Mumps. This means that mstring objects are essentially
strings on which arithmetic operations may be performed. The mstring includes overloads for many
operators as well as the following functions:

Returns an mstring of the form
"X,y" where x is the number of
mstring Horolog() days since December 31, 1984 and y
is the number of seconds since
midnight.

mstring ScanAlnum(FILE *, int min=3, Returns the next token from the

14

int max=25)

mstring ScanAlnum(istream, int min=3,
int max=25)

input file with all punctuation
removed. Returns empty string on
end of file. If min and/or max are
provided, only words whose length
are less than min and greater than
max are discarded. The default
values for these parameters are 3
and 25, respectively. Use stdin
for file to scan standard input.

mstring mstring::Eval()

Evaluates the mumps expression of
the invoking mstrin object and
returns the result in an mstring.
If an error occurs, an
InterpreterException is thrown.
The invoking mstring object may
contain a valid mumps expression
involving calling program mstring
variables.

int mstring::replace(mstring pattern,
mstring replacement)

Replaces the string matching
pattern with replacement. Returns
1 if successful, 01 if there was
no match and less than -1 on error
(See PCRE documentation for
pcre_exec()). Throws:
PatternException.

int mstring::decorate(mstring pattern,
mstring prefix,
mstring suffix)

Locates the pattern in the
invoking mstring and inserts left
immediately to the left of the
string that matched the pattern
and inserts right immediately to
the right of the found pattern.
Returns 1 if the pattern was found
and the insertions were made, -1
if the pattern was not found, and
less than -1 for other errors (see
PCRE documentation concerning
pcre_exec() return codes). Throws:
PatternException().

int mstring::ends(mstring pattern)

Returns an integer giving the
character position (relative to
zero) immediately following the
string that matched pattern.
Returns -1 if the string did not
match. Throws: PatternException.

int mstring::begins(mstring pattern)

Returns an integer which is the
starting point in the string of
pattern or -1 if the pattern is
not found. Throws:
PatternException if the pattern is
in error.

bool mstring::ReadLine(FILE *)

bool mstring::ReadLine(istream &)

The next line from the file
designated by "unit" is read into
the invoking object of mstring.
Carriage-returns and line-feeds
are removed. The maximum length
line that can be read is STR_MAX-
1. Returns 'true' if the operation
succeeded, 'false' otherwise or if
end of file.

15

int mstring::Pattern(mstring &)

int mstring::Pattern(const char *)

Evaluates the invoking source
string according to the
pattern_string and returns @ (does
not match) or 1 (does match).
Pattern_string rules are as as
shown below but you must remember
to place a backslash before quotes
in the pattern string (as per
usual C++ rules).

mstring mstring::Justify(int,int=-1)

Justify() right justifies the
invoking mstring in an mstring
field whose length is given by the
first argument. If the second
argument is present and a positive
integer, the invoking mstring is
right justified in a field whose
length is given by the first
argument with "precision" decimal
places. The two argument form
imposes a numeric interpretation
upon the first argument.

int mstring::Length()
int mstring::Length(mstring The function returns the string
pattern string) length of the invoking mstring.
int mstring::Length(char * pattern string)
Returns the numeric value of an
ASCII character. If no "start" is
int mstring::Ascii() specified, the numeric values of
the first character of invoking
int mstring::Ascii(int start) mstring is used. If "start" is
specified, the numeric value of
int mstring::Ascii(int start) "start"'th character of nvoking is

chosen. If the empty string is
given, -1 is returned.

mstring mstring::Extract(int=1, int=-1)

Returns an mstring containing a
substring substring of the first
argument. The substring begins at
the position noted by the second
operand. If the third operand is
omitted, the substring consists
only of the "start" character of
invoking source string. If the
third argument is present, the
substring begins at position
"start" and ends at position
"end". If no argument is given,
the function returns the first
character of the string. If "end"
specifies a position beyond the
end of source string, the
substring ends at the end of
source string;. String position
counting begins at one (not zero).

int mstring::Find(const char *, int=1)

int mstring::Find(mstring, int=1)

Find() searches the first argument
for an occurrence of the second
argument. If one is found, the
value returned is one greater than
the end position of the second

16

argument in the first argument. If
"start" is specified, the search
begins at position "start" in
argument 1. If the second argument
is not found, the value returned
is @. String position counting
begins at position one.

Find() searches the first argument
for an occurrence of the second
argument. If one is found, the
value returned is one greater than
the end position of the second
argument in the first argument. If
"start" is specified, the search
begins at position "start" in
argument 1. If the second argument
is not found, the value returned
is @. String position counting
begins at position one.

mstring mstring::Piece(const char *,
int, int=-1)

mstring mstring::Piece(mstring &,
int, int=-1)

For example:

#include <mumpsc /libmpscpp.cpp>
global x("x");
int main() {

mstring a, b, c;

a = "hello ";
b = "world";
cout << (a || b) << endl; // concatenation

// prints "hello world"

for (a = 0; a < 10; a++)
cout << a << endl; // prints 0 thru 9

for (a = 0; a < 10; a++)

x(a) = a; // sets global array elements
a = IIII;
while (1) {

a = x(a).0rder(1);

if (a == "") break;

cout << a << endl; // prints @ thru 9

}

cout << x(a).Data() << endl; // prints 1

c = "123 elm street";
c=c+ 1;
cout << ¢ << endl; // prints 124

return EXIT SUCCESS;
}

Note: the code "(a || b)" in the cout expression is parenthesized. If not parenthesized, the C++
compiler precedence will result in an error since the precedence of << is greater than ||.

Objects of class mstring may:

1. Be assigned values from variables or constants of types char *, string, global, mstring,
float, int, or double;

Examples:

int main() {

// example of assignment to mstring
// mdhT1.cpp

mstring Xx;

X = 10; cout << x << endl;
X = 10.99; cout << x << endl;
x = "test"; cout << x << endl;

string al="abcdef";

float a2=99.9;

double a3=99.8;

int a4=99;

short ab5=98;

char a6[]="abcdef";

global a7("a7"); a7("1")=99;

X = ail; cout << x << endl;
X = a2; cout << x << endl;
X = a3; cout << x << endl;
X = a4; cout << x << endl;
X = ab5; cout << x << endl;
X = a6; cout << x << endl;
X = a7("1"); cout << x << endl;
GlobalClose;

return EXIT_SUCCESS;

}

which writes:

10
10.99
test
abcdef
99.9
99.8
99

98
abcdef
99

#include <mumpsc /libmpscpp.h>
int main() {

// mdhT2.cpp - example mstring operators.

18

mstring Xx;

mstring vy;

mstring z;

y =1;

X = 10,

cout << "expect 11 " << x + 1 << endl;

cout << "expect 9 " << X - 1 << endl;

cout << "expect 20 " << X * 2 << endl;

cout << "expect 5 " << x / 2 << endl;

cout << "expect 1 " << x % 3 << endl;

cout << "expect 11 " << X + y << endl;

cout << "----- \n";

X =10; x = x + 1; cout << "expect 11 " << x << endl;

X =10; x = x - 1; cout << "expect 9 " << X << endl;

X =10; X = X * 2; cout << "expect 20 " << x << endl;

X =10; X = x / 2; cout << "expect 5 " << x << endl;

X =10; X = X % 3; cout << "expect 1" << x << endl;

X = 10; X = X + y; cout << "expect 11 " << x << endl;

X =10; X =y + Xx; cout << "expect 11 " << x << endl;
cout << "----- \n";

X = 10; X += 1; cout << "expect 11 " << x << endl;

X = 10; x -= 1; cout << "expect 9 " << X << endl;

X = 10; X *= 2; cout << "expect 20 " << x << endl;

X = 10; x /= 2; cout << "expect 5 " << x << endl;

X = 10; X %= 3; cout << "expect 1" << x << endl;

cout << "----- \n";

x=10; X += vy; cout << "expect 11 " << x << endl;

x=10; X -=Yy; cout << "expect 9 " << X << endl;

x=10; X *=vy; cout << "expect 10 " << x << endl;

x=10; X /= vy; cout << "expect 10 " << x << endl;

x=10; X %= y; cout << "expect 0 " << x << endl;

cout << "----- \n";

X =10; x =1 + X + Vy; cout << "expect 12 " << x << endl;
X =10; x =1 - X + Vy; cout << "expect - 8 " << x << endl;
X =10; x =1 * x +vy; cout << "expect 11 " << x << endl;
X =10; x =1/ X +vy; cout << "expect 1.1 " << x << endl;
cout << "----- \n";

X =10; x =1 + (x +y); cout << "expect 12 " << x << endl;
X =10; x = (x +y) + (x +y); cout << "expect 22 " << x << endl;
X = 10; cout << "expect 11 " << ++x ;

cout << " expect 11 " << x << endl;
X = 10; cout << "expect 10 " << x++ ;

cout << " expect 11 " << x << endl;
X = 10; cout << "expect 9 " << --x ;

cout << " expect 9 " << x << endl;

X = 10; cout << "expect 10 " << X-- ;
cout << " expect 9 " << x << endl;

cout << "----- \n";

X = 10; cout << "expect yes "; if (x == 10) cout << "yes\n";
X = 10; cout << "expect yes "; if (x >= 10) cout << "yes\n";
X = 10; cout << "expect yes "; if (x <= 10) cout << "yes\n";
X = 10; cout << "expect yes "; if (x >= 9) cout << "yes\n";
X = 10; cout << "expect yes "; if (x > 9) cout << "yes\n";

X = 10; cout << "expect no ";

if (x !'= 10) cout << "yes\n"; else cout << "no\n";

X = 10; cout << "expect no ";
if (x > 10) cout << "yes\n"; else cout << "no\n";

X = 10; cout << "expect no ";
if (x < 10) cout << "yes\n"; else cout << "no\n";

X = 10; cout << "expect no ";
if (x <= 9) cout << "yes\n"; else cout << "no\n";

X = 10; cout << "expect no ";
if (x < 9) cout << "yes\n"; else cout << "no\n";

cout << "----- \n";

X = "test message";
cout << "expect \'"test message\" " << x << endl;

cin >> x;
cout << "expect what you typed " << x << endl;

X = "test ",

y = "message";

z=x1ly;

cout << "expect \'"test message\" " << z << endl;

x=x || x || x;

cout << "expect \'"test test test\" " << Xx << endl;

x = "test";

z=y=(x||" test");

cout << "expect \"test test test test\" " <<y << " " << 7z << endl;
x = "test";

zZ=y=x=x]| " test";

cout << "expect \'"test test test test\" " <<y << " " << 7z << endl;
cout << "expect \"test test\" " << x << endl;

GlobalClose;

return EXIT_SUCCESS;

b

2. Objects of mstring may be not initialized in declaration statements.

20

3. Objects of type mstring may participate in add(+, +=), subtract(-, -=), multiply(*, *=),
divide(/, /=), modulo (%, %=) (integers values only) pre/post increment/decrement (++/--), and
concatenation (||) operations. The mode of the operation will depend on the mode of the other
operand. Available modes: ASCII string, (char *) integer and floating point.

4. Objects of type mstring may participate in relational expressions >, >=, <, <=. The mode of
comparison will depend on the mode of the other operand. Available modes ASCII string (char
*), integer and floating point.

5. Objects of type mstring may participate in equality expressions == and !=. The mode of the
comparison will depend on the mode of the other operand. Available modes ASCII string (char
*), integer and floating point.

6. Objects of type mstring may participate in input and output stream operations >> and <<.
7. Objects of type mstring may not be assigned directly to ASCII string (char *) or string.

8. Objects of type mstring may be declared as arrays or allocated/freed by the new/delete
operators. Only numeric subscripts permitted at this time.

If an object of type mstring is to be used in connection with the interpreter, it must be declared
with a string giving its name in the runtime symbol table. For example:

mstring x("x");

If this is done, variables in the C++ program are linked to variables of the same name in the
interpreter. That is, values from variables in the C++ program are known by the same name to
interpreted programs invoked by the C++ program. Changes made to these variables in the
interpreter are changes to the variables in the C++ program. Variable names selected must be
compatible with the interpreter's naming conventions.

8 Direct Btree Access

Programmers may access the btree directly through the builtin BTREE macro. A number of
examples can be found in mumpsc/doc/examples/btree in the distribution.

To access the btree directly from a C++ program:

You must first install the Mumps compiler and MDH. Include at the beginning of your program.
You can now access the btree directly with the BTREE macro (see description below). Note: any keys
you store in the btree co-exist with Mumps/MDH keys. In rare cases, these can interfere with one
another if a key you store lies in the range of a global array key set.

For example, the following program stores NBR_ITERATIONS (defined in btree.h which is
included by libmpscpp.h usually with the value 100,000) of keys and data into the btree and then
retrieves them (this "btestl.cpp" from mumpsc/doc/examples/btree.cpp). See the other examples and
the documentation below for further details.

Y B o o o o o I b e
*#+ Mumps Compiler Run-Time Support Functions

*#+ Copyright (c) A.D. 2001, 2002, 2003, 2004 by Kevin C. 0'Kane

*#+ okane@cs.uni.edu

*H+

*#+ This library is free software; you can redistribute it and/or

*#+ modify it under the terms of the GNU Lesser General Public

*#+ License as published by the Free Software Foundation; either

*#+ version 2.1 of the License, or (at your option) any later version.
*H+

*#+ This library is distributed in the hope that it will be useful,
*#+ but WITHOUT ANY WARRANTY; without even the implied warranty of

*#+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
*#+ Lesser General Public License for more details.

*#+

*#+ You should have received a copy of the GNU Lesser General Public

21

*#+ License along with this library; if not, write to the Free Software
*#+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*H+

*#+ http://www.cs.uni.edu/~okane

T

o B L L S L L L L B L e
ot

*#+ Some of this code was originally written in Fortran

*#+ which will explain the odd array and label usage,

*#+ especially arrays beginning at index 1.

*H+

*#+++++++++HH A

#include <mumpsc /libmpscpp.h>
int main() {

long 1,j;
unsigned char key[1024],data[1024];

printf("Store sequentially ascending keys");

for (i=0; i<NBR ITERATIONS; i++) {
sprintf((char *) key,"key %ld",i);

sprintf((char *) data,"%ld%c",i,0);

if (!BTREE(STORE, key,data)) {

printf("error\n");

return 1;

}

if (i%60000L==0) { printf("\n %ld ",i); fflush(stdout); }
if (i%1000==0) { putchar('.'); fflush(stdout); }

}

printf("\nretrieve");

for (i=0; i<NBR ITERATIONS; i++) {
sprintf((char *) key,"key %ld",i);
if (!BTREE(RETRIEVE, key,data)) {
printf("error 1\n");

return 1;

}

sscanf((char *) data,"%ld",&j);
if (j'=1i) {

printf("error 2\n");

printf("%sd !'= %d\n",i,j);

return 1;

}

if (i%60000L==0) { printf("\n %ld ",i); fflush(stdout); }
if (i%1000==0) { putchar('.'); fflush(stdout); }
}

printf("\nlooks good!\n");

strcpy((char *) key,"");

strcpy((char *) data,"");

BTREE (CLOSE, key, data) ;

return 1;

¥
9 Function and Macro Library

The following gives details on all the MDH functions and macros. Many have the same or similar
syntax to the underlying legacy functions. The discussion assumes that "gbl" has been
declared as above. The example indices ("a,b,c") are for illustration purposes. Your
actual globals array reference will be different. Many of the functions below mimic the same legacy

22

functions. Please note that not all functions accept all possible argument data types. Check the
function definition below for details.

9.1 Global Array Operations Using Class global

9.1.1 Arithmetic Operations on Global Arrays

The operations of add, subtract, multiply, divide, pre/post increment and pre/post decrement are
defined (overloaded) for global variables. The operations are defined for mstring, short, unsigned
short, int, unsigned int, long, unsigned long, float and double. Note: the contents of the global
array node must be compatible with the dominant data type of the operation. If the contents of a
global are not compatible with the operation (example, incrementing a string of text), the value of the
global will be interpreted as zero. Examples:

#include <mumpsc /libmpscpp.h>
global gbl("gbl");
int main () {

// test of globals
// gbl001.cpp

int i, j=10;
string a = "10", b = "20", c = "30";

gbl.Kill();
gbl(a,b,c) = 10;

i =gbl(a,b,c) + 20;
cout << "expect 20 " << i << endl; // prints 30

i =20 + gbl(a,b,c);
cout << "expect 30 " << i << endl; // prints 30

i = gbl(a,b,c) / j;
cout << "expect 1 " << 1 << endl; //prints 1

i =gbl(a,b,c) * 2;
cout << "expect 20 " << i << endl; // prints 20

gbl(a,b,c) ++;
cout << "expect 11 " << gbl(a,b,c) << endl; // prints 11

gbl(arbrc) ";
cout << "expect 10 " << gbl(a,b,c) << endl; // prints 10

i = ++ gbl(a,b,c);
cout << "expect 11 11 " << i << " " << gbl(a,b,c) << endl; // prints 11

i =gbl(a,b,c) ++;
cout << "expect 11 12 " << i << " " << gbl(a,b,c) << endl; // prints 11 12

gbl(a,b,c) += 10;
cout << "expect 22 " << gbl(a,b,c) << endl; // prints 22

gbl(a,b,c) -= 10;
cout << "expect 12 " << gbl(a,b,c) << endl; // prints 12

gbl(a,b,c) *= 2;

23

cout << "expect 24 " << gbl(a,b,c) << endl; //prints 24

gbl(a,b,c) /= 2;
cout << "expect 12 " << gbl(a,b,c) << endl; // prints 12

GlobalClose;
return 0;

}

9.1.2 Assignment Operations on Global Arrays
Assignments to global arrays may be accomplished the assignment operator (=).

When you access a global array, the access may result in the thrown error exceptions
GlobalNotFoundException and/or ConversionException. The first can occur in any context that
attempts to retrieve data from a global array where none exists. The second occurs if you attempt to
convert the contents of a global to a numeric type where the contents of the global are not valid data
for the conversion.

If uncaught, both exceptions will result in program termination. Both exceptions may be caught,
however, with code such as the following:

#include <mumpsc /libmpscpp.h>
global a("a");

// gble0O3.cpp
int main() {

long i;
a.Kill();

a("1l") = "now is the time";
cout << "expect error message" << endl;
try {
i = a(lllll);
}

catch (ConversionException ce) {
cout << ce.what() << endl;

}
cout << "expect error message" << endl;
try {

i = a(uzzu);

}

catch (GlobalNotFoundException nf) {
cout << nf.what() << endl;

}
GlobalClose;

return 0;

}

You may assign data of the following types directly to global arrays: char *, int, string, mstring,
double, global, unsigned int, float, short, unsigned short, long, and unsigned long. You may

24

assign global arrays directly to variables of the following types: int, mstring, double, global,
unsigned int, float, short, unsigned short, long, and unsigned long.

9.1.3 Global Array Access and Manipulation Functions

9.1.3.1 Accessing the Value Stored in a Global Array Element

int global::Int();

double global::Double();

mstring global::Mstring();

char * global::Char(char * buf, int max);

The functions return the content of the invoking global array object converted to the named
data type.

The Char() function is passed the address of a character array. The null-terminated character
string contents of the global array element will be placed in the character array and the address of
the array returned.

The max argument for Char() limits the length of the string returned to max-1.

If the global array element odes not exist, the GlobalNotFoundException exception is thrown. If
there is an error in converting the contents of the global to the named data type, a
ConversionException is thrown.

Examples:
#include <mumpsc/libmpscpp.h>
global t("t");
int main() {
// gble02.cpp
int a;
float b;
mstring c;

mstring x;
char d[100];

t.Kill();
x=50; t(x)=99;

a=t(x).Int();
cout << "expect 99 " << a << endl;

b=t (x) .Double();
cout << "expect 99

<< b << endl;

c=t(x).Mstring();
cout << "expect 99 " << c << endl;

t(x).Char(d,100);
cout << "expect 99 " << d << endl;

GlobalClose;
}

25

9.1.3.2 Data()

int global::Data()

The function Data() returns an integer which indicates whether the global array node is defined.
The value returned is O if the global array node is undefined, 1 if it is defined and has no
descendants; 10 if it is defined but has no value stored at the node (but does have descendants); and
11 it is defined and has descendants.

If a global array with no indices is passed to these functions, a value of "10" will be returned if
the array exists and "0" if the array does not exist. For example:

Given:
global gbl("gbl");
global non("non");
gb'L(IIlII , II11II)=Il-fooll
gb'l-(lllll , II11II , II21II)=IIbarII

Then:

gbl("1").Data() // 10 - node exists, has no data, has children
gbl("1","11").Data() // 11 - node exists, has data and has children
gbl("1","11","21").Data() // 1 - nodes exists, has data, no children

9.1.3.3 TreePrint()

void global::TreePrint([int indt [, const char indtchr]]);

The invoking object is printed as an indented tree. If one argument is present (indt), it is the
amount of indentation. If the second argument is present (indtchr) it is the character used in the
indentation. The default indentation character is blank and the default amount of indentation is one.
Example:

#include <mumpsc/libmpscpp.h>
global d("d");

int main() {

mstring a,b,c;

for (int i = 1; i < 6; i++)

for (int j = 1; j < 6; j++)
for (int k = 1; k < 6; k++) {

a = mcvt(i);
b = mecvt(j);
c = mevt(k);
d(a) = rand() % 100;
d(a,b) = rand() % 100;
d(a,b,c) = rand() % 100;
}
d().TreePrint(1,"'."');
GlobalClose;
return 0;
}
Yields
1=82 2=68 3=72 4=66 5=79
.1=59 .1=54 .1=28 .1=48 .1=72

26

.. 1=77
..2=35
..3=49
.. 4=27
..5=63
.2=67

..1=26
..2=11
..3=29
. .4=62
..5=35
.3=19

.. 1=22
. .2=67
..3=11
..4=73
..5=84
.4=96

.. 1=24
..2=13
..3=80
. .4=62
..5=81
.5=45

..1=84
..2=5

..3=13
..4=95
..5=14

UODDWNRIT OBRRWNRERE T ORRWNREREIT ORWNREREIT OO WN R

LU 1 | = =2 {1 | | | | (| | | | A | | |

(o) (oo BN F

NOR~NO

CUNONWWEREOOOUNPAPONOKFENO0OWNO0SD
== OCUION

[e))}

= NNN oo
U1 O O 00 W

..1=39
..2=69
..3=64
. .4=55
..5=11
.2=30

..1=99
..2=68
..3=11
..4=1

..5=78
.3=62

..1=36
..2=22
..3=16
..4=24
..5=24
.4=94

..1=52
..2=50
..3=73
..4=30
. .5=60
.5=84

..1=81
..2=59
. .3=68
. .4=26
..5=40

- e e e . e e s N s e e
OB WNRLITI OUOBRWNEREIT OB WN -

w -

(<] O N O (o))

O N

(L L L= 2 {1 | O | |y | [

NONPPORARRPRPNORRFRPURNNN

&~ O0OO

]
O
(o)}

.4=98

'—\
1l
(0]
g

.. 2=72
..3=85
. .4=40
..5=13
.5=69

..1=24
..2=81
..3=32
..4=4

..5=73

9.1.3.4 UnLock()

int global: :UnLock()

UnLock() removes a lock from the designated node.

9.1.3.5 Count()

long global::Count()

Returns the number of data bearing nodes beneath the given global array reference. Example:

#include <mumpsc/libmpscpp.h>

global A("A");

int main() {
mstring 1i,j;

for (i=1; i<11; i++)
for (j=1; j<11; j++) {

A(i,j) = 5;

}
cout << "Full count: " << A().Count() << endl;
cout << "A row count: " << A("5").Count() << endl;
return EXIT SUCCESS;
}
Yields

Full count: 100
A row count: 10

9.1.3.6 GlobalGet(), GlobalData(), GlobalSet()

mstring GlobalGet (mstring global ref)
char * GlobalGet (char * global ref)

mstring GlobalOrder (mstring global ref, int direction)
char * GlobalOrder (char * global ref, int direction)

int GlobalData (mstring global_ref)
int GlobalData (char * global ref)

int GlobalSet (mstring global ref, mstring source)
int GlobalSet (mstring global ref, char * source)
int GlobalSet (char * global ref, mstring source)

These function use the interpreter. These functions are used to permit runtime construction and
access to global arrays. In both cases global refis a string containing a global array reference. This
string can be dynamically constructed at runtime or may be read from a file or another global. Note:
as this facility uses the interpreter, global array references must be preceded by the circumflex
character (™).

In the case of the GlobalGet() functions, the string global array reference is interpreted and the
value stored at the reference returned. If the reference is invalid or no data is stored, the value
returned is the empty string and $test is set to false (zero). If a value is found, $testis set to true and
the value is returned.

GlobalOrder() gives the next or prior value of the last index of the global array reference
depending upon if direction is 1 (next) or -1 (prior). $test is set to 0 in the event of an error and 1 if
there is no error. See Order().

GlobalData() returns a number indicating if the node exists and has descendants (see Datal()).
$test is set to 0 if there i>s an error, 1 otherwise. In the case of the GlobalSet() functions, the second
argument is a string of data to be stored at the global array reference. The runtime routines will
interpret the global refand assign the source to it. The value returned is one if successful ($test is
set to 1), zero if not successful ($test set to 0). Examples:

mstring a,b;

a = II/\X(\Ill\II)II;

b = "test string";

if (GlobalSet(a,b) '= 0) cout << "error\n";

These functions can be used to allow a program to create a text string global array reference and
then use the string to address the global. Note that the target must contain either quoted literals or
variables previously instantiated to the interpreter environment (see $SymSet() and SymGet()).

Generally speaking, these functions will be only used for dynamically constructed global array
references. Most access to globals will be by overloaded shift or assignment operators.

9.1.3.7 double HitRatio(void)

Calculates the native global array processor cache hit ratio since the beginning of the program or
the last call to HitRatio() The native global array file processor, as opposed to the Berkeley Data
Base, keeps track of how many file I/O requests are satisfied from data already in the file system's
cache. This function gives the percentage of cache hits. It only works with the native global array
processor.

9.1.3.8 Kill()
void global::Kill()

This function deletes a node and all its descendants. Examples:

gbl().Kill(); // kill entire global array "gbl"
28

gbl(a,b,c).Kill(); // kill stated node and all descendants

9.1.3.9 Length()

int mstring::Length()
int mstring::Length(char * pattern string)
int mstring::Length(mstring pattern string)

The function returns the string length of the invoking mstring. For example:

x="ABC";
cout << x.Length() << endl; // writes 3

x="abcabcabcabc";
cout << x.Length("abc") << endl; // writes 5

If an argument is given, the function returns the number of non-overlapping occurrences of
"pattern_string" in the source string plus 1.

9.1.3.10 int global::Lock()

Creates a lock on the named node. If successful, "$test" will be true (1), false (0) otherwise.
Returns a 1 if the lock succeeds and a 0 otherwise.

The "Lock()" function marks a portion of the data base for exclusive access for an individual user.
The "UnLock()" frees prior locks (see below). The locks are stored in a file named "Mumps.Locks"
which is opened for exclusive access by the locking/unlocking job. The contents of the file may be
deleted to remove all locks. A lock does not actually prevent access to a global but merely marks it as
locked. If another task attempts to place a lock on a locked node, the descendant of a locked node or
a direct parent of a locked node, the lock attempt will fail. Examples:

if (gbl(a,b,c).Lock()) { } // locks gbl(a,b,c) and all children;
if ($lock(gbl(a,b,c))) { }

See also: CleanLocks(), CleanAllLocks(), and UnLock().

9.1.3.11 double global::Max()

Returns the maximum numeric value of the data bearing nodes beneath the given reference. Non-
numeric values are treated as zeros. Example:

#include <mumpsc/libmpscpp.h>
global A("A");
int main() {
mstring 1i,j;
for (i=1; i<1l; i++)
for (j=1; j<11; j++) {
A(i,j) = rand()%1000;

cout << "Max value of all: " << A().Max() << endl;
cout << "Max value of row 10: " << A("10").Max() << endl;
return EXIT SUCCESS;

}

Yields:

Max value of all: 996

Max value of row 10: 932
9.1.3.12 int global::Merge(global)

Copies the first global and its descendants to the second global. The Merge() function copies
from one array to another. Examples:

29

Xecute("for i=1:1:9 for j=1:1:9 set "a(i,j)=i+j");
c().Merge(a()); // copies all of "a to "~c

Xecute("for i=100:1:109 s ~b(i)=i");

b("103").Merge(a("3")); // copies "a(3) to ~b(103) and children of
// ~a(3) to be children of ~b(103)

d("").Merge(a("3")); // creates ~d="a(3); ~d(1)="a(3,1),...

9.1.3.13 double global::Min()

Returns the minimum numeric value of the data bearing nodes beneath the given reference. Non-
numeric values are treated as zeros. Example:

#include <mumpsc /libmpscpp.h>

global A("A");

int main() {

mstring 1i,j;

for (i=1; i<11; i++)

for (j=1; j<11; j++) {

A(i,j) = rand()%
}

cout << "Min value of all: " << A().Min() << endl;
cout << "Min value of row 10: " << A("10").Min() << endl;
return EXIT SUCCESS;

}

Yields:

Min value of all: 11

Min value of row 10: 12

9.1.3.14 Multiply()

void

global::Multiply(global B,global C)

The invoking global is multiplied by B and the result is place in C. The number of columns of A

must

equal the number of rows of B. The resulting matrix C will have "n" rows and "m" columns

where "n" is the number of rows of "A" and "m" is the number of columns of "B".

In all cases C will be deleted before the operation commences. The data stored at each node must
be numeric. All calculations are performed in double precision arithmetic. Each matrix must be two
dimensional. Example:

#include <mumpsc/libmpscpp.h>
#include <mumpsc/libmpsrdbms.h>

global d("d");
global e("e");
global f("f");

int main() {

d("1","1")=2;
d("1","2")=3;
d("2","1")=1;
d("2","2")=-1;
d("3","2")=0;
d("3","2")=4;
e("1","1")=5;

30

(T = 2
e("1","3")=4;
e("1","4")=7;
e("2","1")=-6;
e("2","2")=1;
e("2","3")=-3;
e("2","4")=0;

d().Multiply(e(),f());
PRINT("f","1");

return EXIT SUCCESS;

9.1.3.15 Name()
mstring global: :Name()

Returns a null terminated pointer to array of characters containing of the global reference with
all variables and expressions in the indices evaluated. Example:

#include <mumpsc/libmpscpp.h>
global a("a");

int main() {

mstring b="1",c="2",d="3";

cout << a(b,c,d,c+d).Name() << endl;
return EXIT SUCCESS;

}

Yields:
a(lllll’II2II’II3II’II23II)
9.1.3.16 Order()

mstring global::0Order([int direction])

The Order() function gives the next ascending or descending value of the last index in a global
array reference. The direction, ascending or descending, is given by either the name of the function
or an integer "direction" which is either 1 - next ascending index, or -1 - next descending index. If
'direction’' is omitted, ascending is assummed. For example, if an array named "test" has nodes:

given:

global test("test");
test(lllll) IIII.
test(lllll II10II) IIII.
test(lllll Il20|l) IIII.

31

.tes.t(ll5||’ ||1||)=|| II;
teSt(“S“,“S“) =uu;

Then Order() will return the following values:

test().0rder(1) yields "1"
test("1","").0rder(1) yields "10"
test("1","10").0rder(1) yields 20
test("1","20").0rder (1) yields "" (empty string)

test("1").0rder(1) yields "5"
test("5","").0rder(1) yields "1"
test("5","1").0rder(1) yields "2"
test("5","2").0rder(1) yields "" (empty string)
test("5").0rder(1) yields "" (empty string)

Similarly, a direction code of -1 will reverse the process:

test().0rder(-1) yields 5
test("5").0rder(-1) yields "1"
test("1").0rder(-1) yields "" (empty string)

Use the empty string ("") to get the initial value of an index. When there are no further values,
the empty string is returned.

Note: all keys are stored in ASCII character collating order. This means that numeric keys are
sorted alphabetically rather than numerically.

9.1.3.17 Avg()
double global::Avg()

Returns the average of the values of data bearing nodes beneath the given global array
reference. Example:

#include <mumpsc/libmpscpp.h>
global A("A");

int main() {

// gbl004.cpp

mstring 1i,j;

A.Kill();

for (i=0; i<1000; i++)
for (j=1; j<10; j++) {
= j;

A(i,])

}
cout << A("100").Avg() << endl; // average of nodes below A("100")
cout << A().Avg() << endl; // average of all nodes
GlobalClose;
return 0;
}

The above prints 5.5 - the average value of numeric data bearing nodes beneath A("100"). If there
are non-numeric data elements, they are treated as a zero values and contribute to the result.

32

The global array object must be specified with indices (i.e., a parenthesized list must follow the
name of the global array object. An empty list means the entire array.

9.1.3.18 CleanLocks(), CleanAllLocks()

void CleanLocks(void)
void CleanAllLocks (void)

"CleanLocks()" removes all locks for the current process. "CleanAllLocks()" removes all locks for
all processes for which the current directory is the default directory. Locks are implemented by
entries in a file named "Mumps.Locks" created and maintained in the current directory. This file must
be read/write enabled for the current process. You may also delete all locks by removing this file.
Locks are discussed elsewhere but, in brief, they are used to signal ownership of a portion of a global
array. When a lock has been applied to a node, no other process may lock this node, any descendant
node or any parent node. Locking does not actually prevent access, it merely marks a resource as
locked.

9.1.3.19 GlobalClose

This macro closes the global array files. The global arrays must be closed on exit or they will be
corrupt. The macro causes the file system to flush all its buffers and cache and close the file system.
Normally, a "GlobalClose" is executed automatically when your program ends except if your program
is terminated by SIGKILL or SIGSTOP (which cannot be trapped). If your program is using a large
memory based cache (cache's can be 1 GB or more, on some systems), there may be a noticeable
delay in file system shutdown due to the time required to write the cache to disk.

9.1.3.20 Btree()
int BTREE(int code, unsigned char * key, unsigned char * data)

BTREE() is a macro permitting direct access to the underlying btree system. The first argument,
"code" is an integer indicating the operation to be performed (see below). The second argument is
the key to be stored consisting of a null-terminated array printable ASCII characters. The length of
the key should be no greater than one quarter of the btree block size whose default value is 8192
(i.e., max key length is about 2048 bytes in the default case). The third argument is the data to be
stored with the key. It is a null-terminated string of printable ASCII characters not greater than the
system defined limit STR MAX (defaults to 4096). An empty string is interpreted as no data to be
stored. Note that the second and third arguments must be unsigned char *. The macro returns an
integer indicating success. It may also alter "key" or "data" to return values or for other purposes.
The contents of "key" and "data" are not preserved across in invocation of BTREE() Examlples of
using BTREE() are given in mumpsc/doc/examples/btree.

Permitted btree operations:
1. STORE - store a key and data value in the btree; retuns zero if successful, non-zero otherwise:

unsigned char key[]="test key";

unsigned char data[]="test data";

if (BTREE(STORE, key,data) ==) cout << "stored" << endl;
else cout << "not stored" << endl;

2. RETRIEVE - retrieve data stored with a key; returns zero if successful, non-zero otherwise:

unsigned char key[]="test key";

unsigned char data[STR MAX];

if (BTREE(RETRIEVE,key,data) == 0) cout << "retrieved: " <<
data << endl;

else cout << "not retrieved." << endl;

3. CLOSE - close the btree data base; returns zero:

unsigned char key[]="";

33

unsigned char data[]="";
BTREE (CLOSE, key,data) ;

4. XNEXT/PREVIOUS - retrieve next ascendina/descending key; returns one. Value of second and
third arguments become the value of the next ascendina/descendingg key. An initial value of
the empty string for the second argument will retrieve the first/last key and the value of the
second argument becomes the empty string when there are no more ascending/descending
values. An initial value of the empty string for the second argument will retrieve the first/last
key.

unsigned char key[]="";

unsigned char data[STR MAX];

printf("\nbegin retrieve...\n");

while(1l) { // rerteive keys in ascending order
i=BTREE (XNEXT, key,data);
if (strlen((char *) data)==0) break;
cout << key << endl;

}
9.1.3.21 Query functions

mstring Query(mstring ref)
mstring Query(char * ref)

int Qlength(mstring ref)
int Qlength(char * ref)

mstring Qsubscript(mstring ref, mstring index)
mstring Qsubscript(mstring ref, int index)
mstring Qsubscript(char * ref, int index)

Query() returns an mstring containing the next global array reference in the data base or the
empty string.

Qlength() returns the number of subscripts in the global array reference.
Qsubscript() returns the index'th subscript of a global array reference.

Each of these functions operates on a text representation of a global array reference. See also the
Name() function. The following example makes use of the MeSH subject headings (National Library
of Medicine). The MeSH global array was constructed with statements such as:

set “mesh("A01")="Body Regions"

set “mesh("AO1","047")="Abdomen"

set “mesh("AO1","047","025")="Abdominal Cavity"

set “mesh("A01","047","025","600")="Peritoneum"

set “mesh("AO1","047","025","600","225")="Douglas' Pouch"
set "“mesh("AO1","047","025","600","451")="Mesentery"

set “mesh("A01","047","025","600","451","535")="Mesocolon"
set “mesh("A01","047","025","600","573")="0mentum"

set “mesh("AO1","047","025","600","678")="Peritoneal Cavity"
set “mesh("AO1","047","025","750")="Retroperitoneal Space"
set “mesh("A01","047","050")="Abdominal Wall"

set “mesh("A01","047","365")="Groin"

set “mesh("A01","047","412")="Inguinal Canal"

set “mesh("A01","047","849")="Umbilicus"

set “mesh("A01","176")="Back"

set “mesh("AO1","176","519")="Lumbosacral Region"

set “mesh("AO1","176","780")="Sacrococcygeal Region"

set “mesh("AO1","236")="Breast"

set “mesh("A01","236","500")="Nipples"

set “mesh("A0Q1","378")="Extremities"

set “mesh("AO1","378","100")="Amputation Stumps"

34

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

“mesh("A@1","378","610")="Lower Extremity"
~mesh("A01","378","610","100")="Buttocks"
“mesh("A@1","378","610", "250")="Foot"
“mesh("A@1","378","610","250","149")="Ankle"
~mesh("A@1","378","610","250","300")="Forefoot, Human"
~mesh("A01","378","610","250","300" , "480")="Metatarsus"
~mesh("A@1","378","610","250" ,"300","792")="Toes"
~mesh("A01","378","610","250","300","792", "380")="Hallux"
“mesh("A@1","378","610","250","510")="Heel"
“mesh("A@1","378","610", "400")="Hip"
“mesh("A@1","378","610", "450")="Knee"
~mesh("A@1","378","610", 500")="Leg"
~mesh("A01","378","610","750")="Thigh"
“mesh("A@1","378","800")="Upper Extremity"
~mesh("A01","378","800" ,"075")="Arm"
~mesh("A@1","378","800","090")="Axilla"
~mesh("A01","378","800" ,"420")="Elbow"
“mesh("A@1","378","800","585")="Forearn"
~mesh("A01","378","800" ,"667")="Hand"
~mesh("A01","378","800" ,"667","430")="Fingers"
~mesh("A01","378","800","667","430" ,"705")="Thumb"
~mesh("A@1","378","800","667","715")="Wrist"
~mesh("A01","378","800","750")="Shoulder"

#include <mumpsc/libmpscpp.h>

//

int

CompiledMtreel.cpp Feb 28, 2007
main() {

global mesh("mesh");
mstring Xx;
int 1,j;

x=Query(""mesh(0)");
while (1) {
x=Query(x) ;
if (x=="") break;
if (x.Piece("(",1)!'=""mesh") break;
i=Qlength(x);
for (j=0; j<i; j++) cout << c
cout << Qsubscript(x,i) << " " << x.Eval() << endl;
}

return 0;

}

which yields:

047 Abdomen
025 Abdominal Cavity
600 Peritoneum
225 Douglas' Pouch
451 Mesentery
535 Mesocolon
573 Omentum
678 Peritoneal Cavity
750 Retroperitoneal Space
050 Abdominal Wall

35

365 Groin
412 Inguinal Canal
849 Umbilicus
176 Back
519 Lumbosacral Region
780 Sacrococcygeal Region
236 Breast
500 Nipples
378 Extremities
100 Amputation Stumps
610 Lower Extremity
100 Buttocks
250 Foot
149 Ankle
300 Forefoot, Human
480 Metatarsus
792 Toes
380 Hallux
510 Heel
400 Hip
450 Knee
500 Leg
750 Thigh
800 Upper Extremity
075 Arm
090 Axilla
420 Elbow
585 Forearm
667 Hand
430 Fingers
705 Thumb
715 Wrist
750 Shoulder
</Xmp>
</blockquote>
</table>
</center>

9.1.3.22 Similarity functions: Sim1(), Cosine(), Jaccard(), Dice()

double global::Siml(global B)
double global::Cosine(global B)
double global::Jaccard(global B)
double global::Dice(global B)

The global arrays referenced by the invoking object and the passed object are compared and a
similarity value is computed. The functions compute the similarities of the data bearing nodes
beneath the global array references.

These are some commonly used similarity metrics. (see Salton, G; and McGill, M, Introduction to
Modern Information Retrieval, McGraw Hill, 1983).

For example:

#include <mumpsc/libmpscpp.h>

global A("A");
global B("B");

int main() {

A(Illll'lllll'lllll) = 1;

36

A("1","1","2") = 1,
A("1*,"1","3") = 1,
A("1*,"1","5") = 1;
B("1","1","1") = 1;
B("1","1","2") = 1,
B("1","1","4") = 1;
B("1","1","6") = 1,

cout << A("1","1").Siml1(B("1","1")) << endl;
GlobalClose;

return 0;

}
The above prints 2 since there are two nodes in common below the "1,1" levels.
#include <mumpsc/libmpscpp.h>

global A("A");
global B("B");

int main() {
A("1v,"1","1")
A("1v, "1, "2")
A(C"1","1","3")
A(II1II' II1II' II5II)

| I [||
== =N

~s = o~ owa

B("1","1","1")
B("1","1","2")
B("1","1","4")
B("1","1","6")

=== N

r
’
’
’

cout << A("1","1").Sim1(B("1","1")) << endl;
GlobalClose;

return 0;

The above prints 5 since there are two nodes in common below the "1,1" levels but one of the set
of nodes in common have a stored value of 2. (2*241%*1)

#include <mumpsc/libmpscpp.h>

global A("A");
global B("B");

int main() {

A(C"1*,"1","1") = 1;
A("1","1","2") = 1,
A("1*,"1","3") = 1,
A("1","1","5") = 1,
B("1") = 1;
B("2") = 1;
B("4") = 1;
B("6") = 1;

37

cout << A("1","1").Siml(B()) << endl;

GlobalClose;
return 0;

#include <mumpsc /libmpscpp.h>

prints 2.
int main() {

P T L T TN

MAN—HOOO
L T | | | | A

Py

~— N ' ' — ~—

i G G- G G G S G S S S

P N T STy

el NoNo Ny NoNo)
L T | | | A

PRy

~— O ' ' ~— ~—

[sialaalaayaalyanlyaalyaalyan]

cout << A().Jaccard(B()) << endl;
GlobalClose;
return 0;

#include <mumpsc/libmpscpp.h>

int main() {

prints 1
global A
global B

am mm o oEm oEm oEm oEm oam oam

MAN—HOoOOO
L T | | [I 1

.~~~ o~~~ —~

~— N ' ' — ~—

LS G- G G = G GRS G S S

B(Illll) = 1;

38

[cNoN NoNoN N

’
.
’
’
’
’
’
’

cout << A().Dice(B()) << endl;

GlobalClose;
return 0;

}

prints 1

#include <mumpsc/libmpscpp.h>

global A("A");
global B("B");

int main() {

>r>>>>>>>>

L VI | [[[A
HFHRFOOOKKNW

NE s N NE NE o NwE o wE e

OO UTA WN

O 0 0 0 0 O
PN AN AN AN AN AN AN S
[cNoN T NoNoN SN

WL UTA WN =

cout << A().Cosine(B()) << endl;

GlobalClose;
return 0;

}

prints 0.75

9.1.3.23 Transpose()
void global::Transpose(global out)

The invoking object is transposed and the result is placed in out. Any prior contents of the array

out are deleted before the operation commences. Example:

#include <mumpsc/libmpscpp.h>
#include <mumpsc/libmpsrdbms.h>

39

global d("d");

global f("f");
int main() {

d(lllll’lllll)=2;
d(“l“,"2")=3;
d(ll2ll,ll1ll)=4;
d(ll2ll,ll2ll)=0;

d().Transpose(f()); // transpose d() placing result in f()

COUt << f("].","].") << non f(ulu,uzu) << endl;
cout << f(llzll,lllll) << n n f(llzll,llzll) << end'l.;
GlobalClose;

return EXIT SUCCESS;

}

Yields:

2 4

30

9.1.3.24 Centroid()
void global::Centroid(global B)

A centroid vector B is calculated for the invoking two dimensional global array. The centroid
vector is the average value for each for each column of the matrix. Any previous contents of the
global array named to receive the centroid vector are lost. The invoking global array (A4) must contain
at least two dimensions. For example:

#include <mumpsc/libmpscpp.h>

global A("A");

global B("B");

int main() {

mstring 1i,j;

for (i=0; i<10; i++)

for (j=1; j<10; j++) {

A(i,j) = 5;
}

A().Centroid(B());
mstring a="";
while (1) {
a=B(a).0rder(1);
if (a=="") break;
cout << a << " --> " << B(a) << endl;
}

return 0;

<
-
(0]
—~
o
n

-->

coNOUTL S WN =
[
[
vV V

(OO OO, N0, 0, 0, 0, Rl

9 -->5

The above yields a vector giving the average value of each named column of the matrix "A" (5 in
this case since each column is initialized with 5).

9.1.3.25 Correlation functionsL: TermCorrelate(), DocCorrelate()

void global::TermCorrelate(global B)
void global::DocCorrelate(global B, mstring fcnname, double threshold)

These functions build document indexing correlation matrices. The invoking global is assumed to
be a two dimensional document-term matrix whose rows are documents and whose columns
represent the occurrence of terms in the documents (either weights or frequencies).

TermCorrelate() builds a square term-term correlation matrix in B from the invoking document-
term matrix.

DocCorrelate() builds a square document-document correlation matrix from the invoking
document-term matrix. The name of the function to be used in calculating the document-document
similarity is given in fcn and may be Cosine, Jaccard, Dice, or Sim1. The minimum corrrelation
threshold is given in threshold which defaults to 0.80 if omitted.

TermCorrelate() Example:

#include <mumpsc/libmpscpp.h>
global A("A");

global B("B");

int main() {

long i,j;

A("1","computer")=5;
A("1","data")=2;
A("1","program")=6;
A("1","disk")=3;
A("1","laptop")=7;
A("1","monitor")=1;

A("2","computer")=5;
A("2","printer")=2;
A("2","program")=6;
A("2","memory")=3;
A("2","laptop")=7;
A("2","language")=1;

A("3","computer")=5;
A("3","printer")=2;
A("3","disk")=6;
A("3","memory")=3;
A("3","laptop")=7;
A(II3II’ IIUSBII)=1;

A().TermCorrelate(B());
mstring a;
mstring b;

a=|| n ;

while (1) {
a=B(a).0rder();
if (a=="") break;
cout << a << endl;

41

b=|| 1] E
while

}

return 0;

Yields:

computer(1)
disk(1)
laptop(1)
memory (1)
printer(1)

computer

USB(1)
data(1l)
disk(2)
language(1)
laptop(3)
memory (2)
monitor(1)
printer(2)
program(2)

data

computer(1)
disk(1)
laptop(1)
monitor(1)
program(1)

disk

USB(1)
computer(2)
data(1)
laptop(2)
memory (1)
monitor(1)
printer(1)
program(1)

language

computer(1)
laptop(1)
memory (1)
printer(1)
program(1)

laptop

USB(1)
computer(3)
data(1l)
disk(2)
language(1)
memory (2)
monitor(1)
printer(2)
program(2)

memory

USB(1)
computer(2)

{
(a,b).0rder(1);
(b=="") break;

ut <<" " << b << "(" << B(a,b) << ")" << endl;

42

disk(1)
language(1)
laptop(2)
printer(2)
program(1)

monitor

computer(1)
data(1l)
disk(1)
laptop (1)
program(1)
printer
USB(1)
computer(2)
disk(1)
language(1)
laptop(2)
memory (2)
program(1)
program

computer(2)
data(1l)
disk(1)
language(1)
laptop(2)
memory (1)
monitor (1)
printer(1)

The above gives the number of co-occurences of each word with each other word. For example,
the words "computer" and "memory" co-occur in two vectors (2 nd 3) while the words "laptop" and
"computer" co-occur in all three vectors. If each vector is thought of as a document, the strength of

the co-occurences between words is a measure of similarity for indexing purposes.

DocCorrelate() Example:

#include <mumpsc/libmpscpp.h>

global A("A");
global B("B");
int main() {

long i,j;
A("1","computer")=5;
A("1","data")=2;
A("1","program")=6;
A("1","disk")=3;
A("1","laptop")=7;
A("1","monitor")=1;
A("2","computer")=5;
A("2","printer")=2;
A("2","program")=6;
A("2","memory")=3;
A("2","laptop")=7;
A("2","language")=1;
A("3","computer")=5;
A("3","printer")=2;
A("3","disk")=6;

43

A("3","memory")=3;
A("3","laptop")=7;
A(II3II’IIUSBII)=1;

A().DocCorrelate(B(),"Cosine", .5);

mstring a=;
mstring b;

a=|| 1]

while (1) {
a=B(a).0rder(1);
if (a=="") break;
cout << a << endl;

b="";
while (1) {
b=B(a,b).0rder(1);
if (b=="") break;
cout <<" " << b << "(" << B(a,b) << ")" << endl;
}
}
return 0;
}
Yields
1
2 0.887096774193548
3 0.741935483870968
2
1 0.887096774193548
3 0.701612903225806
3
1 0.741935483870968
2 0.701612903225806

The above program calculates the similarities between the document vectors according to the
Cosine method.

9.1.3.26 IDF()
void global::IDF(doubleDocCount)

The IDF() function calculates for the global array vector provided the inverse document
frequency weight of each term. The vector should be indexed by words and have stored the number
of documents in which each word occurs. The document count will be replaced by the calculated IDF
value. The IDF is log2(DocCount/Wn)+1 where Wn is the number of documents in which a term
appears (the document freqwuency). The value DocCount is the total number of documents present
in the collection. Example:

#include <mumpsc/libmpscpp.h>
global a("a");
int main() {

kill(a())
a("now")=
a("is")=5;
a("the")=6;
a("time")=3;

’
’

44

a().IDF(4);
a().TreePrint();
return 0;

}
yields:

15=0.678072
now=2.000000
the=0.415037
time=1.415037

9.1.3.27 Sum()
double global: :Sum()

The global array nodes beneath the referenced global array are summed. Non numeric quantities
are treated as zero. Example:

#include <mumpsc/libmpscpp.h>
global A("A");
int main() {

mstring i, j;

for (1 =1; i < 11; i++)
for (j = 1; _]<11 j++) {
A(L, j) =

}
cout << "Full sum: " << A().Sum() << endl;
cout << "A row sum: " << A("5").Sum() << endl;
GlobalClose;
return EXIT SUCCESS;
}
Yields

Full sum: 500
A row sum: 50

9.2 Mstring Operations and Manipulations
9.2.1 Arithmetic Operations on Mstrings
9.2.2 Assignment Operations on Mstrings

9.2.3 Functions of Class mstring

9.2.3.1 cvt()
char * cvt(arg)

The function converts the argument to a null terminated character string. The arguments may be
long, double, float, and int. Do not use this function more than once in an expression as the returned
pointer is to a static variable in the function. Multiple calls will point to the same variable.

45

9.2.3.2 decorate()
int mstring::decorate(mstring pattern, mstring left, mstring right)

Locates the pattern in the invoking mstring and inserts Jeff immediately to the left of the string
that matched the pattern and inserts right immediately to the right of the found pattern. Returns 1 if
the pattern was found and the insertions were made, -1 if the pattern was not found, and less than -1
for other errors (see PCRE documentation concerning pcre exec() return codes). Throws:
PatternException().
9.2.3.3 EncodeHTML()

char * mstring EncodeHTML(char * arg)
mstring EncodeHTML(mstring arg)

Encodes the argument string according to HTML rules and returns the result. Alphabetics and
numbers are unchanged. Blanks become plus signs and all other characters replaced by "%xx" where
"xx" is the hexadecimal value of the character in the ASCII collating sequence. The function is used
mainly in connection with parameters passed with URL's which may not contain blanks or special
characters. the code in cgi.h is used to decode these strings. Example:

#include <mumpsc /libmpscpp.h>

int main() {
char x[]="now is =()$.& the time";
cout << EncodeHTML(x) << endl;
return EXIT SUCCESS;

}
Yields

NOw+15+%3D%28%29%24%2E%26+the+time
9.2.3.4 ends()
int mstring::ends(mstring pattern)

Returns an integer giving the character position (relative to zero) immediately following the
string that matched pattern. Returns -1 if the string did not match. Throws: PatternException.

9.2.3.5 replace()
int mstring::replace(mstring pattern, mstring replacement)

Replaces the string matching pattern with replacement. Returns 1 if successful, 0 if there was no
match and less than -1 on error (See PCRE documentation for pcre _exec()).

Throws: PatternException.

9.2.3.6 c_str()
char * mstring::c str()
Returns a pointer to a null terminated char array containing the contents of the
invoking mstring object.
9.2.3.7 s_str()
string mstring::s str()

Returns a string copy of the contents of the invoking mstring object.

9.2.3.8 shred()

mstring Shred(mstring str, int size)

46

The Shred() function shreds the input string strinto fragments of length size upon successive
calls. The function returns a string of length zero when there are no more fragments of length size
remaining (thus, short fragments at the end of a string are not returned). Shred() copies the input
string to an internal buffer upon the first call. Subsequent calls retrieve from this buffer. When the
buffer is consumed, the function will copy the contents of the next string submitted to the buffer.
Example:

#include <mumpsc/libmpscpp.h>
int main() {

char x[]="abcdefghijklmnopgrstuvwxyz";
char *p;

while(1l) {
p=Shred(x,5);
if (strlen(p)==0) break;
cout << p << endl;

}

return 0;

}
yields:

abcde
fghij
klmno
pgrst
uvwxy

9.2.3.9 begins()

int mstring::begins(mstring pattern)
Returns an integer which is the starting point in the string of pattern or -1 if the pattern is not
found. Throws: PatternException if the pattern is in error.

9.2.3.10

9.2.3.11 c_str()
char * mstring::c str()
Returns a char * to a NULL terminated character string containing the same value as the
mstring variable.
9.2.3.12 Justify()
mstring mstring::Justify(int field width[, int precision])

Justify() right justifies the invoking mstring in an mstring field whose length is given by the first
argument. If the second argument is present and a positive integer, the invoking mstring is right
justified in a field whose length is given by the first argument with "precision" decimal places. The
two argument form imposes a numeric interpretation upon the first argument.

X="39" ;
x.Justify(3) yields " 39"

x="TEST";
x.Justify(7) yields " TEST"

X="39" ;
x.Justify(4,1) yields "39.0"

47

9.2.3.13 Extract()
mstring mstring::Extract([int start, [int end]])

Returns an mstring containing a substring substring of the first argument. The substring begins
at the position noted by the second operand. If the third operand is omitted, the substring consists
only of the "start" character of invoking source string. If the third argument is present, the substring
begins at position "start" and ends at position "end". If no argument is given, the function returns the
first character of the string. If "end" specifies a position beyond the end of source string, the
substring ends at the end of source string;. String position counting begins at one (not zero). For
example:

mstring Xx;

x="ABCDEF";

x.Extract(2) yields "B"
x.Extract(3,5) yields "CDE"

9.2.3.14 Find()

int mstring::Find(mstring pattern string [, int start)
int mstring::Find(const char * pattern string [, int start)

Find() searches the first argument for an occurrence of the second argument. If one is found, the
value returned is one greater than the end position of the second argument in the first argument. If
"start" is specified, the search begins at position "start" in argument 1. If the second argument is not
found, the value returned is 0. String position counting begins at position one. For example:

mstring Xx;

x="ABC";

x.Find("B") yields 3
x="ABCABC";
x.Find("A",3) yields 5

9.2.3.15 Horolog()
mstring Horolog()

Returns a mstring containing of two numbers. The first is the number of days since December 31,
1840 and the second is the number of seconds since the most recent midnight. These values are
relative to Greenwich Mean Time.

9.2.3.16 mcvt()
mstring mcvt(arg)

Converts the arg to mstring. Arg may be int, char *, float long or double.

9.2.3.17 ascii()

int mstring::Ascii()
int mstring::Ascii(int start)

Returns the numeric value of an ASCII character. If no startis specified, the numeric values of
the

first character of invoking mstring is used. If start is specified, the numeric value of start"th
character of invoking is chosen. If the empty string is given, -1 is returned. For example:

mstring a;

a="ABC";

a.Ascii() yields 65

a.Ascii(1l) yields 65
a.Ascii(2) yields 66

48

9.2.3.18 Evaluate a Mumps Expression
mstring mstring::Eval()

Evaluates the mumps expression of the invoking mstrin object and returns the result in an
mstring. If an error occurs, an InterpreterException is thrown. The invoking mstring object may
contain a valid mumps expression involving calling program mstring variables.

9.2.3.19 Pattern()

int mstring::Pattern(char * pattern string)
int mstring::Pattern(mstring & pattern string)

Evaluates the invoking source string according to the pattern string and returns 0 (does not
match) or 1 (does match). Pattern string rules are as as shown below but you must remember to
place a backslash before quotes in the pattern string (as per usual C++ rules). The pattern match
function is used to determine if a string conforms to a certain pattern. Pattern match operations are
converted to Perl Compatible Regular Expressions and are executed by functions in the PCRE library
which must be present. You may access the PCRE directly, using Perl expression format with the
"perl pm(string, pattern, 1, svPtr)" function discussed in Appendix D.

The pattern codes are:

A for the entire upper and lower case alphabet.
C for the 33 control characters.

E for any of the 128 ASCII characters.

L for the 26 lower case letters.

N for the numerics

P for the 33 punctuation characters.

U for the 26 upper case characters.

A literal string.

A pattern code is made up of one or more of the above, each preceded by a count specifier. The
count specifier indicates how many of the named item must be present. Alternatively, an indefinite
specifier - a decimal point - may be used to indicate any count (including zero). For example:

mstring A;

A="123-45-6789";

if (A.Pattern(command("3N1"-"2N1"-"4N"))) cout << "OK" << endl;
A="JONES, J. L.";

if (A.Pattern(command(".Al1",".A"))) cout << "OK" << endl;

Full pattern matching syntax, including support for alternation, are supported as described in
Appendix D of the Compiler manual. The macro "command()" will handle the required backslash
escape characters required before quote marks.

9.2.3.20 Perl()

int Perl(mstring string, mstring regex)
int Perl(mstring string, char * regex)

The regular expression in the null terminated character array or mstring given by regex is
applied to the mstring string. If the pattern match succeeds, true (1) is returned, false (0) otherwise
and $test is set accordingly. This macro also sets variables in the run-time symbol table. See
SymGet() and SymPut() for details on accessing the symbol table. See Appendix D for examples of
using this function.

9.2.3.21 Piece()

mstring mstring::Piece(mstring pattern-string, int start[, int end])
mstring mstring::Piece(const char * pattern-string, int start[, int end])

49

The Piece() function returns a substring of the invoking mstring delimited by the instances of the
first argument. The substring returned in the two argument case is that substring of the invoking
mstring that lies between the "start" minus one and "start" occurrence of the first argument. In the
three argument form, the string returned is that substring of the invoking mstring delimited by the
"start" minus one instance of the first argument and the end'th instance of the first argument. If only
two arguments are given, end is assumed to be start. For example:

x="aaa.bbb.ccc.eee.fff";

cout << x.Piece(".",1) << endl; // writes aaa
cout << x.Piece(".",2) << endl; // writes bbb
cout << x.Piece(".",5) << endl; // writes fff
cout << x.Piece(".",4,5) << endl; // writes eee.fff

Global arrays may be used in any argument position but only one instance of the same global may
appear (see note in Accessing global arrays) section.

9.2.3.22 ShredQuery()
mstring ShredQuery(mstring str, int size)

The ShredQuery() function shreds size shifted copies of the input string strinto fragments of
length size upon successive calls. That is, the function first returns all the size fragments of the string
in the same manner as Shred(). However, it then shifts the starting point of the input string to the
right by one and returns all the size length fragments relative to the shifted starting point. It repeats
this process a total of size times.

The function returns a string of length zero when there are no more fragments of length size
remaining (thus, short fragements at the end of a string are not returned). ShredQuery() nitially
copies the input string to an internal buffer upon the first call. Subsequent calls retrieve from this
buffer. When the buffer is consumed, the fuction will copy the contents of the next string submitted
to the buffer. Example:

#include <mumpsc/libmpscpp.h>
int main() {

char x[]="abcdefghijklmnopqrstuvwxyz";
char *p;

while(1l) {
p=ShredQuery(x,5);
if (strlen(p)==0) break;
cout << p << endl;
}
return 0;

}
Yields:

abcde
fghij
klmno
pqrst
UvVwxy

bcdef
ghijk
lmnop
grstu

cdefg

50

hijkl
mnopq
rstuv

defgh
ijklm
nopqgr
stuvw

efghi
jklmn
opgrs
tuvwx

9.2.3.23 Stem()
mstring stem(mstring & word)

Returns the original word or the English linguistic root stem of the word, if one can be found.

9.2.3.24 Readline()

bool mstring::ReadLine(FILE * unit)
bool mstring::ReadlLine(istream unit)

The next line from the file designated by "unit" is read into the invoking object of mstring.
Carriage-returns and line-feeds are removed. The maximum length line that can be read is STR_ MAX.
Returns 'true' if the operation succeeded, 'false' otherwise or if end of file.

9.2.3.25 SymGet()

mstring SymGet(mstring name)
mstring SymGet(char * name)
mstring SymGet(global name)

mstring SymPut(name, value)

These functions retrieve and store values from/to the run-time symbol table. In all, nameis a a
string containing the name of the variable and value is the value to be stored. The SymPut() functions
return true if successful. A MumpsSymbolTableException exception is raised if SymGet() fails. If
SymPut() fails, the program terminates (out of memory). For SymPut(), 'name' and 'value' may be any
combination of mstring, global or .

9.2.3.26 Token()

mstring Token()
mstring TokenInit(mstring)

Token() returns the next word token from the input string. Initially a line of text is passed to
TokenlInit(). For each subsequent call to Token(), the next lexical token from the original string is
returned. Upper case letters are converted to lower case letters. When there are no more words, the
empty string is returned. After the the empty string is returned (or when initially called), the function
will accept and store a new line of text.

9.2.3.27 ScanAlnum()

mstring ScanAlnum(FILE * file [,int min [int max]])
mstring ScanAlnum(istream file [,int min [int max]])

Returns the next token from the input file with all punctuation removed. Returns empty string on
end of file. If min and/or max are provided, only words whose length are less than min and greater
than max are discarded. The default values for these parameters are 3 and 25, respectively. Use
stdin for file to scan standard input.

51

9.2.3.28 Stem()
mstring Stem(mstring word)

The function returns the word stem of the argument word or the original word if none can
be calculated.

9.3 Miscelaneous functions

9.3.1 Boyer-Moore-Gosper Functions
int bmg fullsearch(mstring search string, mstring buffer base)
Returns the number of non-overlapping instances of "search string" in "buffer base".
Examples:

#include <mumpsc/libmpscpp.h>
int main() {

mstring a="now is the time for all good men to come to the aid of the party";
mstring b="to";

cout << bmg fullsearch(b,a) << endl;

return EXIT SUCCESS;

}
yields:

2

These functions are publically available from:
ftp://ftp.uu.net/usenet/comp.sources.unix/volume5/bmgsubs.Z

and are believed to be contributed source and are unrestricted with respect to use and
redistribution, and, that most, if not all, the code was written by employee(s) of the United States and
thus in the public domain. The distribution contains, in part, the following notes:

Here are routines to perform fast string searches using the
Boyer-Moore-Gosper algorithm; they can be used in any Unix program (and
should be portable to non-Unix systems). You can search either a file
or a buffer in memory.

The code is mostly due to James A. Woods (jaw@ames-aurora.arpa)
although I have modified it heavily, so all bugs are my fault. The
original code is from his sped-up version of egrep, recently posted on
mod.sources and available via anonymous FTP from ames-aurora.arpa as
pub/egrep.one and pub/egrep.two. That code handles regular
expressions; mine does not.

These have only been tested on 4.2BSD Vax systems.
-Jeff Mogul

mogul@navajo.stanford.edu
decwrl!glacier!navajo!mogul

BMGSUBS (3L) BMGSUBS (3L)

NAME
(bmgsubs) bmg setup, bmg search, bmg fsearch - Boyer-Moore-Gosper
string search routines

52

SYNOPSIS

bmg setup(search string, case fold flag)
char *search string;
int case fold flag;

bmg fsearch(file des, action func)
int file des;
int (*action func)();

bmg search(buffer base, buffer length, action func)
char *buffer base;

int buffer length;

int (*action func)();

DESCRIPTION

AUTHOR

BUGS

These routines perform fast searches for strings, using the Boyer-
Moore-Gosper algorithm. No meta-characters (such as "*' or “.') are
interpreted, and the search string cannot contain newlines.

Bmg setup must be called as the first step in performing a search. The
search string parameter is the string to be searched for.
Case fold flag should be false (zero) if characters should match
exactly, and true (non-zero) if case should be ignored when checking
for matches.

Once a search string has been specified using bmg setup, one or more
searches for that string may be performed.

Bmg fsearch searches a file, open for reading on file descriptor
file des (this is not a stdio file.) For each line that contains the
search string, bmg fsearch will call the action func function specified
by the caller as action func(matching line, byte offset). The match-
ing line parameter is a (char *) pointer to a temporary copy of the
line; byte offset is the offset from the beginning of the file to the
first occurence of the search string in that line. Action func should
return true (non-zero) if the search should continue, or false (zero)
if the search should terminate at this point.

Bmg search 1is 1like bmg fsearch, except that instead of searching a
file, it searches the buffer pointed to by buffer base; buffer length
specifies the number of bytes in the buffer. The byte offset parameter
to action func gives the offset from the beginning of the buffer.

If the user merely wants the matching lines printed on the standard
output, the action func parameter to bmg fsearch or bmg search can be
NULL.

Jeffrey Mogul (Stanford University), based on code written by James A.
Woods (NASA Ames)

Might be nice to have a version of this that handles regular expres-
sions.

There are large, but finite, limits on the 1length of both pattern
strings and text lines. When these limits are exceeded, all bets are
off.

53

The string pointer passed to action func points to a temporary copy of
the matching 1line, and must be copied elsewhere before action func
returns.

Bmg search does not permanently modify the buffer in any way, but dur-
ing its execution (and therefore when action func is called), the last
byte of the buffer may be temporarily changed.

The Boyer-Moore algorithm cannot find lines that do not contain a given
pattern (like ‘"grep -v") or count lines ("grep -n"). Although it is
fast even for short search strings, it gets faster as the search string
length increases.

16 May 1986 BMGSUBS (3L)

9.3.2 cvt()

char *cvt(long 1)
char *cvt(double i)
char *cvt(float i)
char *cvt(int i)

These functions return a null terminated varying length character string containing in printable
version of the argument. The functions contain short static character arrays and, consequently, are
not threadsafe.

9.3.3 xecute() and command()

command() is a macro that takes a quoted string constant argument. The macro surrounds the
string with an extra set of quotes and processes any embedded quotes to backslash-quote. It then
invokes a function (__command ()) which strips the extra surrounding quotes. The net effect of this
is that you can pass a quoted string containing quotes without the need for "leaning toothpick"
notation. Example:

xecute(command("for i=1:1:10 "test ",i,!"));
strcpy(target, command("for i=1:1:10 write "test ",i,!"))

The argument must be a character string constant.

9.3.4 ErrorMessage()
void ErrorMessage(char * message, int line number)

This function (written in C and part of the underlying legacy library) will print and error message,
close the global array files and terminate the program. The integer "line number" will be printed with
the message. The pre-processor predefined macro " LINE " can be used here. Example:

ErrorMessage("Cannot locate patient",_ LINE_);

9.3.5 Error Exceptions

The toolkit generates (throws) exceptions for certain conditions. For example, when you access
global arrays with the toolkit, the accesses may result in the thrown error exceptions:

1. ConversionException.

2. GlobalNotFoundException

3. MumpsSymbolTableException.
4. NumericRangeException.

The first can occur in any context that attempts to retrieve data from a global array where none
exists. The second occurs if you attempt to convert the contents of a global to a numeric type where
the contents of the global are not valid data for the conversion.

54

If uncaught, both exceptions will result in program termination.
The following are the exceptions thrown by the toolkit:

1. ConversionException() - usually occurs when you attempt to store a value from a global array
into a numeric variable but the string in the global is not a valid number.

2. GlobalNotFoundException() - thrown by an attempt to reference non-existent global array
data.

3. MumpsSymbolTableException() - thrown by an attempt to fetch the value of a non-esistent
variable from the Mumps runtime symbol table.

4. NumericRangeException() - thrown by attempts to divide by zero or using arguments with
values less that or equal to zero to log functions.

#include <mumpsc/libmpscpp.h>
global a("a");

int main() {

long i;

a().Kill();

mstring A;

a("1l") = "now is the time";
try {

i
}
catch (ConversionException ce) {

cout << ce.what() << endl;

}
try {

i
}

catch (GlobalNotFoundException nf) {
cout << nf.what() << endl;

}

= a(lllll);

= a("22");

try {

A=SymGet ("abc");

}

catch (MumpsSymbolTableException st) {
cout << nf.what() << endl;

}

return 0;

}
9.3.6 HitRatio()
double HitRatio(void)

Calculates the native global array processor cache hit ratio since the beginning of the program or
the last call to HitRatio() The native global array file processor, as opposed to the Berkeley Data
Base, keeps track of how many file I/O requests are satisfied from data already in the file system's
cache. This function gives the percentage of cache hits. It only works with the native global array
processor.

9.3.7 Hashing functions

char * hash(char * str)
long lhash(char * str)

55

hash() returns either a null terminated character string up to 10 characters in length containing
a numeric hash code of the string passed as an argument. The argument may be up to STR MAX
characters in length. Jhash() returns an unsigned long value of the hash value.

9.3.8 Dump Global Array Database

void Dump(char * filename)
void Dump(mstring filename)
void Dump(string filename)

void Restore(char * filename)
void Restore(mstring filename)
void Restore(string filename)

The global array data base is dumped (written in its entirety) to filename or read and restored
from filename (null terminated array of chars). Both operations must not be done from the same
program.

9.3.9 Stream Output
friend ostream & operator << (ostream&, global)
A global array may participate in stream output. For example:

gbl("A","B","C") << "test test test";
cout << gbl("A","B","C") << endl;

The above will print "test test test" (without quotes) followed by the newline character.
Alternatively:

cout << gbl("A","B","C").Get() << endl;

will do the same thing (the Get() function returns "char *".

9.3.10 Smith-Waterman Alignment Function

int sw(mstring s, mstring t, [int show aligns=0, int show mat=0, int gap=-1, int
mismatch=-1, int match=2])

int sw(string s, string t, [int show aligns=0, int show mat=0, int gap=-1, int
mismatch=-1, int match=21])

int sw(char *s, char *t, [int show aligns=0, int show mat=0, int gap=-1, int
mismatch=-1, int match=21])

Calculate the Smith-Waterman Alignment between strings "s" and "t". Result returned is the
highest alignment score achieved. Parameters other than the first two are optional. If only some of
the optional parameters are supplied, only trailing parameters may be omitted, as per C/C++ rules.

If you compare very long strings (>100,000 character), you may exceed stack space. This can be
increased under Linux with the command:

ulimit -s unlimited
(Other options are ulimit -a and ulimit -aH to show limits).

If "show aligns" is zero, no printout of alternative alignments is produced (default). If
"show aligns" is not zero, a summary of the alternative alignments will be printed. If "show mat" is
zero, intermediate matrices will not be printed (default). The gap and mismatch penalties are -1 and
the match reward is +2. The parameters "gap", "mismatch" and "match" are the gap and mismatch
penalties (negative integers) and the match reward (a positive integer). These values default to -1, -1

and 2 respectively. If insufficient memory is available, a segmentation violation will be raised.]
The first character of each sequence string MUST be blank.

Example:
56

#include <mumpsc/libmpscpp.h>
int main() {

char s[]=" now is the time for all good men to come to the aid of the party";
char t[]=" time for good men";

int i=sw(s,t,1,0,-1,-1,3);

return 0;

}

results in:

S-W Alignments for:
64 now is the time for all good men to come to the aid of the party
22 time for good men

29 men 32

19 men 22
score=12

29 - men 32

18 men 22
score=11

11 good men 22
score=24

11 - good men 22
score=23

1 time for -- good men 22
score=48

9.3.11 Stop list functions: StopINIT(), StopLookup()

void StopInit(mstring file)
void StopInit(string file)
void StopInit(char * file)

int StopLookup(mstring word)
int StopLookup(string word)
int StopLookup(char * word)

StoplInit() reads the sorted file "file" of stoplist words into the stoplist container (one word per
line). StopLookup() returns 0 if "word" is not found and 1 if "word" is found in the stoplist.

57

9.3.12 Synonym Functions: SymInit(), SYN()

int SynInit(mstring filename)
int SynInit(string filename)
int SynInit(char * filename)

mstring SYN(mstring word)
string SYN(string word)
char * SYN(char * word)

SysInit() opens and reads a synonym file and returns the number of lines read. The maximum
number of synonyms permitted is determined by "SYNMAX" in libmpscpp.h (default is 20,000). Each
line of the synonym file consists of multiple words, in lower case, separated from on another by a
single blank. The first word is the root alias and the remaining words are alternative synonyms. The
function SYN() looks up a word. If the word is an alternative synonym, the root alias is returned. If
not, the original word is returned.

9.3.13 int $test

Returns integer 1 or O indicating the success or failure of certain previous commands. Some, but
not all, commands set "$test".

9.3.14 Xecute()

int Xecute(char * command)
int Xecute(mstring command)
int Xecute(string command)
int Xecute(char * command)

These functions invoke the Mumps interpreter which executes command. Returns 1 of successful,
0 otherwise.

The macro Xecute() is a special case. It is used with character string constants. It will pre-process
a character string constant command and insert the backslash escape character prior to any
embedded quotes thus permitting more normal appearing text (see similar macro command()).

Examples:

mstring c;

Xecute("fors i=$0rder(~a(i)) qg:i="" s sum=sum+~a(i)");
c="for i=1:1:10 write i,!";

xecute(c);

c=command("for i=1:1:10 write "ans=",i,!");

xecute(c);

9.3.15 Zseek() Ztell()

bool Zseek(FILE *file, offset)
bool Ztell(FILE *file, offset)

These functions are used in connection with direct access files opened with FILE pointers (see:
fopen()). They are compatible with 64 bit file pointer systems. Zseek() positions the file designated by
file to the offset specified in offset, a positive integer contained in a variable of type mstring or
global.

Ztell() places the current file offset in the file designated by file into the mstring or global
variable represented by offset.

Both functions return 'true' if successful. Ordinarily, file offesets will be obtained by Ztell() and
these will be stored in a data base. These values will be subsequently used in connection wit Zseek()
to reposition the file to the point it was at whe the Ztell() was performed. After re-positioning, the
next input or output operation on the file will occur at the point designated by offset. All offsets are
relative to the start of the file.

58

10 Appendix A

10.1 Code Examples

The following are examples constitute an information storage and retrieval system that reads the
file osu.medline (OHSUMED collection of medical journal abstracts used in TREC-9. The
Linux/Cygwin script file is shown first.

A e e X

// #+

// #+ Mumps ISR Software Library

// #+ Copyright (C) 2007 by Kevin C. 0'Kane
// #+

// #+ Kevin C. 0'Kane

// #+ okane@cs.uni.edu

// #+

// #+

// #+ This program is free software; you can redistribute it and/or modify
// #+ it under the terms of the GNU General Public License as published by
// #+ the Free Software Foundation; either version 2 of the License, or

// #+ (at your option) any later version.

// #+

// #+ This program is distributed in the hope that it will be useful,

// #+ but WITHOUT ANY WARRANTY; without even the implied warranty of

// #+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// #+ GNU General Public License for more details.

// #+

// #+ You should have received a copy of the GNU General Public License

// #+ along with this program; if not, write to the Free Software

// #+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// #+

A e e T L L o L

// # MDH-reformatX.cpp Feb 27, 2007
#include <mumpsc/libmpscpp.h>
global doc("doc");

int main() {

FILE *ul;

ul = fopen("osu.medline","r");
assert (ul !'= 0);

mstring line, D, off;
D =0;
while (1) {

Ztell(ul, off);

if (! line.ReadLine(ul)) break;
if (line.Extract(1,2) == "TI") {

59

D=D+1;

doc(D) = off;
cout << line.Extract(7,1023) << endl;
continue;
}
if (line.Extract(1l,2) == "MH") continue;
if (line.Extract(1l,13) == "STAT- MEDLINE") {
cout << "XXXXX115xxxxx ";
continue;
}
if (line.Extract(1,2) !'= "AB") continue;

cout << line.Extract(7,1023) << " ";
while (1) { // for each line of the abstract
if (! line.ReadLine(ul)) break;
if (line.Length() == 0) break;
cout << line.Extract(7,255) << " ";
}
cout << endl;

}

GlobalClose;
return EXIT SUCCESS;

A
// #+

// #+ Mumps Information Staorage and Retrieval Software Library
// #+ Copyright (C) 2007 by Kevin C. 0'Kane

// #+

// #+ Kevin C. 0'Kane

// #+ okane@cs.uni.edu

// #+

// #+

// #+ This program is free software; you can redistribute it and/or modify
// #+ it under the terms of the GNU General Public License as published by
// #+ the Free Software Foundation; either version 2 of the License, or

// #+ (at your option) any later version.

// #+

// #+ This program is distributed in the hope that it will be useful,

// #+ but WITHOUT ANY WARRANTY; without even the implied warranty of

// #+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// #+ GNU General Public License for more details.

// #+

// #+ You should have received a copy of the GNU General Public License

// #+ along with this program; if not, write to the Free Software

// #+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// #+

// #+ttt+tttrt

// # stemsX.cpp Feb 27, 2007
// # convert data base to word stems
#include <mumpsc/libmpscpp.h>
int main() {
mstring word, line;

while ((word = ScanAlnum(stdin)) '= "") {

60

if (word == "xxxxx115xxxxx") {
line.ReadLine(stdin);
cout << endl << word << " " << line << endl;
continue;
}
cout << stem(word) << " ";
}
cout << endl;
return EXIT SUCCESS;

}

A e S o T S A o

// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+

cin >> count;

Mumps ISR Software Library

Copyright (C) 2007 by Kevin C. 0'Kaneax) continue;
cout << word << endl;

Kevin C. 0'Kane

okane@cs.uni.edu

}

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

A e L L

// # MDH-stopselect.cpp Feb 28, 2007

#include <mumpsc/libmpscpp.h>

int main(int argc, char * argv[]) {

mstring word;
int count, wmax, wmin;

wmin = 5;

wmax = 750;

if (argc == 3) {
wmin = atoi(argv[l]);
wmax = atoi(argv[2]);
}

while (1) {
if (cin == 0) break;

cin >> count;

cin >> word;

if (count < wmin || count > wmax) continue;
cout << word << endl;

}

USA

61

return 0;

}

2 T
// #+

// #+ Mumps ISR Software Library

// #+ Copyright (C) 2007 by Kevin C. 0'Kane
// #+

// #+ Kevin C. 0'Kane

// #+ okane@cs.uni.edu

/] #+

// #+

// #+ This program is free software; you can redistribute it and/or modify
// #+ it under the terms of the GNU General Public License as published by
// #+ the Free Software Foundation; either version 2 of the License, or

// #+ (at your option) any later version.

// #+

// #+ This program is distributed in the hope that it will be useful,

// #+ but WITHOUT ANY WARRANTY; without even the implied warranty of

// #+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// #+ GNU General Public License for more details.

// #+

// #+ You should have received a copy of the GNU General Public License

// #+ along with this program; if not, write to the Free Software

// #+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

// #+
G e o

// # MDH-dictionary.cpp February 28, 2007
#include <mumpsc/libmpscpp.h>

global dict("dict");

int main() {

FILE *ul;
mstring word,null;

null="";
ul = fopen("translated.txt","r");

if (ul == 0) {
cout << "translated.txt not found\n";
return 1;

}
while (1) {
word = ScanAlnum(ul,3,30);
if (word == "") break;
if (dict(word).Data()) dict(word) = dict(word) + 1;
else dict(word) = 1;

}
fclose(ul);
for (word = dict(null).Order(1); word !'= null; word = dict(word).Order(1)

cout << dict(word) << << word << endl;

62

GlobalClose;
return 0;

}

[/ #HHHHtt
// #+

// #+ Mumps ISR Software Library

// #+ Copyright (C) 2007 by Kevin C. 0'Kane
// #+

// #+ Kevin C. 0'Kane

// #+ okane@cs.uni.edu

// #+

// #+

// #+ This program is free software; you can redistribute it and/or modify
// #+ it under the terms of the GNU General Public License as published by
// #+ the Free Software Foundation; either version 2 of the License, or

// #+ (at your option) any later version.

// #+

// #+ This program is distributed in the hope that it will be useful,

// #+ but WITHOUT ANY WARRANTY; without even the implied warranty of

// #+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// #+ GNU General Public License for more details.

// #+

// #+ You should have received a copy of the GNU General Public License

// #+ along with this program; if not, write to the Free Software

// #+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// #+

A e o e e B T L L

// # MDH-sourceOffsets.cpp February 28, 2007
#include <mumpsc/libmpscpp.h>
global doc("doc");
int main() {
FILE *ul,

ul = fopen("osu.medline","r");
assert (ul '= 0);

mstring d,a,offset;

d=0;
while (1) {
Ztell(ul, offset);
if ('a.ReadLine(ul)) break;;
if (a.Extract(1,3) == "TI ") {
d=d+1;
doc(d)=offset;
}
}
}

USA

// Bttt
// #+

63

// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+
// #+

Mumps ISR Software Library
Copyright (C) 2007 by Kevin C. 0'Kane

Kevin C. 0'Kane
okane@cs.uni.edu

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

G e e B L

// # MDH-idf.cpp February 28, 2007

#inclu

global
global
global
global
global
global

int ma

de <mumpsc/libmpscpp.h>

df ("df");

doc("doc");
dfi("dfi");
dict("dict");
DocCount("DocCount");
t(lltll);

in() {
df () .Kill(

);
doc().Kill()
dict().Kill(

);

mstring word,dc,d,null;
null = "";

double X,Y,Z;

char tmp[64];

FILE *ul;
fpos t offset;

ul = fopen ("translated.txt", "r");

if (ul == 0) {
cout << "translated.txt input file not found\n";
return 1;

}

StopInit("good"); // loads stop list into a C++ container

USA

64

dc=0;

while (1) {

word = ScanAlnum(ul);

if (word == null) break;

if (word == "xxxxx115xxxxx") {
dc = dc + 1;
fgetpos(ul, &offset);
sprintf(tmp, "%lld",offset);
t(dc) = tmp;
continue;

}
if (!StopLookup(word)) continue; // is "word" in the good list
if (doc(dc,word).Data()) doc(dc,word) = doc(dc,word) + 1;
else doc(dc,word) = 1;
if (dict(word).Data())
else dict(word) = 1;

}

DocCount("1") = dc;

dict(word) = dict(word) + 1;

for (d = doc(null).Order(1l); d !'= null; d = doc(d).Order(1)) {
for (word = doc(d,null).Order(1l); word !'= null; word = doc(d,word).Order(1)) {
if (df(word).Data()) df(word) = df(word) + 1;
else df(word) = 1;

}
}
X = dc;
for (word = df(null).Order(1l); word != null; word = df(word).Order(1l)) {
Y = df(word);
d = log(X / Y);
dfi(word) = d.Justify(1,2);
cout << dfi(word) << " " << word << endl;
}
GlobalClose;
return 0;
}

#+++++++H+

#+
#+
#+
#+
#+
#+
#+
#+
#+
#+
#+
#+
#+
#+
#+

Mumps ISR Software Library
Copyright (C) 2007 by Kevin C. 0'Kane

Kevin C. 0'Kane
okane@cs.uni.edu

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

65

// #+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// #+ GNU General Public License for more details.

// #+

// #+ You should have received a copy of the GNU General Public License

// #+ along with this program; if not, write to the Free Software

// #+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// #+

// #++++HH A A
// # MDH-weight.cpp February 28, 2007

#include <fstream>
#include <mumpsc/libmpscpp.h>

global doc("doc");
global dfi("dfi");
global indx("index");
global t("t");

int main(int argc, char * argv[]) {

FILE *ul;
ul = fopen("translated.txt","r");
assert(ul '= 0);

ofstream u2 ("weighted-doc-vectors", ios::out);
assert (u2 '= 0);

mstring d,tt,w,null;
double x,idfmin=6.0;

if (argc == 2) {
idfmin = atof(argv[l]);
}

null="";

for (d=doc(null).Order(l); d '= null; d = doc(d).Order(1)) {
u2 << "doc=" << d << " Do
Zseek(ul,t(d));
tt.ReadlLine(ul);
u2 << tt << endl << " "
for (w = doc(d,null).Order(1l); w !'= null; w = doc(d,w).0Order(1)) {
x = dfi(w)*doc(d,w);
if (x > idfmin) {
doc(d,w) = dfi(w) * doc(d,w);
U2 << w << "(" << doc(d,w) << ") ";

}
else doc(d,w).Kill();

}
u2 << endl;
}
u2.close();

doc.Transpose(indx);

ofstream u3 ("weighted-term-vectors", ios::out);
assert (u3 '= 0);

66

for (w=indx(null).Order(1l); w '= null; w = indx(w).0Order(1)) {
u3 << Ilword=ll << W << n II;
for (d = indx(w,null).Order(1l); d !'= null; d = indx(w,d).0Order(1))
u3 << d << ||(|| << lndX(W,d) << ||) ||;

}
u3 << endl;
}
u3.close();

for (w = dfi(null).Order(1l); w != null; w = dfi(w).Order(1)) {
if (!'indx(w).Data()) dfi(w).Kill();
}

GlobalClose;
return 0;

}

{

A e e L

// #+

// #+ Mumps ISR Software Library

// #+ Copyright (C) 2007 by Kevin C. 0'Kane
// #+

// #+ Kevin C. 0'Kane

// #+ okane@cs.uni.edu

// #+

// #+

// #+ This program is free software; you can redistribute it and/or modify
// #+ it under the terms of the GNU General Public License as published by
// #+ the Free Software Foundation; either version 2 of the License, or

// #+ (at your option) any later version.

// #+

// #+ This program is distributed in the hope that it will be useful,

// #+ but WITHOUT ANY WARRANTY; without even the implied warranty of

// #+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// #+ GNU General Public License for more details.

// #+

// #+ You should have received a copy of the GNU General Public License

// #+ along with this program; if not, write to the Free Software

// #+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// #+

A e e
// # MDH-tt.cpp February 24, 2007
#include <mumpsc/libmpscpp.h>
global tt("tt");
global doc("doc");
global indx("index");
int main(int argc, char * argv[]) {
mstring w,wl,w2,d,null,cos;
null = "";
int min;

tt().Kill();

67

if (argc == 2) {
min = atoi(argv[1l]);
}

else min = 5;

for (d = doc(null).Order(1l); d '= null; d = doc(d).Order(1)) {
for (w = doc(d,null).Order(1l); w != null; w = doc(d,w).0Order(1)) {
for (wl = doc(d,w).0Order(1); wl != null; wl =
if (tt(w,wl).Data()) tt(w,wl) = tt(w,wl) + 1;
else tt(w,wl) = 1;
}

}

for (wl = tt(null).Order(1); wl != null; wl = tt(wl).Order(1)) {
for (w2 = tt(wl,null).Order(1); w2 != null; w2 = tt(wl,w2).0rder(1)) {
if (tt(wl,w2) < min) tt(wl,w2).Kill();

else {
tt(w2,wl) = tt(wl,w2);
cos = indx(wl).Cosine(indx(w2));
cout << cos << " " << wl << " " << w2 << endl;
}
}
}
GlobalClose;
return 0;
}

doc(d,wl).Order (1))

{

[/ #HtHttt
// #+

// #+ Mumps ISR Software Library

// #+ Copyright (C) 2007 by Kevin C. 0'Kane
// #+

// #+ Kevin C. 0'Kane

// #+ okane@cs.uni.edu

// #+

// #+

// #+ This program is free software; you can redistribute it and/or modify
// #+ it under the terms of the GNU General Public License as published by
// #+ the Free Software Foundation; either version 2 of the License, or

// #+ (at your option) any later version.

// #+

// #+ This program is distributed in the hope that it will be useful,

// #+ but WITHOUT ANY WARRANTY; without even the implied warranty of

// #+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// #+ GNU General Public License for more details.

// #+

// #+ You should have received a copy of the GNU General Public License

// #+ along with this program; if not, write to the Free Software

// #+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// #+

[/ #H++HHH
// # MDH-jaccard-tt.cpp Feb 28, 2007

#include <mumpsc/libmpscpp.h>

68

global tt("tt");
global dict("dict");

int main(int argc, char * argv[]) {

double min = 0.1;

mstring wl, w2, null, jc;

if (argc == {
min 0

}

for (wl = tt(null).Order(); wl !'= null; wl = tt(wl).Order()) {
for (w2 = tt(wl,null).Order(); w2 != null; w2 = tt(wl,w2).0rder()) {
jc = tt(wl,w2) / (dict(wl) + dict(w2) - tt(wl,w2));
if (jc > min) continue;

N

)
atof(argv[1]);

cout << jc.Justify(6,3) << " " << wl << " " << w2 << endl;
}
}
GlobalClose;
return EXIT SUCCESS;

}

A e L
// #+

// #+ Mumps ISR Software Library

// #+ Copyright (C) 2007 by Kevin C. 0'Kane
// #+

// #+ Kevin C. 0'Kane

// #+ anamfianna@earthlink.net

// #+ okane@cs.uni.edu

// #+

// #+

// #+ This program is free software; you can redistribute it and/or modify
// #+ it under the terms of the GNU General Public License as published by
// #+ the Free Software Foundation; either version 2 of the License, or

// #+ (at your option) any later version.

// #+

// #+ This program is distributed in the hope that it will be useful,

// #+ but WITHOUT ANY WARRANTY; without even the implied warranty of

// #+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// #+ GNU General Public License for more details.

// #+

// #+ You should have received a copy of the GNU General Public License

// #+ along with this program; if not, write to the Free Software

// #+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/] #+

G e e
// # MDH-cohesion.cpp Feb 28, 2007
#include <mumpsc/libmpscpp.h>

global tt("tt");
global dict("dict");

int main() {

mstring i,j,null;

69

double c;
null="";
// # phrase construction

for (i = tt(null).Order(); i '= null; i = tt(i).0rder()) {
for (j = tt(i,null).Order(); j !'= null; j = tt(i,j).0rder()) {

if (i == j) continue;
c = tt(i,j) / (dict(i) * dict(j)) * 100000;
if (¢ >0) cout << c << " " << 1 << " " << j << endl;
}
}
GlobalClose;

return EXIT_SUCCESS;
}

A - e e X

// #+

// #+ Mumps ISR Software Library

// #+ Copyright (C) 2006 by Kevin C. 0'Kane
// #+

// #+ Kevin C. 0'Kane

// #+ okane@cs.uni.edu

// #+

// #+

// #+ This program is free software; you can redistribute it and/or modify
// #+ it under the terms of the GNU General Public License as published by
// #+ the Free Software Foundation; either version 2 of the License, or

// #+ (at your option) any later version.

// #+

// #+ This program is distributed in the hope that it will be useful,

// #+ but WITHOUT ANY WARRANTY; without even the implied warranty of

// #+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// #+ GNU General Public License for more details.

// #+

// #+ You should have received a copy of the GNU General Public License

// #+ along with this program; if not, write to the Free Software

// #+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// #+

// #+ttt++ttrt
// # MDH-discrim3.cpp February 21, 2007

#include <mumpsc/libmpscpp.h>
#include <fstream>
#include <iomanip>

global DocCount("DocCount");
global mca("mca");

global df("df");

global c("c");

global doc("doc");

global dc("dc");

global indx("index");

global dfi("dfi");

global dict("dict");

70

int main() {

//

mstring W,i,w,null;

double d,D,x,y,r;

double sq,T,T1,T2,Tx;

null="";

ofstream ul ("discrim", ios::out);

D = DocCount("1"); // number of documents
sq = 0;
mca().Kill();

#++++++++H+

calculate centroid vector ~c() for entire collection and

the sum of the squares (needed in cos calc but should only be done once)
#++++++++H+

for (w
dict(w) / D; // centroid is composed of avg word usage

df (null).Order(); w != null; w = df(w).0Order()) {
w) =
= c(w) * c(w) + sq; // The sum of the squares is needed below.

c
sq
}

#+++++++++++H+H

Calculate total similarity of doc for all words (T) space by

calculating the sum of the similarities of each document with the centroid.
Remember and store contribution of each document in ~dc(dn).

#+++++++++++H+H

T=20.0;
f (i

o
S

doc(null).Order(); i '= null; i = doc(i).Order()) {
0;
0;

< X 1

for (w = doc(i,null).Order(); w !'= null; w = doc(i,w).0rder()) {

d = doc(i,w);

X =d * c(w) + x; // numerator of cos(c,doc) calc
y=d*d+y; // part of denominator

}

#+++++++H+

Calculate and store the cos(c,doc(i)).

Remember in ~dc(i) the contribution that this document made to the total.
#+++++++H

) continue;

=0
=x/s qrt(sq *y); // cos(c,doc(i))
i) + // sum the cosines

#++++++++

71

//
//

calculate similarity of doc space with words removed
#H+++++

for (W = dfi(null).Order(); W !'= null; W = dfi(W).0rder()) {

#+++++++++++H+H

For each document containing W, calculate sum of the contribution

of the cosines of these documents to the total (T). ~dc(i) is

the original contribution of doc i. Sum of contributions is stored in T1.
#+++++++++++H+H

Tl = 0;
for (i = indx(W,null).Order(); i '= null; i = indx(W,i).0rder()) {

Tl = dc(i) + TI1; // use previously calculated cos

}
T2 = 0;
for (i = indx(W,null).Order(); i !'= null; i = indx(W,1).0rder()) {

#+++++H+H+

For each word in document i, recalculate cos(c,doc) but without word W
#++++++
X = 0;
y = 0;
for (w = doc(i,null).Order(); w !'=null; w = doc(i,w).0rder()) {
if (w !'= W) {
d = doc(i,w);
y=d*d+y;
}
if (y == 0) continue;
T2 = x / sqrt(sq * y) + T2; // T2 sums cosines without W
}
}

#+H++++++HH
subtract original contribution with W (T1) and add contribution

without W (T2) and calculate r - the change, and store in "“mca(W)
#+++++++H+H+

Tx =T - T1 + T2;
r = (int) ((Tx - T) * 10000);

ul << setw(10) << r << setw(10) << dfi(W) << " " << W << endl;
mca(W) = r;
}

ul.close();

GlobalClose;

return 0;

}

#F+++++++++H+
#+

#+ Mumps ISR Software Library

#+ Copyright (C) 2007 by Kevin C. 0'Kane
#+

#+ Kevin C. 0'Kane

#+ anamfianna@earthlink.net

#+ okane@cs.uni.edu

#+

#+

72

//

#+ This program is free software; you can redistribute it and/or modify
#+ it under the terms of the GNU General Public License as published by
#+ the Free Software Foundation; either version 2 of the License, or

#+ (at your option) any later version.

#+

#+ This program is distributed in the hope that it will be useful,

#+ but WITHOUT ANY WARRANTY; without even the implied warranty of

#+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

#+ GNU General Public License for more details.

#+

#+ You should have received a copy of the GNU General Public License

#+ along with this program; if not, write to the Free Software

#+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#+

#++++++++++H+H+H

MDH-docdoc3.cpp Feb 24, 2007

#include <mumpsc/libmpscpp.h>
#include <iomanip>

global dd("dd");
global indx("index");
global doc("doc");
global dfi("dfi");

int main(int argc, char * argv[]) {

double ddmin = 5.0;
int k,wgt = 5;

if (argc == 2) {
ddmin = atof(argv[l]);
}

if (argc == 3) {
ddmin = atof(argv[l]);

wgt = atoi(argv([2]);
}

mstring w,dl,d2,null;
dd().Kill();

for (w =indx(null).Order(); w !'= null; w = indx(w).0Order()) {
if (dfi(w) < ddmin) continue;

for (dl1 = indx(w,null).Order(); dl !'= null; dl1 = indx(w,dl).0rder()) {
for (d2 = indx(w,dl).0rder(); d2 != null; d2 = indx(w,d2).0rder())
if (! dd(dl,d2).Data()) dd(dl,d2) = 1;
else dd(dl,d2) = dd(dl,d2) + 1;
}
}
}

for (dl = dd(null).Order(); dl '= null; dl = dd(dl).0rder()
for (d2 = dd(dl,null).Order(); d2 '= null; d2 = dd(
if (dd(dl,d2) < wgt) dd(dl,d2).Kill();
else dd(d2,dl) = dd(dl,d2);

) {
dl,d2).0rder()) {

{

73

}

for (dl1 = dd(null).Order(); dl != null; dl = dd(dl).0Order()) {

cout << setw(7) << dl << ": ";

k=0;

for (d2 = dd(dl,null).Order(); d2 != null; d2 = dd(dl,d2).0rder()) {
cout << d2 << "(" << dd(dl,d2) << ") ";
kK++;
if (k % 7 == 0) cout << endl << " e
}

cout << endl;

}
cout << endl;
GlobalClose;

return EXIT SUCCESS;
}

2 T

// #+

// #+ Mumps ISR Software Library

// #+ Copyright (C) 2005, 2007 by Kevin C. 0'Kane
// #+

// #+ Kevin C. 0'Kane

// #+ okane@cs.uni.edu

// #+

// #+

// #+ This program is free software; you can redistribute it and/or modify
// #+ it under the terms of the GNU General Public License as published by
// #+ the Free Software Foundation; either version 2 of the License, or

// #+ (at your option) any later version.

// #+

// #+ This program is distributed in the hope that it will be useful,

// #+ but WITHOUT ANY WARRANTY; without even the implied warranty of

// #+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// #+ GNU General Public License for more details.

// #+

// #+ You should have received a copy of the GNU General Public License

// #+ along with this program; if not, write to the Free Software

// #+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// #+

// #H++HHH
// # MDH-simpleRetrieval.cpp Feb 28, 2007
#include <mumpsc/libmpscpp.h>
global query("query");
global ans("ans");
global doc("doc");
int main() {
time t time0;
double c;

int t1,t2;

FILE * ul,

74

ul = fopen("osu.medline","r");
assert (ul '= 0);

mstring a,w,i,x,null;
null = uu;

query () .Kill();
ans().Kill();

cout << "Enter query: ";
while (1) { // extract query words to query vector
w = ScanAlnum(stdin);

if (w == null) break;

w = Stem(w);

query(w) = 1;

}

time@® = time(NULL);

for (i = doc(null).Order(); i '= null; i = doc(i).Order()) {
¢ = doc(i).Cosine(query());

// # If cosine is > zero, put it and the doc offset (~doc(i)) into an answer vector.
// # Make the consine a right justified string of length 5 with 3 didgits to the
// # right of the decimal point. This will force numeric ordering on the first key.

if (c > 0) ans(mcvt(c).Justify(5,3),doc(i)) = "";

}
cout << "results:" << endl << endl;
X = null;
for (t1l = 0; tl1 < 10; tl1++) {
X = ans(x).0rder(-1); // cycle thru cosines in reverse (descending) order.
if (x == null) break;
for (i = ans(x,null).Order(); i !'= null; i = ans(x,1i).0rder()) {
Zseek(ul,i); // move to correct spot in file
for (t2 = 0; t2 < 30; t2++) {
a.ReadLine(ul);
if (a.Extract(1,3) == "TI ")
cout << Xx << " " << a.Extract(7,80) << endl;
if (a.Extract(1,3) == "AB ") while (1) {
cout << " " << a.Extract(7,120) << endl;
if (! a.ReadlLine(ul)) break;
if (a.Extract(1,3) !'= " ") break;
}
if (a.Extract(1l,3) == "STA") {
cout << endl;
break;
}
}
}
}
cout << endl << "Time used: " << time(NULL) - time0® << " seconds" << endl;

75

return EXIT SUCCESS;

[/ #HHHttt
// #+

// #+ Mumps ISR Software Library

// #+ Copyright (C) 2005, 2006, 2007 by Kevin C. 0'Kane
// #+

// #+ Kevin C. 0'Kane

// #+ okane@cs.uni.edu

// #+

// #+

// #+ This program is free software; you can redistribute it and/or modify
// #+ it under the terms of the GNU General Public License as published by
// #+ the Free Software Foundation; either version 2 of the License, or

// #+ (at your option) any later version.

// #+

// #+ This program is distributed in the hope that it will be useful,

// #+ but WITHOUT ANY WARRANTY; without even the implied warranty of

// #+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// #+ GNU General Public License for more details.

// #+

// #+ You should have received a copy of the GNU General Public License

// #+ along with this program; if not, write to the Free Software

// #+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// #+

[/ #H#rtttttttt

// # MDH-fasterRetrieval.cpp Feb 23, 2007
#include <mumpsc/libmpscpp.h>
global query("query");
global ans("ans");
global tmp("tmp");
global doc("doc");
global indx("index");
int main() {
time t timeO;
double c;
int t1,t2;
FILE * ul;

ul = fopen("osu.medline","r");
assert (ul '= 0);

mstring d,a,w,i,x,null;
null = uu;

query () .Kill();
ans().Kill();

cout << "Enter query: ";

76

while (1) { // extract query words to query vector
w = ScanAlnum(stdin);

if (w == null) break;

w = Stem(w);

query(w) = 1;

// # Find documents containing one or more query terms.
for (d = indx(w,null).Order(); d '= null; d = indx(w,d).0Order())
tmp(d)=""; // retain doc id
}
time@ = time(NULL);

for (i = tmp(null).Order(); i !'= null; i = tmp(i).0rder()) {
c = doc(i).Cosine(query());

// # If cosine is > zero, put it and the doc offset (~doc(i)) into an answer vector.
// # Make the consine a right justified string of length 5 with 3 didgits to the
// # right of the decimal point. This will force numeric ordering on the first key.

if (c > 0) ans(mcvt(c).Justify(5,3),doc(i)) = "";

}
cout << "results:" << endl << endl;
X = null;
for (tl = 0; t1 < 10; tl1++) {
X = ans(x).0rder(-1); // cycle thru cosines in reverse (descending) order.
if (x == null) break;
for (i = ans(x,null).Order(); i !'= null; i1 = ans(x,1i).0rder()) {
Zseek(ul,i); // move to correct spot in file primates.text
for (t2 = 0; t2 < 30; t2++) {
a.ReadLine(ul);
if (a.Extract(1,3) == "TI ")
cout << X << " " << a.Extract(7,80) << endl;
if (a.Extract(1,3) == "AB ") while (1) {
cout << " " << a.Extract(7,120) << endl;
if (! a.ReadlLine(ul)) break;
if (a.Extract(1,3) != " ") break;
}
if (a.Extract(1l,3) == "STA") {
cout << endl;
break;
}
}
}
}
cout << endl << "Time used: " << time(NULL) - time0® << " seconds" << endl;
GlobalClose;

return EXIT SUCCESS;

G e B T

77

// #+

// #+ Mumps ISR Software Library

// #+ Copyright (C) 2007 by Kevin C. 0'Kane
// #+

// #+ Kevin C. 0'Kane

// #+ anamfianna@earthlink.net

// #+ okane@cs.uni.edu

// #+

// #+

// #+ This program is free software; you can redistribute it and/or modify
// #+ it under the terms of the GNU General Public License as published by
// #+ the Free Software Foundation; either version 2 of the License, or

// #+ (at your option) any later version.

// #+

// #+ This program is distributed in the hope that it will be useful,

// #+ but WITHOUT ANY WARRANTY; without even the implied warranty of

// #+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// #+ GNU General Public License for more details.

// #+

// #+ You should have received a copy of the GNU General Public License

// #+ along with this program; if not, write to the Free Software

// #+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// #+

// #Httttt b

// # MDH-webFinder.cpp Feb 24, 2007
#include <mumpsc/libmpscpp.h>
global dict("dict");

global tmp("tmp");

global gry("query");

global indx("index");

global dx("dx");

global doc("doc");

global t("t");

int main() {

#include <mumpsc /cgi.h>

time t t1;
FILE * ul;

int count, i, j;
mstring title, dd, d("d"), c, r, exp, w ,wx ,query ,null;

null = "";
cout << "Content-type: text/html \n\n";
tl = time(NULL);
cout << "<html> ";
try {
?uery = SymGet("query");

catch (MumpsSymbolTableException) {

78

query = null;
}

cout << "<center>
" << endl;

cout << "<form name=\"fl\" method=\"get\" action=\"webFinder.cgi\">" << endl;

cout << "<input type=\"text\" name=\"query\" size=50 maxlength=128 value=" << query <<
">" << endl;

cout << " <input type=\"submit\" value=\"Search\">" << endl;

cout << "</form>" << endl;

cout << "<form name=\"fl\" method=\"get\" action=\"webFinder.cgi\">" << endl;

cout << "<input type=\"hidden\" name=\"query\" value=\"###\">" << endl;

cout << " <input type=\"submit\" value=\"I\'m Feeling Sick\">" << endl;

cout << "</form></center>" << endl;

if (query == null) {
cout << "\n";
return EXIT SUCCESS;

}
if (query == "###") {

w = null;

for (i =0; ; i++) {
w = dict(w).O0Order();
if (w == null) break;
}

j=rand() % (i-1);

w = null;

for (i=0; i < j; i++) {
w = dict(w).Order();
}
query = w;
¥
tmp () .Kill();
ary () .Kill();
TokenInit(query);
wx=0;
while ((w = Token()) '= null) {
if (w.Pattern(".P")) continue;

qry(w)=1;
for (d = indx(w,null).Order(); d !'= null; d = indx(w,d).0Order()) tmp(d) = null;
}

TokenInit(query);

exp = null;

while ((w = Token()) !'= null) {

if (w.Find("&()")) {
exp = exp || w;
continue;
}

if (w=="|") {
exp=exp || "!";
continue;
}

if (w == "~") {
exp = exp || "\'";
continue;

}
eXp = exp || "$d(AdOC(d’\"" || W || II\II))II;
}
cout <<
" << exp <<

" << endl;

79

dx().Kill();

count = 0;
for (d = tmp(null).Order(); d != null; d = tmp(d).Order()) {
try {
r = exp.Eval();
}

catch (InterpreterException) {
cout << "Query parse error.\n";
return EXIT SUCCESS;

}
if (r > 0) {
c = qry.Cosine(doc(d));
dX(C,d) - uu;
count = count + 1;
}
}
cout << count << " pages found - top 10 shown
" << endl;
d = null;
i=0;

ul = fopen ("translated.txt", "r");
assert (ul != 0);

while (1) {

if (i > 10) break;

d = dx(d).Order(-1);

if (d == null) break;

for (dd=dx(d,null).Order(); dd '= null; dd=dx(d,dd).Order()) {
i=i+1;
if (i > 10) break;
cout << d.Justify(6,3) << " ";
cout << "";
Zseek(ul, t(dd));
title.ReadLine(ul);
cout << dd.Justify(6) << " " << title.Extract(1,90) << "" << endl;

}
}
cout << "
Time used: " << time(NULL) - tl1 << "
" << endl;
cout << "";

tmp () .Kill();
dx().Kill();
GlobalClose;

return EXIT SUCCESS;
}

11 Appendix B

11.1 Perl Compatible Regular Expression Library License

Programs written with the MDH may call upon the Perl Compatible Regular Expression Library.
In some cases, this library is distributed with the Mumps Compiler. The PCRE Library is not covered
by the GNU GPL/LGPL Licenses but, rather, by the license shownn below. The following is the PCRE
license:

80

PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax

and semantics are as close as possible to those of the Perl 5 language.

Written by: Philip Hazel

University of Cambridge Computing Service,

Cambridge, England. Phone: +44 1223 334714.

Copyright (c) 1997-2001 University of Cambridge

Permission is granted to anyone to use this software for any purpose on any

computer system, and to redistribute it freely, subject to the following

restrictions:

1. This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

2. The origin of this software must not be misrepresented, either by
explicit claim or by omission. In practice, this means that if you use
PCRE in software which you distribute to others, commercially or
otherwise, you must put a sentence like this

Regular expression support is provided by the PCRE library package,
which is open source software, written by Philip Hazel, and copyright
by the University of Cambridge, England.
somewhere reasonably visible in your documentation and in any relevant
files or online help data or similar. A reference to the ftp site for
the source, that is, to
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/
should also be given in the documentation.

3. Altered versions must be plainly marked as such, and must not be
misrepresented as being the original software.

4. If PCRE is embedded in any software that is released under the GNU
General Purpose Licence (GPL), or Lesser General Purpose Licence (LGPL),
then the terms of that licence shall supersede any condition above with
which it is incompatible.

The documentation for PCRE, supplied in the "doc" directory, is distributed

under the same terms as the software itself.

End

12 Appendix C
12.1 Using Perl Regular Expressions

Author: Matthew Lockner

In addition to Mumps 95 pattern matching using the '?' operator, it is also possible to perform
pattern matching against Perl regular expressions via the perimatch function. Support for this
functionality is provided by the Perl-Compatible Regular Expressions library (PCRE), which supports
a majority of the functionality found in Perl's regular expression engine.

The perlmatch function works in a somewhat similar fashion to the '?' operator. It is provided
with a subject string and a Perl pattern against which to match the subject. The result of the function
is boolean and may be used in boolean expression contexts such as the "If" statement.

Some subtleties that differ significantly from Mumps pattern matching should be noted:

1. A Mumps match expects that the pattern will match against the entire subject
string, in that successful matching implies that no characters are left
unmatched even if the pattern matched against an initial segment of the subject
string. Using perlmatch, it is sufficient that the entire Perl pattern matches
an initial segment of the subject string to return a successful match.

81

mailto:lockner@cns.uni.edu?SUBJECT=mumpsc%20-%20Perl%20matching

2. The perimatch function has the side effect of creating variables in the local
symbol table to hold backreferences, the equivalent concept of $1, $2, $3, ... in
Perl. Up to nine backreferences are currently supported, and can be accessed
through the same naming scheme as Perl ($1 through $9). These variables remain
defined up to a subsequent call to perlmatch , at which point they are replaced
by the backreferences captured from that invocation. Undefined backreferences
are cleared between invocations; that is, if a match operation captured five
backreferences, then $6 through $9 will contain the null string.

12.2 Examples

This program asks the user to input a telephone number. If the data entered looks
like a valid telephone number, it extracts and prints the area code portion using a
backreference; otherwise, it prints a failure message and exits.

Zmain

Write "Please enter a telephone number:",!

Read phonenum

If $$7perlmatch(phonenum, "~ (1-)?(\(?\d{3}\)?)?(-]|)?\d{3}-7?\d{4}$%$") Do
. Write "+++ This looks like a phone number.",!

. Write "The area code is: ",$2,!

Else Do

. Write "--- This didn't look like a phone number.",!
Halt

The output of several sample runs of the program follows:

Please enter a telephone number:
1-123-555-4567

+++ This looks like a phone number.
The area code is: 123

Please enter a telephone number:
(123)-555-1234

+++ This looks like a phone number.
The area code is: (123)

Please enter a telephone number:
(123) 555-0987

+++ This looks like a phone number.
The area code is: (123)

As in Perl, sections of the regular expression contained in parentheses define what
is contained in the backreferences following a match operation. The backreference
variables are named in a left-to-right order with respect to the expression, meaning
that $1 is assigned the portion matched against the leftmost parenthesized section of
the regular expression, with further references assigned names in increasing order.
For a much more in-depth treatment of the subject of Perl regular expressions, refer
to the perire manpage distributed with the Perl language (also widely available
online).

13 Appendix E
13.1 Mumps 95 Pattern Matching

Author: Matthew Lockner

Mumps 95 compliant pattern matching (the '?' operator) is implemented in this
compiler as given by the following grammar:

82

pattern ::= {pattern_atom}
pattern_atom ::= count pattern_element
count m=int|"'|"."int
|int "' | int " int
pattern_element ::= pattern_code {pattern_code} | string | alternation
pattern_code :='A'|'C'|'E'|'L'|'N"|'P'|'U
alternation ::='(' pattern_atom {',’ pattern_atom} ")’

The largest difference between the current and previous standard is the
introduction of the alternation construct, an extension that works as in other popular
regular expressions implementations. It allows for one of many possible pattern
fragments to match a given portion of subject text.

A string literal must be quoted. Also note that alternations are only allowed to
contain pattern atoms and not full patterns; while this is a possible shortcoming, it
is in accordance with the standard. It is a trivial matter to extend alternations to
the ability to contain full patterns, and this may be implemented upon sufficient
demand.

Pattern matching is supported by the Perl-Compatible Regular Expressions library
(PCRE). Mumps patterns are translated via a recursive-descent parser in the Mumps
library into a form consistent with Perl regular expressions, where PCRE then does the
actual work of matching. Internally, much of this translation is simple character-
level transliteration (substituting '|' for the comma in alternation lists, for
example). Pattern code sequences are supported using the POSIX character classes
supported in PCRE and are mostly intuitive, with the possible exception of 'E', which
is substituted with [[:print][:cntrl:]]. Currently, this construct should cover the
ASCII 7-bit character set (lower ASCII).

Due to the heavy string-handling requirements of the pattern translation process,
this module uses a separate set of string-handling functions built on top of the C
standard string functions, using no dynamic memory allocation and fixed-length buffers
for all operations whose length is given by the constant STR_MAX in sysparms.h. If an
operation overflows during the execution of a Mumps compiled binary, a diagnostic is
output to stderr and the program terminates. If such termination occurs too frequently,
simpl

83

14 Index

Alphabetical Index

bmg fullsearch..

DOCCOTTEIALE()......oeeeeeeee et ettt e e ettt e e ettt e e e e e e tt e e e aaa e e e e aaa e e e s aaaa e esaaaa e sastanaeessannaaesssansaasessnneessssnnaeesssnneessssnneesesnasennes

TermCorrelate()

84

	1 Part I - Programmers Guide
	1.1 Introduction

	2 Creating Global Arrays
	2.1 Structure of Global Arrays

	3 Compiling Programs
	4 Accessing Global Arrays
	4.1 Global Array Indices
	4.2 Navigating Globals
	4.3 Locking the Data Base

	5 Invoking the Mumps Interpreter
	6 Writing Active Web Server Pages
	7 Class mstring
	8 Direct Btree Access
	9 Function and Macro Library
	9.1 Global Array Operations Using Class global
	9.1.1 Arithmetic Operations on Global Arrays
	9.1.2 Assignment Operations on Global Arrays
	9.1.3 Global Array Access and Manipulation Functions
	9.1.3.1 Accessing the Value Stored in a Global Array Element
	9.1.3.2 Data()
	9.1.3.3 TreePrint()
	9.1.3.4 UnLock()
	9.1.3.5 Count()
	9.1.3.6 GlobalGet(), GlobalData(), GlobalSet()
	9.1.3.7 double HitRatio(void)
	9.1.3.8 Kill()
	9.1.3.9 Length()
	9.1.3.10 int global::Lock()
	9.1.3.11 double global::Max()
	9.1.3.12 int global::Merge(global)
	9.1.3.13 double global::Min()
	9.1.3.14 Multiply()
	9.1.3.15 Name()
	9.1.3.16 Order()
	9.1.3.17 Avg()
	9.1.3.18 CleanLocks(), CleanAllLocks()
	9.1.3.19 GlobalClose
	9.1.3.20 Btree()
	9.1.3.21 Query functions
	9.1.3.22 Similarity functions: Sim1(), Cosine(), Jaccard(), Dice()
	9.1.3.23 Transpose()
	9.1.3.24 Centroid()
	9.1.3.25 Correlation functionsL: TermCorrelate(), DocCorrelate()
	9.1.3.26 IDF()
	9.1.3.27 Sum()

	9.2 Mstring Operations and Manipulations
	9.2.1 Arithmetic Operations on Mstrings
	9.2.2 Assignment Operations on Mstrings
	9.2.3 Functions of Class mstring
	9.2.3.1 cvt()
	9.2.3.2 decorate()
	9.2.3.3 EncodeHTML()
	9.2.3.4 ends()
	9.2.3.5 replace()
	9.2.3.6 c_str()
	9.2.3.7 s_str()
	9.2.3.8 shred()
	9.2.3.9 begins()
	9.2.3.11 c_str()
	9.2.3.12 Justify()
	9.2.3.13 Extract()
	9.2.3.14 Find()
	9.2.3.15 Horolog()
	9.2.3.16 mcvt()
	9.2.3.17 ascii()
	9.2.3.18 Evaluate a Mumps Expression
	9.2.3.19 Pattern()
	9.2.3.20 Perl()
	9.2.3.21 Piece()
	9.2.3.22 ShredQuery()
	9.2.3.23 Stem()
	9.2.3.24 Readline()
	9.2.3.25 SymGet()
	9.2.3.26 Token()
	9.2.3.27 ScanAlnum()
	9.2.3.28 Stem()

	9.3 Miscelaneous functions
	9.3.1 Boyer-Moore-Gosper Functions
	9.3.2 cvt()
	9.3.3 xecute() and command()
	9.3.4 ErrorMessage()
	9.3.5 Error Exceptions
	9.3.6 HitRatio()
	9.3.7 Hashing functions
	9.3.8 Dump Global Array Database
	9.3.9 Stream Output
	9.3.10 Smith-Waterman Alignment Function
	9.3.11 Stop list functions: StopINIT(), StopLookup()
	9.3.12 Synonym Functions: SymInit(), SYN()
	9.3.13 int $test
	9.3.14 Xecute()
	9.3.15 Zseek() Ztell()

	10 Appendix A
	10.1 Code Examples

	11 Appendix B
	11.1 Perl Compatible Regular Expression Library License

	12 Appendix C
	12.1 Using Perl Regular Expressions
	12.2 Examples

	13 Appendix E
	13.1 Mumps 95 Pattern Matching

	14 Index

