The Multi-Dimensional and Hierarchical
Database Toolkit Programmer's Guide

Kevin C. O'Kane
kc.okane@gmail.com

http://threadsafebooks.com/
http://www.cs.uni.edu/~okane/

June 8, 2022

http://threadsafebooks.com/
http://www.cs.uni.edu/~okane/

Table of Contents

1 The Multi-Dimensional and Hierarchical Database Toolkit........ccccecveiieviinnnnnne. 6
I A TN =Yoo 1 o | N TR 6
2 1TSS Y T T TP 6
G I o Y LT Nl e Ty Y P 6
1.4 WRITING CH1 IMIDH PROGRAMS. ... cuiitniitiite it ittt e et e et et e et ea ettt s s et e et e ea s st s ea s et s e sa e ea st ensasnsaenaenss 7

2 Global Array OVEIVIEW. . ..ciiiieiiiiiieiiriecetessatersssecessssessssssessssssssssssssssssssssssesssssessssse 8
2.1 TREE STRUCTURED DATABASE OVERVIEW. iuutuitniitetnetteeteeneetesaeetesaeeteseesstasenstteenseaesneetassneetaesneetaesnernaess 8
2.2 NIDH IMPLEMENTATION OF (GLOBALS. ..t uttuittitntitttneettetesaeesseaeeaseaetaseaeassatesssasea st sea st sen st ssnseneensesensanees 9
2.3 GLOBAL ARRAYS AS TREES AND IMIATRICES. . .uuitnietiitiitiit it et e e et e e et e e et e e s et s e e eae s e s easen s e ensenansensannss 10
2.4 ACCESSING (GLOBAL A RRAY S, .. ituitttitnettttteet et ettt et eae et esas et etseaetses et ssaettesaeeaeearesseneetaesntseaetrensreenesns 12
2.5 GLOBAL ARRAY INDICES. .. iituiiitieii ettt e e et e e et e et e e et e et e et e st e e ea e s st e e b e e aa e et e e sa e et et esneansenseneeneeans 13
B ST A\ VYT TN €TI0V 13
2.7 LOCKING THE DIATA BASE. .. uniiuiiiiiiii ettt e et e e e e et e e e e e e e ea e e e b e e e e ens e eneens 16

6 I 0 = TST°30 11153 1 o 1 1 1 o (R 18
R T RV 1= TN TR @ 1T 2T T NI 18
3.2 MSTRING FUNCTIONS AND IVIETHODS. .. ittiitiitei ittt et e ettt e ettt e et e e e e e et e ea e e s s ea e s s s ea e s s sen e e s b eensaensanenss 21

G T2/ N N=Tol 0 1 0 1'a o3 i o) o BN 21

ICTVZ NP oY=Yo 1o Fo 2k U 1 s o] 1 o) s PPN 21

G T070C T ol 1w ol ¥ 7o 1 [0) « DU PPP 22

3.2.4 deCorate FUNCHION. ... ettt as 22

ICTRZ ST 8 o YoZo Yo K=Y s A LY B IV 2V o Vo s o) o VAR 22

TR I =Y s Lo K3 2V 1 Y] 1 0) o WP 22

G T2 2= W U Vo] 1 (o) o 22

ICTRVA S T =5« = Lo Wl ¥ s o3 1 o) o U 22

ICTRZ I i 1 o o I SV o Y o] s o) o VAR 23

TR0 N O T = (o} o) [oTo f k12 Tod v (o) o HU PN 23

G 7077001 I A 0] w70 O o o] o) o SN 23

3.2.12 Length FUNCEION. ... e et e e et e et e et e et et e ea e e s e e e aaaenennen 23

ICTR20 G T o' Toa 74 1l) U1 o Lo (0) o HURON P 23

G J0%/0 R S =Y (= o B RV o w10} o WU PP 24

TV RS TN == of B 2V Vi Lo) o DO PP 24

G 0% N T = = To Y ah ¥ s Lo i (0) o WP 24

3.2.17 ReAdLINE FUNCEION. ..ottt ettt e e e e e e et e e aereenennenns 25

G T2 I T =Y o) E= Yo U s Ui () F 25

3.2.19 ScanAINUM FUNCEION.ttt e e e e e rennans 25

3.2.20 SHTEA FUNCEION. ...itiitii e ettt et e e e e e e e e s e e e e e s eneeseaneanenns 25

3.2.21 ShredQUEeTY FUNCEION. . ..ottt et e et e et et et s e s e et et aneanean 26

IV =) 0o N U s Lol 1o) s PN RN 27

3.2.23 SymGet SYMPUL FUNCTIONS. ...iiuiiiiiiiiii et e e e e e e e e e anees 27

3.2.24 S SET FUNCHION...ceniii ettt et et e ee et e et e et e eae e eanees 27

I3 T K o) <Y o T 3 U1 o Toa v 10 o DR 27

3.2.26 Translate FUNCEION. ...t ettt e e e e e neenns 28
3.3 BASIC MSTRING EXAMPLE. ... ettt ittt ettt et e e e et e e e et e e e e s e et e et e b e e e a e et e e e s erneaaeneens 28
3.4 DETAILED MSTRING EXAMPLES. .. ituiititiitiiiiiit it et e et et et e e e et e e e et e s e et s et e ea e et e ea et esn e et s sns et sanssaasnaenns 29

3.4.1 Assignment from Other Data TyPES....ccueiuuiiiiiiieiii et e e e e et e et e e e et e eanans 29

3.4.2 Arithmetic Operations On MSETING.......oiuuiiiiiiii e e et e e e e e e ens 30

3.4.3 Miscellaneous MSETING RUIES........uoiiiiiiiiiii et e e e e et e et e et e e eneana e 32

4 Class global.......cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiseceisacetessecetsssssessssesessssessssesesssssssssassssnsse 33
4.1 ASSIGNMENT OPERATIONS ON GLOBAL ARRAYS. .. utuituituitttneentteeneetesneetesneeteesneeaaeseraesserteesaeenertaeenrensnernees 33
4.2 ARITHMETIC OPERATIONS ON GLOBAL ARRAYS. .. ituttitneutetnesnttssneassasesssaesstnseas st seasstesnsetsetsenseesrensseenses 34
2.3 (OPERATIONS ON GLOBAL. tu .ttt tttuessssnsensessssnessssnsesssnsesssnesssnsesssasessssnsessssssensssssnsessesnsessssnsessssnssnsssenmnrens 35

2

4.5 GLOBAL FUNCTIONS AND IMETHODS. . cuuituitiiieiieete ittt e e et e et e e et e et eea e et e aa e et e en e et e sneeaeanseaaanseneanaennesnnen 39
Nt N B T =Y () 39
4.5.2 TTEEPTINT() . .uuiiuiiiiiiiiiiii ittt et e et et e et e e e e e et e et e et eaaseaasatn et et eneaneaneens 40
TG T U) o1 I Y o] : P 41
T 0701 1 s | A PP 41
4.5.5 GlobalGet(), GlobalData(), GloDalSEt()....uuuinininieiiiiiiii et et e e aenenes 42
4.5.6 double HItRAtIO(VOLIA) .. .uininininiiiiii ettt ettt e e et e et n e et aeneneenenenees 43
T A & 1| F T 43
TR e T Y=Y a Vo 1 1 o WP 43
R I\ - SO PS 43
S T Y 3 (o £ TSPt 44
L 0t I LY D PP 44
R Y L1 | oY 2 44
T G AT 1 4 - T O PP P PP 45
S T O) oo =Y P 46
S T S T\ o PP 46
T T o Yo < OO OT PRt 47
T A €1 () o T 1 [0 Lo T PP 47
T R T = 1 T T TP P PP 48
4.5.19 QUETY fUNCEIOMIS c.uiiniiin ittt ettt ettt et et e et et et eteeae et etae et aansansanstneteneanssneens 48
4.5.20 Similarity fUNCLIONS.iiiii e et e e e e et et et et e et e e et et e e eaaaaas 51
T T b =1 1 1 o Yo 1] TPt 54
TS T A 0= 1 o o) 1o PP 55
4.5.23 Correlation FUNCEIONS.iiiiiiii e e et e e e e e e e e e et e et e aneaneanas 55
T 0 S D PP 59
T T 1 U o o W 60
4.5.20 TrAnSIAte. ...ttt ettt et et et et e b et e e a e ai e e eans 60
5 DiIreCt BII€e@ ACCEeSS...uiiiuiniieiuiiiiaiiiecetersscetsssscesssssssssscesssssssssssssssssssssssssssssssssses 62
6 Invoking the Mumps INterpreter......ccccociiiiiiiiiiiiiiiieiiiieieecieceatescsacssssscssssnsonses 64
7 Miscellaneous FUuNCHIONS........ccceiiiiiiiiiiiiiiiiiiiieiitietietescestescescscsscsssosssonsconscnse 64

2280 R o1) PP 64
8 GTK / Glade funNCHIONS.. ...cciciiiiiiiiiiiiiiiiiiiiiiiiiiiieiitetertttssacessetsssessssessssessssessnseses 64
8.1.1 void mdh tree level add(GtkTreeStore *tree, int depth, char * coll [, char *col2 ...]);....... 64
8.1.2 int mdh dialog new with buttons(GtkWindow *win, char * text)........cccceeiviiiiiiiiinnn. 64
8.1.3 int mdh toggle button get active(GtkToggleButton *b)........cccccoiiiiiiiiiiiiiiiiieeeeeeeenes 64
8.1.4 char * mdh entry get text(GtkEntry *e, char * tXt)......cccoeiiiiiiiiiiiiiiiiii e 64
8.1.5 void mdh toggle button set active(GtkToggleButton *b, int v).....cc..coiiiiiiiiiiiiiiiinnn. 65
8.1.6 void mdh entry set text(GtKENLry *€, Char * tX).......ccccciiiurivueeeeeieeeeeeeee e 65
8.1.7 void mdh text buffer set text(GtkTextBuffer *t, char * txt)........ccooviiiiiiiiiiiiii 65
8.1.8 void mdh label set text(GtkLabel *1, char * tXt)......cccoviiiriiiiriiiini e 65
8.1.9 void mdh w1dget hide(GERWIAGEt W) ...u i e e e aes 65
8.1.10 void mdh widget ShoW(GEKWIAGet FW).....ciiiuiiiiiiiiiie it e et e e eeea e e eans 65
8.1.11 char * mdh tree selection get selected(GtkTreeSelection *t, int col, char *txt)............... 65
8.1.12 void mdh tree store clear(GtKTTEESTOre *t)......c..cccvivuiiiueeeeieeeeeeeeeeeeeeeeeeee e 65
8.1.13 double mdh spin button get value(GtkSPinBUttON *S)........ccoccvivreieieeieeeeeeeeieeeeeeeeenenns 65
8.1.14 void mdh spin button set value(GtkSpinButton *s, double v).......ccoooviiiiiiiiiiiinnnn, 65

8.2 IMISCELANEOUS FUNCTIONS. 1111 ttttettnestessneestessneestnesssestaeessestaeesnaessnrestessnseetresneestaresneeetaeeennessneeennnesneenns 65
8.2.1 Boyer-MoOre-GOSPET FUNCTIONS.iuiiiiiiiii ittt et et et s e e eeeae et e et aanaans 65
ST o2 T2 o () N 67
8.2.3 Xecute() and COMIMATIA() ... cuininieieiniin ittt ettt ettt e ettt e eneasaessseneneneasnentanenenenes 67
S T S 8w (0) Y [T T- Yo 1Y () RN 68
LSRRI =i o o) ol =5 (o1 =] 0] o) o - JU N 68
T S = 1 1 =1 o] TS 69
8.2.7 Hashing fUNCLIONS.iieiiiei e et e e et e et e et e et e et e et e saesaneenennan 69

8.2.8 Dump Global Array Database.........cciuniiiiiii e 69
8.2.9 SETEAIMN OULDUL. ceuiiniiiiii e e et et eee e et e et e e e e e e e e e aaeaneaaeaneanaaanenannans 69
8.2.10 Smith-Waterman Alignment FUNCEION..........cooviiiiiii e 70
8.2.11 Stop list functions: StOPINIT(), StOPLOOKUD().evuurerrnrerrnriiiireiiiriiiiretieeeireieeireeeeneenneaneannas 71
8.2.12 Synonym Functions: SymInit(), SYN(...ccccoettiriiiiiiiiiiiii ettt e e e e e e ans 71
ST G T 1 s LA) =T PSP 71
T A (= Toa 1 L =T T PPN 71
8.2.15 ZSEEK() ZEEIL().eeuuiiiietiiieiie ettt et e et e it et e e et e e e et e e e at e et e e e aans 72
O APPENAIX Al oiriiiiiiiiiieiiiieiiersetetsssecessscessssssesssssssssssesssssssssssesssssssssssssssssssesssssssses 73
9.1 PerL CoMPATIBLE REGULAR EXPRESSION LIBRARY LICENSE. .. cccuuiiiiiieiiiiieiiiii e e st e e e e e e e e et e e s ate e e e e e e enes 73
10 APPENdix B....ciiiiiiiiiiiiiiiiiiiiiieteieitetetessecessssscessssecessscessssssesssssssssssessssssesssssssssss 74
10.1 USING PERL REGULAR EXPRESSIONS. ... ctttuuisiitieeetuteeetisesetseesttaeeestaseseeasesaaaaeeetnnaeeasnaeesnnaeesnneeaneesnaennaes 74
O T Y NS 74
11 APPENIX C..oviiiininiiniiiiieiiiiaiiersacersacecersssessssssesssssssssssesssssssssssssssssssssssssssssessssss 76
11.1 MUMPS 95 PATTERN IMATCHING. etttu ettt eeeeteee et eeeat e e e et e e e at e e eeta e eeeaaa s e e eta e eeeanaeeetaneeesnnseeennaeennnaasannes 76
T2 TNAEX.utiuiuininiiniiiieiiriiirietssesasasesasasssesesesesesessssssssssssssssasssssssssessssessasssssssssassssases 77
Table of Figures
Figure 1 Tree Structured Medical RECOTd.........cccuiiuiiiiiiiieiiei e e et e e et e e e e ens 8
Figure 2 Global ATTay @S @ MalliX.....iiuuiiiiiiiiiii ittt et e e et e et e et e et e et e et s e s e eaneneansanaanas 10
Figure 3 Global Array as Matrix with Numeric SUbSCTipts......ccccviiiiiiiiiiii e 11
Figure 4 Global Array as Matrix with Additional NOdeS........cccuoviiiiiiiiiiiiiiii e 11
Figure 5 Global ATray as SParSe MatliX.....eiueiiiii i e e e e et e et e et e et e et et en e e e e eaanaennan 11
Figure 6 TabULar VIEW Of TTEE.......iuuiiiiiiiiei e e e et e et e et e et e et e et e et e et e et eaeeneeneanesnannanns 12
FIigure 7 GLODal ATTAY T, .. cuuiiiiiieii et e et e et e et e et e et e et e et e et e et e st esansseneannsansenaenasnesneens 12
Figure 8 Navigating Global Arrays - Data().....ccceiuueiiiiiiiiiiie e et e e et e et e e e e e en e e e anaanas 14
Figure 9 Navigating Global Arrays - OTAEI()....cuuiiuniiiiiieeiieeiieeiie et e e et eetee e e et e e e e eane et e eaneaneaasnasnnes 14
Figure 10 Global Array Navigation EXamPle........ciuuiiiiiiiiiieiiieii et et e et e e e e e e e e e e eneennes 15
Figure 11 Hierarchical Global Array EXamPle.........coouiiiiiiiiieiieie e e e e e e e e e e e e eaaas 16
Figure 12 mstring Operator OVETIOAdS. cuuiiiniiiiiie e et e et e et e et e et e et e et e et e et eeenaennas 21
Figure 13 MUmMPS PatterN COAES. ... ccuuiiiniiiiiiieieeiiee e e e et e e et e et et e et e e e st e et s st satesaneanetaesasnasnaanns 24
| R To Vh A cIN IR Y o of Yo I o Vo v o) o HU 26
| To U I I o o Te [0 1Y oy O U 27
Figure 16 mMString EXamDIES. . ccuuiiiiiiiiiieiie et et et e et e et e e e et et e st e st et eanesanesanassnassnasnneens 29
Figure 17 mstring Assighment EXampPles.......ccouiiiiiiiiiiii ettt e e et e e e e eanas 30
Figure 18 mstring Arithmetic OPerations........cccuiiiiiiiiiii et e e e e e e e e e e eanas 32
| To b I e B b oY o1 1 T) o1 TP 33
Figure 20 Example Global Array ATithmetiC.......ccooiiiniiii e 35
Figure 21 Global Array Operator OVETLOadS.......cuuiiuiieiiieiiieei e e e e e e e e et e eeeeaeeaneenaanas 38
Figure 22 Accessing Global Array Data EXampPle.......couueiiiiiiiiiiiiee et e e e e 39
FIGUIE 23 TrEEPTINTE. ..cu it ettt ettt et e e et e e e ee e e et et et eas e en e e e eneananans 40
Figure 24 TreePTint OULDUL.ottt e e e e e ae e e e e ee e e e ans 41
FIigure 25 COUNt EXAIMIDIE. ... cuuiiiiiiieii et e e et et e e e et e et e ea et e e eanaanaansatnsaaeneenesneens 42
FIigure 26 Max EXAmDIe. .. oottt et et e et et e e e e e e e et e ee e et ean e et e et et aaes 43
Figure 27 MUltiply EXamIDIe. .. .cuuiiiiiiiiiiie ettt ettt et e e et e e e ee e ae e e e e ea e e e e etaeneeneanesneens 45
FIigure 28 INAME EXAINPLE.ttt e te et e et e et e et e et e et s et eeansatneetseaaeaeeneansanesnanannns 46
FIigure 29 Order EXAIMPIE. . .. ccuniiiiiiiiiie s et e et ee et e et e et e et e et e et e st e st e aeeaaeansansanssnstnstasnannesnsens 46
| To b I T BN v o B <=1 001 o] (P 47
FIigure 31 MESH HeEaAiNgS. . .uuiiuiiiiiiiiieiiie et e e e e e e et e et e et e et e et e et e s e e e st eaasansnesnetnstaenasnasnasnsens 50
Figure 32 Query FUNCtions EXamIPLe........ccuniiiiiiiiiiiiii ettt et e et et e te et e e e e et e ea e e eanaanas 51
Figure 33 SimM 1 EXAmDI....c.u it ettt te et e et e et e et e et e et e st e et et et enesnesneterasnasnasneens 52
Figure 34 Jaccard EXamIDLe........ccuiiiiiiiiiee e e ettt et e e e e e e e e et e et e ea e aneeaneaan et e et eeaneeaneennaanns 53
| R To 0 IR B (oYl <=1 001 o] (- TP 53
Figure 36 CoSIiNe EXAIMIDIE. ... ccuiiiiiiiiii e e et e et e e e et e et e et e et e et e et e stn st e eeneeenennnaanasnesnsens 54
Figure 37 TransSpOSE EXAIMPLE.......ccuuiiiiiiiiiiiiiieiie et e e et eete et e et e et e et e et e st e st saesneeneaneaeaaanns 55

4

Figure 38 Centroid EXAIMIPLE.........iiiiueiiiiiiiieeiie et e et e et e etieeetiesetaneeatneeetneeransatsnseesnsestnnsesnnsernnseensenns 55

Figure 39 TermCorrelate EXamPLe.iiiiiiiiiiiii e e e e e e e e et e et e et e st e st et e st e e ean s e enaanaanaanns 58
Figure 40 DocCorTelate EXamPLe.......ciuuiiiiiiiiieiii ettt et e et e et e eetie s et eeetneeaaneeeensatnesnsansensenesnnseneenns 59
FIigure 41 IDF EXAIMIPLE...ceuuiiiiiiiiiiiiiiie ittt ettt e et e et e e et ettt e ett s e aaa s eetansaaansaetaeasnsaatnnsasnnseasnseesnsees 60
Figure 42 Sum EXamDLe. ...t ettt ettt e e e e e 60
Figure 43 BTREE EXAIPIE......iiiuiiiiiiiiiiiiiiie ittt et eti e e tieeete e et s etan e eetaseatasetanseasnsesnsansasnesnsasneensees 63
Figure 44 Boyer-Moore EXamPLe. oottt 66
Figure 45 EXCePLIONS EXAIMIPLES....cuuiiiiiiiiiiiiiiieiiiee it et e et e et e eetie e et e etteseaanseatnsasansaetnseesnneennnsarnnseenns 69
Figure 46 Smith-Waterman EXample. ...ttt e et e e e 71

1 The Multi-Dimensional and Hierarchical Database Toolkit

1.1 Introduction

The MDH (Multi-Dimensional and Hierarchical) Database Toolkit is a Linux-based, open sourced,
toolkit of portable software that supports fast, flexible, multi-dimensional and hierarchical storage,
retrieval and manipulation of information in data bases ranging in size up to 256 terabytes.

The package is written in C and C++ and is available under the GNU GPL/LGPL licenses in
source code form.

The distribution kit contains demonstration implementations of text and sequence retrieval tools
that function with very large genomic data bases and illustrate the toolkit's capability to manipulate
massive data sets of genomic information.

The toolkit is distributed as part of the Mumps Compiler for Linux.

The toolkit is a solution to the problem of manipulating very large, character string indexed,
multi-dimensional, sparse matrices. It is based on Mumps (also referred to as M), a general purpose
programming language that originated in the mid 60's at the Massachusetts General Hospital. The
toolkit supports access to the SQLite relational data base server, the Perl Compatible Regular
Expression Library, and the Glade GUI builder.

The principal database feature in this project is the global array which permits direct, efficient
manipulation of multi-dimensional arrays of effectively unlimited size.

A global array is a persistent, sparse, undeclared, multi-dimensional, string indexed data disk
based structure. A global array may appear anywhere an ordinary array reference is permitted and
data may be stored at leaf nodes as well as intermediate nodes in the data base array. The number of
subscripts in an array reference is limited only by the system’s maximum length array reference
restriction with all subscripts expanded to their string values. The toolkit includes several functions
to traverse the data base and manipulate the arrays.

The toolkit makes the data base and function set available as C++ classes and also permits
execution of legacy Mumps scripts. To use the toolkit, you install the MDH and Mumps distribution.
kit and related code.

1.2 Installation

The class libraries and related functions along with the Mumps Compiler and Interpreter must be
installed before attempting to use the MDH package. The Mumps Compiler/Interpreter distribution
code has instructions on how to install the software and a description of options available.

The distribution contains a number of example programs written both in Mumps and C++/MDH.

1.3 Compiling Programs

To compile programs written in C++ that use the MDH (Multi-Dimensional and Hierarchical)
library, use the command:

mumpsc myprog.cpp

This will invoke the g++ compiler and make available the necessary libraries.

The result will be a program named myprog which is executable. You may rename the program as
you see fit, however. The script mumpsc is part of the Mumps Compiler which must be installed prior
to using the toolkit.

Note: the mumpsc command is also used to compile Mumps source code to C++ and then to
binary executables so they may be executed directly rather than by the Mumps interpreter.

1.4 Writing C++ MDH Programs

In order to use global arrays or other MDH features, each program must include the MDH header
file at the beginning of the program:

#include <mumpsc/libmpscpp.h>

This header and related library code is installed on your system when you install the Mumps
Compiler/Interpreter software.

2 Global Array Overview

2.1 Tree Structured Database Overview

Mumps was developed in the late 1960s for use on small computers. It was originally an
interpreted language (and still is in many cases) similar to BASIC which was also developed in the
1960s.

Unlike BASIC, Mumps was designed as a medical data base language. The only basic data type
was string although strings containing numbers could be used with arithmetic operators.

The fundamental challenge Mumps was designed to satisfy was the storage of hierarchical
medical records.

The medical record structure, as envisioned by Mumps was a tree where contents were
organized hierarchically as shown in Figure 1

LAB TEST RESULT TIME
EKG
EEG DATA
PULMONARY

TESY ESULT TIME

LAB
SURGICAL
[aNATOMICAL] DATA:
TEST ESULT TIME
ANK
HEMATOLOGY
MICROSCOPY oo
CHEMISTRY
MICROBIOLOGY
DIAGNOSTIC RECORDS
»ADMISSION DATES /PROBLEM LIST TREATMENT RECORDS
INTERIM HISTORY RECORDS
INITIAL HISTORY RECORD

\
(INTERIM PHYSICAL EXAM RECORDS gt i 2
HOSPITAL SERVICES RECORDS — DATA
_
) NURSING RECORDS b
ADMISSIONS RECORDS

ROMINISTERED /ADMINISTERED
MASTER PATIENT INDEX Moster Patient Index MEDICATION conz
[meENT Numssﬂ PRIMARY REFERENCE RECORD Name Patient Number DATA
f

OUTPATIENT RECORDS = Dote of Birth Sex/ Marital Status
Guarantor Nome Address

DIVISION
PHYSIOLOGY

[CHIEF COMPLAINT |

PRESENT ILLNESS /i |
PAST HISTORY

REVIEW SYSTEMS
FAMILY HISTORY.
SOCIAL HISTORY

PATHOLOGY

LABORATORY RECORDS

EMERGENCY ROOM RECORDS &= »

PHYSICAL EXAM RECORD Social Security No Phone Number THERAPY TYPE ADMINISTERED ADMINISTERED
_——— District Code Date First Admission L‘L’?s'.’éif“»‘gﬂiy
TA
TREATMENT OCCUPATIONAL THERAPY D"
PHYSICIAN THERAPY
MEDICATION SICIAN THERAP

[MEDICATION |
Primary Reference Record TRERAPY [PSYCO THERAPY |

ADMIN!STERED ADMINISTERED

PHYSICAL EXAMINATION | :::::I Security Number ZIUERT:ER;v DIETARY CODE IDATA
VITAL SIGNS HEART Patient Number ANESTHESIA
GENERAL CONDITION ABDOMEN Sex,Race, Marital Status, Birth Date
SKIN PELVIC Address, Telephone Number, Birth PLace MADMWBTERED ADMIN!STERED
HEENT RECTAL Boararing }—_{/
NECK EXTREMITIES Eye Color, Educational Level, Dexterity DATA
LYMPHATICS JOINTS Financial Support (Place of Employment) ANESTHESIA CODE: -
BREASTS POSTURE Next of Kin,Referring (Personal Physician)

—\ ME
CHEST NEUROLOGIC Occupation, Religion , Insurance ROMINISTERED fADMINISTERED
Blood Group,Hypersensitivities _
Other Critical Indicators e oLy

List Previous Adm‘ssxons and Outpatient Visits HOSPITAL SERVICES
FINANCE AND ACCOUNTING
» Dato Structures Similar to that of Admission Records Date in- Date out OFC Diagnosis, Attending Physician

CENTRAL STORES DATE TIME

t Data Structure Not Shown Resident_Physician CENTRAL PROCESSING / =
Last Complete Hxs!ovy Date PHARMACY e
Last Complete Physical - Date DIETARY | | DATA
Laboratory Tests — Date Most Recent PHYSICAL THERAPY [z==2a]

[OCCUPATIONAL THERAPY |

http://www.cs.uni.edu/~okane/

Figure 1 Tree Structured Medical Record

Trees were implemented in Mumps in structures known as global arrays. Global arrays were
sparse disk resident trees represented in the language as string indexed arrays. Array notation
followed the convention of FORTRAN and consisted of an array name followed by a parenthesized list
of indices. The indices traced a path through the global array tree for the named global array from
the root to the final leaf. The height of the tree was variable depending on the path.

Global arrays were distinguished from ordinary volatile memory arrays by being preceded by a
circumflex (©) character. While memory resident arrays disappeared when a program ended, global
arrays persisted and were accessible to other programs in the system. A typical global array might
appear as:

8

~patient(ptid, “hx”, “PRR")

Data could be stored at any global array node.

2.2 MDH Implementation of Globals

The main feature of the MDH is its implementation of Mumps global arrays as a C++ class. This
implementation also includes a number of builtin functions to manipulated and traverse globals
arrays as well as a class of string, mstring, which imitates the behavior of Mumps strings.

Global arrays are undimensioned, string indexed, disk resident data structures whose size is
limited only by available disk space.

For example:
patient(“1234"”, "Labs”, "hct”, "31 May 2022 03:05:56 PM EDT"”) = 44;
where a node or cell in the global array patient, indexed by the four strings shown, is assigned
the value 44.

The resulting global array patient node can be viewed either as a leaf node in a four level tree
(where the array indices select the tree path) or as a cell in a four dimensional matrix.

Global arrays are derived from a C++ class. Instances must be declared in your C++ program as
instances of class global.

For example, to create the global array named gbl, use the following:
global gbl("gbl");

The instance consists of two parts: the name of the global array object and the name of the global
array on disk associated with this object. Normally, these are the same.

In the above example, they are both "gbl". Note that the disk name of the global is enclosed in a
parenthesized character string expression following the object name.

The value in the expression need not (but usually does) match the name of the object. The name
given in the parenthesized character string is the disk name of the global array. The global array
object is associated with the disk name when the object is created. When the program object is
destroyed (for example, at program termination), the disk based global array persists.

Note: programs that use global arrays MUST close the array file system with the GlobalClose;
command before exiting. Failure to do so may corrupt the file system.

Global objects may be created through declarations as shown above or dynamically:

global *gptr;
gptr = new global ("gbl name");
(*gptr)("l", ||2||’ ||3||) = "test";

which is equivalent to:
global g("gbl name");
g(II1II’II2II’II3II) = Iltestll;

Each global declaration creates a global array as an object or instance of the global class. Each
global array you use must be first declared as an object of the global class. Global names can be any
valid C/C++ variable name.

A global array will typically have one or more subscripts as discussed below. These will be of type
mstring, or a null terminated array of char. Subscripts of global arrays must evaluate to printable
characters in the range of decimal 32 (space) to, but not including, decimal 126 (tilde ~).

Note:

+ No data types other than mstring, or a null terminated array of char (i.e., char *) may be
used as subscripts. Numeric data types (int, short, long, float, double, etc.) may not be used
as global array subscripts.

+ In any given global array reference, all the indices must be of the same data type (mstring or
char *)

mstring is a data type (class) whose behavior is similar to the basic typeless string data type
used in Mumps.

Objects of mstring are stored internally as strings and may contain text, integers and floating
point values.

Addition, multiplication, subtraction, division, modulo, and concatenation may be performed
directly on mstring objects (see details below). Many of the following examples use mstring objects.

2.3 Global Arrays as Trees and Matrices

Global arrays may be viewed either as multi-dimensional matrices or as tree structured
hierarchies.

As matrices, data may be stored not only at fully subscripted matrix elements but also at other

levels. For example, given a three dimensional matrix matl, you could initialize it as fshown in Figure
2.

#include <mumpsc /libmpscpp.h>
global matl("matl");

int main() {
mstring 1i,j,k;
for (i=0; i<100; i++)
for (j=0; j<100; j++)
for (k=0; k<100; k++) {
matl(i,j,k)=0;
}
GlobalClose;
return 0;

}

Figure 2 Global Array as a Matrix

Alternatively, the above can be performed with int but the numeric indices must be converted to
mstring before use. See Figure 3

#include <mumpsc /libmpscpp.h>
global matl("matl");

int main() {
int i,j,k;
for (i=0; i<100; i++)
for (j=0; j<100; j++)
for (k=0; k<100; k++) {
matl(mcvt(i),mcvt(j),mcvt(k))=0;
}

GlobalClose;

10

return 0;

}

Figure 3 Global Array as Matrix with Numeric Subscripts

In this example, all the elements of a three dimensional matrix of 100 rows, 100 columns and 100
planes are initialized to zero. The function mcvt() converts from int to mstring.

In the view expressed by the code above, the matrix is a traditional three dimensional structure
with data stored at each fully indexed position or node.

Unlike other programming languages, however, there are additional nodes of the matrix which
could have been initialized as indicated by Figure 4.

#include <mumpsc /libmpscpp.h>
global matl("matl");

int main() {
mstring 1i,j,k;
for (i=0; 1i<100; i++) {
matl(i)=i;
for (j=0; j<100; j++) {
matl(i,j)=j;
for (k=0; k<100; k++) {
matl(i,j,k)=0;
}

}

return 0;

}

Figure 4 Global Array as Matrix with Additional Nodes

In effect, this means that matl can also be a single dimensional vector, a two dimensional matrix
and a three dimensional matrix simultaneously.

Furthermore, not all elements of a matrix need exist. That is, the matrix can be sparse as shown
in Figure 5.

#include <mumpsc/libmpscpp.h>
global matl("matl");

int main() {
mstring i, j, k;
for (1 =0; 1 <100; i =1i + 10)
for (j =0; j <100; j =3 + 10)
for (k = 0; k <100; k = k
mat2(i, j, k) = 0;
}

{
+ 10) {

}

return 0;

}

Figure 5 Global Array as Sparse Matrix

11

In the above, only index values 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 are used to create each of

the dimensions of the array and only those elements of the matrix are created. The omitted elements
do not exist.

For example, if you are running a drug protocol on a number of patients and are dosing with
medications M1, M2, M3, ... on patients P1, P2, P3, ... and collecting observations on days D1, D2,
D3, ... you could create a three dimensional matrix named protocol in which each plane consisted of
the observations for each patient on each medication for a given day as shown in Figure 7.

D1 D2 D3 D4
M1 M2 M3 M4 |M5 M1 M2 M3 M4 |M5 M1 (M2 M3 M4 M5 M1 M2 M3 M4 [M5
P1 P1 P1 P1 X
P2 P2 P2 P2
P3 P3 P3 P3
Figure 6 Tabular View of Tree

You could refer to patient P1, medication M2 on day D4 with the reference:
protocol (IIPlII , IIM2II , IID4II)=IIXII ;

Alternatively, you can view the same data base as a tree structure with patient id at the root, followed
by medication, followed by day of study as shown in Figure 7.

root

ﬂ P3

P1
poil=—=
/A
M1

Figure 7 Global Array Tree

Note that at each node in the tree, a data box may appear containing information about the node.
Addressing a node is accomplished by giving its path description such as:

protocol(upzul "M2",D2)

2.4 Accessing Global Arrays

Note: prior to exiting a program that accessed globals arrays, you should execute the
GlobalClose macro to shut down the global array facility. This flushes the system buffers to disk and

insures that the file system if properly closed. Failure to do this may result in data base errors. This
appears in your program as:

12

GlobalClose;

You may assign global array elements to variables of type mstring using the assignment operator
(=).

You may assign values of type int, float, double, mstring, string and char * to global array
elements using the assignment operator (=).

When global array references are passed to function, no more than one instance of the same
global object should be used in the argument list. Each global object maintains a private static
string which contains the most recent value fetched from the data base. When a global object is
passed to a function, its this string value is effectively passed. This means that, in a function
reference where two references to the same global object are passed, even though they have
differing indices, the value passed will be the value for the second instance of the global. This
restriction only applies where there are two or more instances of the same global.

If you use a reference to a global without a parenthesized list following the name of the global,
the reference will be to the most recent referenced global. Effectively, this is similar to the "naked
indicator" from Mumps.

2.5 Global Array Indices

Internally, the indices of global arrays are always stored as character strings. If you initialize a
global array with a loop, you must insure that the indices are represented as either values of type
mstring or null terminated arrays of type char. Indices to globals may be either char* or mstring
but MUST all be of the same type (i.e. all char * or all mstring). For example:

mstring A, B, C;

for (A =0; A< 1000; A++)
for (B =0; B < 1000; B++)
for (C = 0; C < 1000; C++) {
arrayl(A, B, C) = "0";
}

The above initializes an array of 1 billion elements to zero.

2.6 Navigating Globals

There are several builtin functions used to navigate the globals. The two most important are the
Data() function and the Order() function. The Data() function tells you if a node exists and if it has
descendants and the Order() function gives you the next higher (or lower) index at a given level in
the global array tree.

The Data() function returns an integer which indicates whether the global array node is defined:

1. 0 if the global array node is undefined;

2. 1 if it is defined and has no descendants;

3. 10 if it is defined but has no value stored at the node (but does have descendants);
4. 11 it is defined and has descendants.

A global is defined if data has been stored at it. A "10" is returned for a node at which nothing
has been stored but the node has descendants. For example, assuming the global array has only the
contents created in the example in Figure 8.

global arrayl("arrayl");
int result;

arrayl("l",“ll“) = Ilfooll
arrayl(“l“,“11“,"21") = llbarll

13

result = arrayl("1").Data() ; // yields 10
result = arrayl("1","11").Data(); // yields 11
result = arrayl("1","11","21").Data(); // yields 1

Figure 8 Navigating Global Arrays - Data()

The other major navigation function is the Order() function. This gives you, for a given global
array index, the next ascending or descending value for the last index. If the parameter to Order() is
1 or missing, the next ascending index is returned. If the parameter is -1, the next descending index
is returned. To get the first (or last if the parameter is -1) value of an index, start with a null (empty)
string. See Figure 9.

mstring x, null;
global arrayl("arrayl");

arrayl("10e0") = "a"; // initialize the array with three entries
arrayl("200") = "b";

arrayl("300") = "c";

null - uu;

x = arrayl(null).Order(); // get the first value of the first index: 100
x = arrayl(x).0rder(); // get the second value of the first index: 200
X = arrayl(x).0rder(); // get the third value of the first index: 300
X = arrayl(x).0rder(); // no more indices - returns empty string

x = arrayl(null).Order(-1); // get the last value of the first index: 300

X = arrayl(x).0rder(-1); // get the second value of the first index: 200
x = arrayl(x).0rder(-1); // get the first value of the first index: 100
X = arrayl(x).0rder(-1); // no more indices - returns empty string

for (x = arrayl(null).Order(); x != null; x = arrayl(x).0rder())

cout x << endl; // writes 100 200 300 on separate lines

for (x = arrayl(null).Order(-1); x != null; x = arrayl(x).0rder(-1))
cout X << endl; // writes 300 200 100 on separate lines

for (x = 10; x <100; x = x + 10) arrayl("200" , x) = x;

for (x = arrayl("200", null).Order(); x !'= null; x = arrayl("200", x).0rder())
cout x << endl; // writes 10 20 30 ... 90 on separate lines

Figure 9 Navigating Global Arrays - Order()

Each call to Order() gives the next value of the last index. The numeric parameter indicates if the
direction is ascending (1) or descending (-1). If omitted, 1 is assumed. To get the first index, the
empty string is supplied and the function returns the first index of the global array. For subsequent
calls, it returns the next ascendant index value until there are no more indices. Then it returns the
empty string.

In the following example, we build a global array vector from an input file consisting of keywords
with one keyword per line, keep a count of each time the keyword is used, and, at the end, print an
alphabetized list of the keywords followed by the number of times each occurs, do as shown in Figure
10.

#include <mumpsc/libmpscpp.h>

14

global key("key");
int main() {

mstring word, null;

long i;

null = uu;

while (1) {
if (! word.ReadLine(cin)) break;
if (key(word).Data()) // is word in vector?
key (word)++; // yes, increment count
else key(word) = 1; // not in vector - add
}

word = null;
while ((word = key(word).Order(1l)) '= null) // next word
cout << word << " " << key(word) << endl; // print word and count

return EXIT SUCCESS;
}

Figure 10 Global Array Navigation Example

In the above, each line is read into the variable word until the end of file is reached. Each word is
tested with the Data() function of the global array to determine if word exists in the key vector. The
Data() returns zero if the element does not exist, non-zero if it does. In the case where the word is in
the key global array vector, the value stored in the vector for the word is extracted into the variable i,
incremented and stored back into the vector. If the word does not exist in the vector, it is added and
its initial count is set to one.

When all the words have been read and stored into the vector, the program sequences through
the word entries and prints the words and the total number of times each one was present in the
input file. Since global arrays are stored in ascending key order, the display of words will be
alphabetic.

Similarly, given a global array of patient lab data organized hierarchically first by patient id, then
by lab test, then by date, we can print a table of patient id's, labs, dates and results as shown in
Figure 11.

#include <mumpsc/libmpscpp.h>

global Labs("labs");

int main() {

mstring null, ptid, lab test, date, rslt;
null = "";

// create dummy example data base

Labs("1000", "hct", "July 12, 2003") = "45";
Labs("1000", "hct", "July 13, 2003") = "46";
Labs("1000", "hct", "July 14, 2003") = "47";
Labs("1000", "hct", "July 15, 2003") = "48";

15

Labs("1000", "hgb", "July 12, 2003") = "15";
Labs("1000", "hgb", "July 15, 2003") = "14";
Labs("1001", "hct", "July 12, 2003") = "35";
Labs("1001", "hct", "July 13, 2003") = "36";
Labs("1001", "hct", "July 14, 2003") = "37";
Labs("1001", "hct", "July 15, 2003") = "38";
Labs("1001", "hgb", "July 13, 2003") = "15";
Labs("1001", "hgb", "July 14, 2003") = "15";
Labs("1002", "hct", "Sept 12, 2003") = "35";
Labs("1002", "hct", "Sept 13, 2003") = "36";
Labs("1002", "hct", "Sept 14, 2003") = "37";
Labs("1002", "hct", "Sept 15, 2003") = "38";
Labs("1002", "hgb", "Sept 13, 2003") = "15";
Labs("1002", "hgb", "Sept 14, 2003") = "15";

ptid = null;

while ((ptid = Labs(ptid).Order(1l)) != null) {
lab test = null;
while ((lab _test = Labs(ptid,lab test).0Order(1)) !'= null) {

date = null;
while ((date = Labs(ptid,lab test,date).Order(1)) != null) {
cout << ptid << " " << lab test << " " << date;
cout << " " << Labs(ptid,lab test,date) << endl;
}
}
}
GlobalClose;
return 1;
}
Output

1000 hct July 12, 2003 45
1000 hct July 13, 2003 46
1000 hct July 14, 2003 47
1000 hct July 15, 2003 48
1000 hgb July 12, 2003 15
1000 hgb July 15, 2003 14
1001 hct July 12, 2003 35
1001 hct July 13, 2003 36
1001 hct July 14, 2003 37
1001 hct July 15, 2003 38
1001 hgb July 13, 2003 15
1001 hgb July 14, 2003 15

Figure 11 Hierarchical Global Array Example

The example in Figure 11 begins with an empty string for patient id ptid. This is used at the outer
loop level to cycle through all the patient ids. At the first nexted loop, the program cycles through all
the lab test names (lab test) then at the innermost level, it cycles through all the dates (date). The
resulting table is of the form:

2.7 Locking the Data Base

There are several functions for locking portions of the data base. Following legacy convention, a
lock does not prevent access to an element but merely flags the element as locked. Locking views a
global array as a tree structure. If an element is locked, its descendants are locked. An attempt to

16

lock a locked element of an element that has a locked parent or a locked descendant will fail. The
primary locking functions are $lock(), Lock() and UnLock():

if ($lock(gbl(a, b, c)) cout << "locked" << endl;
if (gbl(a, b, c).Lock()) cout << "locked" << endl;
gbl(a, b, c).UnLock();

The $lock() and Lock() functions test to see if the node can be locked and locks it if possible. It
returns true (1) if successful and false (0) otherwise ($test is set accordingly). A node can be locked if
it itself is not locked, if it has no descendants that are locked and if it is not the descendant of a
locked node. The UnLock() function releases a lock on a node.

Additionally, there are functions to release all locks for the current process and all locks for all
processes:

CleanLocks(); // release all locks for this process only
CleanAllLocks(); // release all locks for all processes

17

3 Class mstring

The mstring class provides Mumps-like strings that can be used to in C++ programs. They treat
variable values in a manner similar to that of native Mumps strings.

mstring objects are based on C++ string strings on which arithmetic and other operations may
be performed. The mstring includes overloads for many operators as well provides many Mumps-like
functions.

3.1 mstring Operations

The operator overload for mstring are shown in Figure 21. Additional overloads may be added
in time.

Addition

mstring operator+(int); friend mstring operator+(int,mstring);

mstring operator+(long); friend mstring operator+(long,mstring);

mstring operator+(double); friend mstring operator+(double,mstring);
mstring operator+(float); friend mstring operator+(float,mstring);
mstring operator+(mstring); friend mstring operator+(string,mstring);
mstring operator+(string); friend mstring operator+(global,mstring);
mstring operator+(const char *); friend mstring operator+(const char *,mstring);
mstring operator+(char *); friend mstring operator+(char *,mstring);
mstring operator+(global);

mstring operator+=(mstring);
mstring operator+=(int);

mstring operator+=(long);

mstring operator+=(double);
mstring operator+=(float);
mstring operator+=(string);
mstring operator+=(const char *);
mstring operator+=(global);

Subtraction

mstring operator-(int); mstring operator-(int);
mstring operator-(long); mstring operator-(long);
mstring operator-(double); mstring operator-(double);
mstring operator-(float); mstring operator-(float);
mstring operator-(mstring); mstring operator-(mstring);
mstring operator-(string); mstring operator-(string);
mstring operator-(const char *); mstring operator-(const char *);
mstring operator-(char *); mstring operator-(char *);
mstring operator-(global); mstring operator-(global);
mstring operator-=(mstring);

mstring operator-=(int);

mstring operator-=(long);

mstring operator-=(double);

mstring operator-=(float);

mstring operator-=(string);

mstring operator-=(const char *);

mstring operator-=(global);

Multiplication

18

mstring
mstring
mstring
mstring
mstring
mstring
mstring
mstring

operator*(int);
operator*(long);
operator*(double);
operator*(float);
operator*(mstring);
operator*(string);
operator*(global);
operator*(const char *);

mstring
mstring
mstring
mstring
mstring
mstring
mstring
mstring

operator*=(mstring);
operator*=(int);
operator*=(long);
operator*=(double);
operator*=(float);
operator*=(string);
operator*=(const char *);
operator*=(global);

friend
friend
friend
friend
friend
friend
friend

mstring
mstring
mstring
mstring
mstring
mstring
mstring

operator*(int,mstring);
operator*(long,mstring);
operator*(double,mstring);
operator*(float,mstring);
operator*(string,mstring);
operator*(global,mstring);
operator*(const char *,mstring)

’

Division

mstring
mstring
mstring
mstring
mstring
mstring
mstring
mstring

operator/(int);
operator/(long);
operator/(double);
operator/(float);
operator/(mstring);
operator/(string);
operator/(global);
operator/(const char *);

mstring
mstring
mstring
mstring
mstring
mstring
mstring
mstring

operator/=(mstring);
operator/=(int);
operator/=(long);
operator/=(double);
operator/=(float);
operator/=(string);
operator/=(const char *);
operator/=(global);

friend
friend
friend
friend
friend
friend
friend

mstring
mstring
mstring
mstring
mstring
mstring
mstring

operator/(int,mstring);
operator/(long,mstring);
operator/(double,mstring);
operator/(float,mstring);
operator/(string,mstring);
operator/(global,mstring);
operator/(const char *,mstring)

.
’

Increment/Decrement

mstring
mstring
mstring
mstring

operator++
operator--
operator++

);

);

int
operator--(int

—_~ e~ o~ —~

);
);

Unary Operations

mstring
mstring
mstring

operator!(); // unary
operator+(); // unary
operator-(); // unary

Modulo

mstring
mstring
mstring
mstring
mstring

operator%(long);
operator%s(int);
operator%s(mstring);
operator%(string);
operator%(const char *);

friend
friend
friend
friend
friend

mstring
mstring
mstring
mstring
mstring

operator%s(int,mstring);
operator%(long,mstring);
operator%(string,mstring);
operator%s(global,mstring);
operator%s(const char *,mstring)

’

19

mstring operator%(global);
mstring
mstring
mstring
mstring
mstring
mstring

operators=
operators=
operators=
operators=
operators%s=
operators=

mstring);
int);

long);
string);

const char *);
global);

PRy

Concatenation

mstring
mstring
mstring
mstring
mstring
mstring
mstring
mstring

operator
operator
operator
operator

| mstrlng)
| |
| |
[|
operator| |
[|
| |
| |

string);
global);

const char *);
int)

long

float)

double

operator
operator
operator

P

mstring
mstring
mstring
mstring
mstring
mstring
mstring

operator&(mstrin

(
(
operator&(global);
operator&(string);
(
(
(

);
’
’
’

g
operator&(char *);

)

)

operator&(int);
operator&(long);
operator&(double);

friend
friend
friend
friend
friend
friend
friend

mstring
mstring
mstring
mstring
mstring
mstring
mstring

operator||(string, mstring);
operator| | (global, mstring);
operator| | (const char *, mstring);
operator||(int, mstring);
operator||(long, mstring);
operator| | (float, mstring);
|1

operator double, mstring);

Relational

bool
bool
bool
bool
bool
bool
bool
bool
bool

int);
long);
double);

operator==(

operator==(

operator==(
operator==(float);
operator==(const char *);
operator==(char *);
operator==(string);
operator==(global);
operator==(mstring);

bool
bool
bool
bool
bool
bool
bool
bool
bool

operator!=(int);
operator!=(long);
operator!=(double);
operator!=(float);
operator!=(char *);
operator!=(const char *);
operator!=(string);
operator!=(global);
operator!=(mstring);

bool
bool
bool
bool
bool
bool
bool
bool
bool

operator<(int);
operator<(long);
operator<(double);
operator<(float);
operator<(char *);
operator<(const char *);
operator<(string);
operator<(global);
operator<(mstring);

20

bool operator>(int);

bool operator>(long);

bool operator>(double);

bool operator>(float);

bool operator>(char *);

bool operator>(const char *);
bool operator>(string);

bool operator>(global);

bool operator>(mstring);

bool operator>=(int);

bool operator>=(long);

bool operator>=(double);

bool operator>=(float);

bool operator>=(char *);

bool operator>=(const char *);
bool operator>=(string);

bool operator>=(global);

bool operator>=(mstring);

bool operator<=(int);

bool operator<=(long);

bool operator<=(double);

bool operator<=(float);

bool operator<=(char *);

bool operator<=(const char *);
bool operator<=(string);

bool operator<=(global);

bool operator<=(mstring);

Figure 12 mstring Operator Overloads

3.2 mstring Functions and Methods

3.2.1 Ascii Function

int mstring::Ascii()
int mstring::Ascii(int start)
int mstring::Ascii(int start)

Returns the numeric value of an ASCII character. If no "start" is specified, the

numeric values of the first character of invoking mstring is used. If "start" is

specified, the numeric value of "start"'th character of nvoking is chosen. If the
empty string is given, -1 is returned.

mstring a;

a="ABC";

a.Ascii() yields 65

a.Ascii(1l) yields 65
a.Ascii(2) yields 66

3.2.2 begins Function
int mstring::begins(mstring pattern)

Returns an integer which is the starting point in the string of pattern or -1 if
the pattern is not found. Throws: PatternException if the pattern is in error.

21

3.2.3 c_str Function
char * mstring::c str()

Returns a pointer to a null terminated char array containing the contents of
the invoking mstring object.

3.2.4 decorate Function

int mstring::decorate(mstring pattern, mstring prefix, mstring suffix)

Attempts to locates pattern in the invoking mstring and inserts prefix immediately
to the left of the string that matched the pattern and inserts suffix immediately to
the right of the found pattern. Returns 1 if the pattern was found and the insertions
were made, -1 if the pattern was not found, and less than -1 for other errors (see
PCRE documentation concerning pcre_exec() return codes). Throws: PatternException().

3.2.5 EncodeHTML Function

char * mstring EncodeHTML(char * arg)
mstring EncodeHTML (mstring arg)

Encodes the argument string according to HTML rules and returns the result. Alphabetics and
numbers are unchanged. Blanks become plus signs and all other characters replaced by "%xx" where
"xx" is the hexadecimal value of the character in the ASCII collating sequence. The function is used
mainly in connection with parameters passed with URL's which may not contain blanks or special
characters. the code in cgi.h is used to decode these strings. Example:

#include <mumpsc /libmpscpp.h>
int main() {
char x[]="now is =()$.& the time";
cout << EncodeHTML(x) << endl;
return EXIT SUCCESS;
}

Yields
Now+1s+%3D%28%29%24%2E%26+the+time
3.2.6 ends Function

int mstring::ends(mstring pattern)

Returns an integer giving the character position (relative to zero) immediately
following the string that matched pattern. Returns -1 if the string did not match.
Throws: PatternException.

3.2.7 Eval Function

mstring mstring::Eval()

Evaluates the mumps expression of the invoking mstrin object and returns the result
in an mstring. If an error occurs, an InterpreterException is thrown. The invoking
mstring object may contain a valid mumps expression involving calling program mstring
variables.

3.2.8 Extract Function

mstring mstring::Extract(int=1, int=-1)

22

Returns an mstring containing a substring substring of the first argument. The
substring begins at the position noted by the second operand. If the third operand is
omitted, the substring consists only of the "start" character of invoking source
string. If the third argument is present, the substring begins at position "start" and
ends at position "end". If no argument is given, the function returns the first
character of the string. If "end" specifies a position beyond the end of source
string, the substring ends at the end of source string;. String position counting
begins at one (not zero).

3.2.9 Find Function

int mstring::Find(const char *, int=1)
int mstring::Find(mstring, int=1)

Find() searches the first argument for an occurrence of the second argument. If one
is found, the value returned is one greater than the end position of the second
argument in the first argument. If "start" is specified, the search begins at position
"start" in argument 1. If the second argument is not found, the value returned is 0.
String position counting begins at position one.

mstring Xx;

x="ABCDEF";

x.Extract(2) yields "B"
x.Extract(3,5) yields "CDE"

3.2.10 Horolog Function

mstring Horolog()

Returns an mstring of the form "x,y" where x is the number of days since December
31, 1984 and y is the number of seconds since midnight.

3.2.11 Justify Function
mstring mstring::Justify(int, int=-1)
Justify() right justifies the invoking mstring in an mstring field whose length is given by the first
argument. If the second argument is present and a positive integer, the invoking mstring is right

justified in a field whose length is given by the first argument with "precision" decimal places. The
two argument form imposes a numeric interpretation upon the first argument.

X=II39II ;
x.Justify(3) yields " 39"

x="TEST";
x.Justify(7) yields " TEST"

X=II39II ;
x.Justify(4,1) yields "39.0"

3.2.12 Length Function
int mstring: :Length()

int mstring: :Length(mstring pattern_string)
int mstring::Length(char * pattern_string)

The function returns the string length of the invoking mstring.

3.2.13 mcvt Function

mstring mcvt(arg)

23

Converts the arg to mstring. Arg may be int, char *, float long or double.

3.2.14 Pattern Function

int mstring::Pattern(mstring &)
int mstring::Pattern(const char *)

Evaluates the invoking source string according to the pattern string and returns 0 (does not
match) or 1 (does match). Pattern string rules are as as shown below but you must remember to
place a backslash before quotes in the pattern string (as per usual C++ rules). The pattern match
function is used to determine if a string conforms to a certain pattern. Pattern match operations are
converted to Perl Compatible Regular Expressions and are executed by functions in the PCRE library
which must be present. You may access the PCRE directly, using Perl expression format with the
"perl pm(string, pattern, 1, svPtr)" function discussed in Appendix D. The basic Mumps pattern codes
are shown in Figure 13.

The Mumps pattern codes are:

for the entire upper and lower case alphabet.
for the 33 control characters.

for any of the 128 ASCII characters.

for the 26 lower case letters.

for the numerics

for the 33 punctuation characters.

for the 26 upper case characters.

literal string.

>CU=Zrmo>

Figure 13 Mumps Pattern Codes

A pattern code is made up of one or more of the those shown in Figure 13, each preceded by a
count specifier. The count specifier indicates how many of the named item must be present.
Alternatively, an indefinite specifier - a decimal point - may be used to indicate any count (including
zero). For example:

mstring A;

A="123-45-6789";

if (A.Pattern(command("3N1"-"2N1"-"4N"))) cout << "OK" << endl;
A="JONES, J. L.";

if (A.Pattern(command(".Al1",".A"))) cout << "OK" << endl;

Full pattern matching syntax, including support for alternation, are supported as
described in Appendix D of the Compiler manual. The macro "command()" will handle the
required backslash escape characters required before quote marks.

3.2.15 Perl Function

int Perl(mstring string, mstring regex)
int Perl(mstring string, char * regex)

The regular expression in the null terminated character array or mstring given by
regex is applied to the mstring string. If the pattern match succeeds, true (1) is
returned, false (0) otherwise and $test is set accordingly. This macro also sets
variables in the run-time symbol table. See SymGet() and SymPut() for details on
accessing the symbol table. See Appendix D for examples of using this function.

3.2.16 Piece Function

mstring mstring::Piece(const char *, int, int=-1)
mstring mstring::Piece(mstring &, int, int=-1)
24

The Piece() function returns a substring of the invoking mstring delimited by the instances of the
first argument. The substring returned in the two argument case is that substring of the invoking
mstring that lies between the "start" minus one and "start" occurrence of the first argument. In the
three argument form, the string returned is that substring of the invoking mstring delimited by the
"start" minus one instance of the first argument and the end'th instance of the first argument. If only
two arguments are given, end is assumed to be start. For example:

x="aaa.bbb.ccc.eee.fff";

cout << x.Piece(".",1) << endl; // writes aaa
cout << x.Piece(".",2) << endl; // writes bbb
cout << x.Piece(".",5) << endl; // writes fff
cout << x.Piece(".",4,5) << endl; // writes eee.fff

Global arrays may be used in any argument position but only one instance of the
same global may appear (see note in Accessing global arrays) section.

3.2.17 ReadLine Function

bool mstring::ReadLine(FILE *)
bool mstring: :ReadLine(istream &)

The next 1line from the file designated by "unit" is read into the invoking object
of mstring. Carriage-returns and line-feeds are removed. The maximum length 1line that
can be read is STR_MAX-1. Returns 'true' if the operation succeeded, 'false' otherwise
or if end of file.

3.2.18 replace Function

int mstring::replace(mstring pattern, mstring replacement)

Replaces the string matching pattern with replacement. Returns 1 if successful, 01
if there was no match and less than -1 on error (See PCRE documentation for
pcre_exec()). Throws: PatternException.

3.2.19 ScanAlnum Function

mstring ScanAlnum(FILE *, int min=3, int max=25)
mstring ScanAlnum(istream, int min=3, int max=25)

Returns the next token from the input file with all punctuation removed. Returns
empty string on end of file. If min and/or max are provided, only words whose length
are less than min and greater than max are discarded. The default values for these
parameters are 3 and 25, respectively. Use stdin for file to scan standard input.

3.2.20 shred Function
mstring Shred(mstring str, int size)

The Shred() function shreds the input string str into fragments of length size upon successive
calls. The function returns a string of length zero when there are no more fragments of length size
remaining (thus, short fragments at the end of a string are not returned). Shred() copies the input
string to an internal buffer upon the first call. Subsequent calls retrieve from this buffer. When the
buffer is consumed, the function will copy the contents of the next string submitted to the buffer.
Figure 14 contains an example.

#include <mumpsc/libmpscpp.h>

25

int main() {

char x[] = "abcdefghijklmnopgrstuvwxyz";

char *p;
while(1l) {
p = Shred(x, 5);
if (strlen(p) == 0) break;
cout << p << endl;
}
return 0;
}
yields:
abcde
fghij
klmno
pqrst
uvwxy

Figure 14 Shred Function

3.2.21 ShredQuery Function
mstring ShredQuery(mstring str, int size)

The ShredQuery() function shreds size shifted copies of the input string str into fragments of
length size upon successive calls. That is, the function first returns all the size fragments of the string
in the same manner as Shred(). However, it then shifts the starting point of the input string to the
right by one and returns all the size length fragments relative to the shifted starting point. It repeats
this process a total of size times.

The function returns a string of length zero when there are no more fragments of length size
remaining (thus, short fragements at the end of a string are not returned). ShredQuery() nitially
copies the input string to an internal buffer upon the first call. Subsequent calls retrieve from this
buffer. When the buffer is consumed, the fuction will copy the contents of the next string submitted to
the buffer. See Figure 15.

#include <mumpsc/libmpscpp.h>
int main() {

char x[] = "abcdefghijklmnopqrstuvwxyz";

char *p;
while(1l) {
p = ShredQuery(x, 5);
if (strlen(p) == 0) break;
cout << p << endl;
}
return 0;
}
Yields:
abcde
fghij
klmno
pgrst

26

uvwxy

bcdef
ghijk
lmnop
qrstu

cdefg
hijkl
mnopq
rstuv

defgh
ijklm
nopqr
stuvw

efghi
jklmn
opqrs
tuvwx

Figure 15 ShredQuery

3.2.22 Stem Function
mstring stem(mstring & word)

Returns the original word or the English linguistic root stem of the word, if
one can be found.

3.2.23 SymGet SymPut Functions

mstring SymGet(mstring name)
mstring SymGet(char * name)
mstring SymGet (global name)
mstring SymPut(name, value)

These functions retrieve and store values from/to the run-time symbol table.
In all, name is a a string containing the name of the variable and value is
the value to be stored. The SymPut() functions return true if successful. A
MumpsSymbolTableException exception is raised if SymGet() fails. If SymPut()
fails, the program terminates (out of memory). For SymPut(), 'name' and
'value' may be any combination of mstring, global or null terminated char.

3.2.24 s_str Function
string mstring::s str()

Returns a string copy of the contents of the invoking mstring object.

3.2.25 Token Function

mstring Token()
mstring TokenInit(mstring)

Token() returns the next word token from the input string. Initially a line of text
is passed to TokenInit(). For each subsequent call to Token(), the next lexical token
from the original string is returned. Upper case letters are converted to lower case
letters. When there are no more words, the empty string is returned. After the the
empty string is returned (or when initially called), the function will accept and
store a new line of text.

27

3.2.26 Translate Function

mstring mstring::Translate(mstring)
mstring mstring::Translate(mstring, mstring)

If only one mstring argument is given, characters appearing in the argument mstring
are removed from the invoking mstring.

If two argument mstrings appear and the first and second argument mstring are of
the same length, characters from the invoking mstring that appear in the first
argument mstring are replaced by their counterparts from the second argument mstring.

If the first argument mstring is longer than the second argument mstring, the
characters from the first argument mstring which have no counterpart in the second
argument mstring are removed.

A "counterpart" is a character equally offset in the second argument mstring to the
character in the first argument mstring.

3.3 Basic mstring Example

Figure 16 give some examples of the data type mstring. In the Mumps language there is one
basic data type: string. All operations, including arithmetic calculations result in string values.

The mstring data type imitates the string data type in Mumps. It can be used as a traditional
string or ain mathematics.

In Figure 16 we see the mstring variab;s a, b, and ¢ being used as traditional strings with the
MDH concatenation operator (||) to form the string hello world. The mstring variable a is then used
as a numeric counter to print zero through nine. It is then used to as a numeric index to a global
array (x(a)) and finally in several expressions accessing the global array.

#include <mumpsc/libmpscpp.h>
global x("x");
int main() {

mstring a, b, c;

a = "hello ";
b = "world";
cout << (a || b) << endl; // concatenation

// prints "hello world"
for (a = 0; a < 10; a++)

cout << a << endl; // prints 0 thru 9
for (a = 0; a < 10; a++)
x(a) = a; // sets global array elements
a = n ll;
while (1) {
a = x(a).0rder(1);
if (a == "") break;
cout << a << endl; // prints 0 thru 9
}
cout << x(a).Data() << endl; // prints 1

28

c = "123 elm street";
c=c+ 1;
cout << ¢ << endl; // prints 124

return EXIT SUCCESS;
}

Figure 16 mstring Examples

Note: the code "(a || b)" in the cout expression is parenthesized. If not parenthesized, the C++

compiler precedence will result in an error since the precedence of << is greater than ||.

3.4 Detailed mstring Examples

3.4.1 Assignment from Other Data Types

Variables of type mstring may be assigned values from variables or constants of types char *,
string, global, mstring, float, int, long, or double as shown in Figure 17.

#include <mumpsc/libmpscpp.h>
int main() {
// examples of assignment to mstring

mstring x;

X = 10; cout << x << endl;
X = 10.99; cout << x << endl;
x = "test"; cout << x << endl;

string al="abcdef";

float a2=99.9;

double a3=99.8;

int a4=99;

short a5=98;

char a6[]="abcdef";

global a7("a7"); a7("1")=99;

X = ai; cout << x << endl;
X = az2; cout << Xx << endl;
X = a3; cout << x << endl;
X = a4; cout << x << endl;
X = ab; cout << Xx << endl;
X = a6; cout << x << endl;
X = ar("1"); cout << x << endl;
GlobalClose;

return EXIT_SUCCESS;

3

which writes:

10
10.99
test

29

abcdef
99.9
99.8
99

98
abcdef
99

Figure 17 mstring Assighment Examples

3.4.2 Arithmetic Operations on mstring

Figure 18give examples of arithmetic operations of mstring.

#include <mumpsc /libmpscpp.h>

int main()

{

// examples mstring operators.

mstring
mstring
mstring

y =1;

X = 10;

cout
cout
cout
cout
cout
cout

cout

(9]
o
c
t

X X X X X X X
[| I O | R A
=
[©)

<<
<<
<<
<<
<<
<<

<<

A
N

=
[©)

=
[©]

[N
(o}

X X X X X
{1 I T T |
[N
(o}

=
(©]

cout

x=10;
x=10;
x=10;
x=10,

<<

X X X X

X;

\Z

z,

"expect 11
"expect 9
"expect 20
"expect 5
"expect 1
"expect 11
nw_o____ \nn;
X =X + 1;
X =X - 1;
X =x * 2;
X =x/ 2;
X =X % 3;
X =X +Yy;
X =y + X;

nw_____ \n",
+=y;
-= Y
=y,

=y

n <<
n <<
n <<
n <<
n <<
n <<

cou
cou
cou
cou
cou

cout
cout
cout
cout

X X X X X X
*

cout
cout
cout
cout
cout
cout
cout

t <<
t <<
t <<
t <<
t <<

K WNNPREPR,

<<
<<
<<
<<
<<
<<
<<

Ile
Ile
Ile
Ile
Ile

<< endl;
<< endl;
<< endl;
<< endl;
<< endl;
<< endl;

"expect
"expect
"expect
"expect
"expect
"expect
"expect

xpect 11

xpect

xpect 20

xpect
xpect

<< "expect 11
<< "expect 9
<< "expect 10
<< "expect 10

11

20

11
11

<<
<<
<<
<<

<<
<<
<<
<<
<<

X X X X

<<
<<
<<
<<
<<
<<
<<

X X X X X

<<
<<
<<
<<

<< endl;
<< endl;
<< endl;
<< endl;
<< endl;
<< endl;
<< endl;

X X X X X X X

<< endl;
<< endl;
<< endl;
<< endl;
<< endl;

endl;
endl;
endl;
endl;

30

x=10; X %= y; cout << "expect 0 " << X << endl;
cout << "----- \n";
X =10; x =1+ X +vy; cout << "expect 12 " << x << endl;
X =10; x =1 - x +vy; cout << "expect - 8 " << Xx << endl;
X =10; X =1 * X +vy; cout << "expect 11 " << x << endl;
X =10; x =1/ X +vy; cout << "expect 1.1 " << x << endl;
cout << "----- \n";
X =10; x =1 + (x +y); cout << "expect 12 " << x << endl;
X =10; x = (x +y) + (X+ y); cout << "expect 22 " << x <<
X = 10; cout << "expect 11 " << ++x ;

cout << " expect 11 " << x << endl;
X = 10; cout << "expect 10 " << x++ ;

cout << " expect 11 " << x << endl;
X = 10; cout << "expect 9 " << --x ;

cout << " expect 9 " << x << endl;
X = 10; cout << "expect 10 " << Xx-- ;

cout << " expect 9 " << x << endl;
cout << "----- \n";
X = 10; cout << "expect yes "; if (x == 10) cout << "yes\n";
X = 10; cout << "expect yes "; if (x >= 10) cout << "yes\n";
X = 10; cout << "expect yes "; if (x <= 10) cout << "yes\n";
X = 10; cout << "expect yes "; if (x >= 9) cout << "yes\n";
X = 10; cout << "expect yes "; if (x > 9) cout << "yes\n";
X = 10; cout << "expect no ";

if (x !'= 10

X = 10,

cout

) cout << "yes\n"; else cout << "no\n";

<<

"expect no ";

if (x > 10) cout << "yes\n"; else cout << "no\n";

X = 10; cout << "expect no ";
if (x < 10) cout << "yes\n"; else cout << "no\n";

X = 10; cout << "expect no ";
if (x <= 9) cout << "yes\n"; else cout << "no\n";

X = 10; cout << "expect no ";
if (x < 9) cout << "yes\n"; else cout << "no\n";

cout <<

x = "test message";

cout << "expect \'"test message\"

cin >> Xx;

n <<

cout << "expect what you typed " << x
x = "test ";

y = "message";

z=x1ly;

cout << "expect \'"test message\" " <<

X << endl;

<< endl;

z << endl;

endl;

31

x=x || x| x;

cout << "expect \'"test test test\" " << x << endl;

x = "test";

z=y=(x||" test");

cout << "expect \'"test test test test\" " <<y << " " << 7z << endl;
x = "test";

zZz=y=x=x || " test";

cout << "expect \'"test test test test\" " <<y << " " << 7z << endl;
cout << "expect \"test test\" " << x << endl;

GlobalClose;

return EXIT_SUCCESS;

¥

Figure 18 mstring Arithmetic Operations

3.4.3 Miscellaneous mstring Rules

1.
2.

Objects of mstring may be not initialized in declaration statements.

Objects of type mstring may participate in add(+, +=), subtract(-, -=), multiply(*, *=),
divide(/, /=), modulo (%, %=) (integers values only) pre/post increment/decrement (++/--), and
concatenation (||) operations. The mode of the operation will depend on the mode of the other
operand.

Objects of type mstring may participate in relational expressions >, >=, <, <=. The mode of
comparison will depend on the mode of the other operand.

Objects of type mstring may participate in equality expressions == and !=. The mode of the
comparison will depend on the mode of the other operand.

Objects of type mstring may participate in input and output stream operations >> and <<.

Objects of type mstring may not be assigned directly to ASCII null terminated string (char *)
or string.

Objects of type mstring may be declared as arrays or allocated/freed by the new/delete
operators. Only numeric subscripts permitted at this time.

If an object of type mstring is to be used in connection with the interpreter, it must be
declared with a string giving its name in the run time symbol table. For example:

mstring x("x");

If this is done, variables in the C++ program are linked to variables of the same name in the
Mumps interpreter. That is, values from variables in the C++ program are known by the same
name to interpreted programs invoked by the C++ program. Changes made to these variables
in the interpreter are changes to the variables in the C++ program. Variable names selected
must be compatible with the interpreter's naming conventions.

32

4 Class global

4.1 Assignment Operations on global Arrays
Assignments to global arrays may be accomplished the assignment operator (=).

When you access a global array, the access may result in the thrown error exceptions
GlobalNotFoundException and/or ConversionException. The first can occur in any context that
attempts to retrieve data from a global array where none exists. The second occurs if you attempt to
convert the contents of a global to a numeric type where the contents of the global are not valid data
for the conversion.

If uncaught, both exceptions will result in program termination. Both exceptions may be caught,
however, with code such as shown in Figure 1.

#include <mumpsc /libmpscpp.h>
global a("a");

int main() {

long i;
a.Kill();

a("1l") = "now is the time";
cout << "expect error message" << endl;
try {
i = a(lllll);
}

catch (ConversionException ce) {
cout << ce.what() << endl;

}
cout << "expect error message" << endl;
try {

i = a(u22u);

}

catch (GlobalNotFoundException nf) {
cout << nf.what() << endl;

}
GlobalClose;

return 0;

}

Figure 19 Exceptions

You may assign data of the following types directly to global arrays: char *, int, string, mstring,
double, global, unsigned int, float, short, unsigned short, long, and unsigned long.

You may assign global arrays directly to variables of the following types: int, mstring, double,
global, unsigned int, float, short, unsigned short, long, and unsigned long.

33

4.2 Arithmetic Operations on global Arrays

The operations of add, subtract, multiply, divide, pre/post increment and pre/post decrement are
defined (overloaded) for global variables. The operations are defined for mstring, short, unsigned
short, int, unsigned int, long, unsigned long, float and double. Note: the contents of the global
array node must be compatible with the dominant data type of the operation. If the contents of a
global are not compatible with the operation (example, incrementing a string of text), the value of the
global will be interpreted as zero. See Figure 20 for examples.

#include <mumpsc /libmpscpp.h>
global gbl("gbl");

int main () {

int i, j = 10;
string a = "10", b = "20", ¢ = "30";
gbl.Kill();

gbl(a, b, c) = 10;

i =gbl(a, b, c) + 20;
cout << "expect 20 " << i << endl;

i =20 + gbl(a, b, c);
cout << "expect 30 " << i << endl;

i =gbl(a, b, c) / j;
cout << "expect 1 " << i << endl;

i =gbl(a, b, c) * 2;
cout << "expect 20 " << i << endl;

gbl(a, b, c) ++;
cout << "expect 11 " << gbl(a, b,

gb.l-(a: br C) -
cout << "expect 10 " << gbl(a, b,

i =++ gbl(a, b, ¢);
cout << "expect 11 11 " << i << "

i =gbl(a, b, c) ++;
cout << "expect 11 12 " << 1 <<
12

gbl(a, b, c) += 10;
cout << "expect 22 " << gbl(a, b,

gbl(a, b, c) -=10;
cout << "expect 12 " << gbl(a, b,

gbl(a, b, c) *= 2;
cout << "expect 24 " << gbl(a, b,

gbl(a, b, c) /= 2;
cout << "expect 12 " << gbl(a, b,

// prints 30

// prints 30

//prints 1

// prints 20

Cc) << endl; // prints 11

c) << endl; // prints 10

" << gbl(a, b, c) << endl;

" << gbl(a, b, c) << endl;

Cc) << endl; // prints 22

c) << endl; // prints 12

Cc) << endl; //prints 24

Cc) << endl; // prints 12

// prints 11

// prints 11

34

GlobalClose;
return 0;

}

Figure 20 Example Global Array Arithmetic

4.3 Operations on global

Figure 21 shows the current list of operator overloads for class global. Additional overloads will

be added in time.

Assignment

global & operator=(const char *);
global & operator=(int);

global & operator=(double);

global & operator=(string);

global & operator=(global);

global & operator=(unsigned int);
global & operator=(float);

global & operator=(short);

global & operator=(unsigned short);
global & operator=(long);

global & operator=(unsigned long);
global & operator=(mstring);
Addition

int operator+(int);

unsigned int operator+(unsigned int);
long operator+(long);

unsigned long operator+(unsigned long);
short operator+(short);

float operator+(float);

unsigned short operator+(unsigned short);
double operator+(double);

double operator+(global);

int operator+=(int);

unsigned int operator+=(unsigned int);
short operator+=(short);

unsigned short operator+=(unsigned short);
long operator+=(long);

unsigned long operator+=(unsigned long);
float operator+=(float);

double operator+=(double);

friend int operator+(int,global);

friend unsigned int operator+(unsigned
int,global);

friend unsigned long operator+(unsigned
long,global);

friend long operator+(long,global);

friend short operator+(short,global);

friend unsigned short operator+(unsigned
short,global);

friend float operator+(float,global);

friend double operator+(double,global);

friend int operator+=(int &,global);

friend unsigned int operator+=(unsigned
int,global);

friend short operator+=(short,global);

friend unsigned short operator+=(unsigned
short,global);

friend long operator+=(long,global);

friend unsigned long operator+=(unsigned
long,global);

friend float operator+=(float,global);

friend double operator+=(double,global);

Subtraction

int operator-(int);

unsigned int operator-(unsigned int);
long operator-(long);

unsigned long operator-(unsigned long);

friend int operator-(int,global);

friend unsigned int operator- (unsigned
int,global);

friend unsigned long operator-(unsigned

35

short operator-(short);

float operator-(float);

double operator-(double);

double operator-(global);

unsigned short operator-(unsigned short);

int operator-=(int);
unsigned int operator-=(unsigned int);
short operator-=(short);

unsigned short operator-=(unsigned short);

long operator-=(long);

unsigned long operator-=(unsigned long);
float operator-=(float);

double operator-=(double);

long,global);
friend short operator-(short,global);
friend long operator-(long,global);
friend float operator-(float,global);
friend double operator-(double,global);
friend unsigned short operator-(unsigned
short,global);

friend int operator-=(int &,global);

friend unsigned int operator-=(unsigned
int,global);

friend short operator-=(short,global);

friend unsigned short operator-=(unsigned
short,global);

friend long operator-=(long,global);

friend unsigned long operator-=(unsigned
long,global);

friend float operator-=(float,global);

friend double operator-=(double,global);

Multiplication

int operator*(int);
unsigned int operator*(unsigned int);
long operator*(long);
unsigned long operator*(unsigned long);
short operator*(short);
float operator*(float);
double operator*(double)
double operator*(global)
*

unsigned short operator*(unsigned short);

int operator*=(int);
unsigned int operator*=(unsigned int);
short operator*=(short);

unsigned short operator*=(unsigned short);

long operator*=(long);

unsigned long operator*=(unsigned long);
float operator*=(float);

double operator*=(double);

friend int operator*(int,global);

friend unsigned int operator*(unsigned
int,global);

friend long operator*(long,global);

friend unsigned long operator*(unsigned
long,global);

friend short operator*(short,global);

friend float operator*(float,global);

friend double operator*(double,global);

friend unsigned short operator*(unsigned
short,global);

friend int operator*=(int &,global);

friend unsigned int operator*=(unsigned
int,global);

friend short operator*=(short,global);

friend unsigned short operator*=(unsigned
short,global);

friend long operator*=(long,global);

friend unsigned long operator*=(unsigned
long,global);

friend float operator*=(float,global);

friend double operator*=(double,global);

Division

int operator/(int);

unsigned int operator/(unsigned int);
long operator/(long);

unsigned long operator/(unsigned long);
short operator/(short);

unsigned short operator/(unsigned short);
float operator/(float);

double operator/(double);

double operator/(global);

friend int operator/(int,global);

friend unsigned int operator/(unsigned
int,global);

friend long operator/(long,global);

friend unsigned long operator/(unsigned
long,global);

friend short operator/(short,global);

friend unsigned short operator/(unsigned
short,global);

friend float operator/(float,global);

friend double operator/(double,global);

36

int operator/=(int);

unsigned int operator/=(unsigned int);
short operator/=(short);

unsigned short operator/=(unsigned short);
long operator/=(long);

unsigned long operator/=(unsigned long);
float operator/=(float);

double operator/=(double);

friend int operator/=(int &,global);

friend unsigned int operator/=(unsigned
int,global);

friend short operator/=(short,global);

friend unsigned short operator/=(unsigned
short,global);

friend long operator/=(long,global);

friend unsigned long operator/=(unsigned
long,global);

friend float operator/=(float,global);

friend double operator/=(double,global);

Increment/Decrement

double
double
double
double

operator++
operator--
operator++
operator--

);
);

);
);
in
in

—_~ e~ o~ —~

t
t

Unary

mstring operator+()
mstring operator- ()

; // unary plus
; // unary minus

Relational

int
int
int
int
int
int
int
int
int
int
int

operator>(global);
operator>(int);
operator>(unsigned
operator>(long);
operator>(unsigned

(

(

(int);
(

(

operator>(short);

(

(

(

(

(

long);
operator>(unsigned short);
operator>(float);
operator>(double);
operator>(char *);
operator>(string);

int
int
int
int
int
int
int
int
int
int
int
int

operator<(global);
operator<(int);
operator<(unsigned
operator<(long);
operator<(unsigned

(

(

(int);
(

(

operator<(short);

(

(

(

(

(

(

long);
operator<(unsigned short);
operator<(float);
operator<(double);
operator<(char *);
operator<(string);
operator<(mstring);

int
int
int
int
int
int
int
int
int

operator<=(global);
operator<=(int);
operator<=(unsigned
operator<=(long);

(

(

(int);
(

operator<=(unsigned

(

(

(

(

long);
operator<=(short);
operator<=(unsigned
operator<=(float);
operator<=(double);

short);

friend
friend
friend
friend

int operator>
int operator>
int operator>
int operator>
long,global);
friend int operator>(short,global);
friend int operator>(unsigned
short,global);
int operator>
int operator>
int operator>
int operator>

int,global);

unsigned int,global);
long,global);
unsigned

—_— e~ o~ —~

friend
friend
friend
friend

float,global);
double,global);
char *,global);
string,global);

—_~ e~ o~ —~

friend int
friend
friend

friend

operator<(int,global);
int operator<(unsigned int,global);
int operator<(long,global);
int operator<(unsigned
long,global);
friend int operator<(short,global);
friend int operator<(unsigned
short,global);
int operator<(float,global);
int operator<(double,global);
int operator<(char *,global);
int operator<(string,global);
int operator<(mstring,global)

friend
friend
friend
friend
friend

’

friend
friend

int operator<=(int,global);
int operator<=(unsigned
int,global);
friend int operator<=(long,global);
friend int operator<=(unsigned
long,global);
friend int operator<=(short,global);
friend int operator<=(unsigned
short,global);

37

int operator<=(char *); friend int operator<=(float,global);

int operator<=(string); friend int operator<=(double,global);
friend int operator<=(char *,global);
friend int operator<=(string,global);

int operator>=(global); friend int operator>=(int,global);

int operator>=(int); friend int operator>=(unsigned

int operator>=(unsigned int); int,global);

int operator>=(long); friend int operator>=(long,global);

int operator>=(unsigned long); friend int operator>=(unsigned

int operator>=(short); long,global);

int operator>=(unsigned short); friend int operator>=(short,global);

int operator>=(float); friend int operator>=(unsigned

int operator>=(double); short,global);

int operator>=(char *); friend int operator>=(float,global);

int operator>=(string); friend int operator>=(double,global);
friend int operator>=(char *,global);
friend int operator>=(string,global);

int operator==(global); friend int operator==(int,global);

int operator==(int); friend int operator==(unsigned

int operator==(unsigned int); int,global);

int operator==(long); friend int operator==(long,global);

int operator==(unsigned long); friend int operator==(unsigned

int operator==(short); long,global);

int operator==(unsigned short); friend int operator==(short,global);

int operator==(float); friend int operator==(unsigned

int operator==(double); short,global);

int operator==(char *); friend int operator==(float,global);

int operator==(string); friend int operator==(double,global);
friend int operator==(char *,global);
friend int operator==(string,global);

int operator!=(global); friend int operator!=(int,global);

int operator!=(int); friend int operator!=(unsigned

int operator!=(unsigned int); int,global);

int operator!=(long); friend int operator!=(long,global);

int operator!=(unsigned long); friend int operator!=(unsigned

int operator!=(short); long,global);

int operator!=(unsigned short); friend int operator!=(short,global);

int operator!=(float); friend int operator!=(unsigned

int operator!=(double); short,global);

int operator!=(char *); friend int operator!=(float,global);

int operator!=(string); friend int operator!=(double,global);
friend int operator!=(char *,global);
friend int operator!=(string,global);

Casts

operator char*() ;
operator int();

operator

operator short();

operator

operator long();

operator

operator float();

operator double()
operator mstring(

);

unsigned int();

unsigned short();

unsigned long();

Figure 21 Global Array Operator Overloads

38

4.4 Accessing the Value Stored in a global Array Element

int global::Int();
double global: :Double();
mstring global::Mstring();

char * global::Char(char * buf, int max);

The functions return the content of the invoking global array object converted to the named

data type.

The Char() function is passed the address of a character array. The null-terminated character

string contents of the global array element will be placed in the character array and the address of

the array returned.

The max argument for Char() limits the length of the string returned.

If the global array element does not exist, the GlobalNotFoundException exception is thrown. If

there is an error in converting the contents of the global to the named data type, a

ConversionException is thrown. See Figure 22 for examples.

#include <mumpsc/libmpscpp.h>

global t("t");
int main() {

int a;

float b;
mstring c;
mstring x;
char d[100];

t.Kill();
x = 50; t(x) = 99;
a = t(x).Int();

cout << "expect 99

b = t(x).Double();
cout << "expect 99

c = t(x).Mstring();
cout << "expect 99 "

t(x).Char(d,100);

cout << "expect 99 “
GlobalClose;
}

<<

<<

<<

<<

<<

<<

<<

<<

endl;

endl;

endl;

endl;

Figure 22 Accessing Global Array Data Example

4.5 global Functions and Methods

4.5.1 Data()
int global::Data()

39

The function Data() returns an integer which indicates whether the global array node is defined.
The value returned is O if the global array node is undefined, 1 if it is defined and has no

descendants; 10 if it is defined but has no value stored at the node (but does have descendants); and
11 it is defined and has descendants.

If a global array with no indices is passed to these functions, a value of "10" will be returned if
the array exists and "0" if the array does not exist. For example:

Given:

global gbl("gbl");

global non("non");

gb'L(lllll' II11II) = Il.fooll;
gb'l-(lllll’ II11II’ II21II) = Ilbarll;

Then:

gbl("1").Data() // 10 - node exists, has no data, has children
gbl("1", "11").Data() // 11 - node exists, has data and has children
gbtl("1", "11", "21").Data() // 1 - nodes exists, has data, no children

4.5.2 TreePrint()

void global::TreePrint([int indt [, const char indtchrl]l);

The invoking object is printed as an indented tree. If one argument is present (indt), it is the
amount of indentation. If the second argument is present (indtchr) it is the character used in the

indentation. The default indentation character is blank and the default amount of indentation is one.
See Figures 23 and 24 for examples.

#include <mumpsc/libmpscpp.h>
global d("d");
int main() {

mstring a,b,c;

for (int i = 1; 1 < 6; i++)

for (int j = 1; j < 6; j++)
for (int k =1; k < 6; k++) {

a = mcvt(i);
b = mcvt(j);
c = mevt(k);
d(a) = rand() % 100;
d(a,b) = rand() % 100;
d(a,b,c) = rand() % 100;
}

d().TreePrint(1, '.");

GlobalClose;

return 0;

}

Figure 23 TreePrint

40

Yields

1=82 2=68 3=72 4=66 5=79
.1=59 .1=54 .1=28 1=48 1=72
L 1=77 .. 1=64 ..1=96 1=39 1=76
..2=35 ..2=87 ..2=45 2=69 .2=7
..3=49 ..3=78 ..3=21 3=64 3=79
. 4=27 ..4=3 ..4=88 4=55 4=12
. .5=63 ..5=99 ..5=41 5=11 5=59
2=67 2=78 .2=59 2=30 2=21
.. 1=26 .. 1=76 .. 1=0 1=99 .1=10
..2=11 ..2=12 ..2=24 2=68 .2=6
..3=29 ..3=94 ..3=56 3=11 .3=72
.. 4=62 ..4=70 .. 4=27 ..4=1 .4=19
..5=35 . .5=67 ..5=36 ..5=78 .5=4
.3=19 .3=44 .3=93 .3=62 3=69
.. 1=22 L.1=2 .. 1=37 ..1=36 .1=40
..2=67 ..2=52 ..2=7 ..2=22 .2=28
..3=11 ..3=80 ..3=58 ..3=16 .3=84
..4=73 ..4=65 ..4=37 ..4=24 .4=24
..5=84 ..5=19 ..5=18 ..5=24 .5=96
.4=96 .4=53 .4=4 .4=94 4=98
.. 1=24 .. 1=31 .. 1=11 ..1=52 .1=84
..2=13 ..2=71 ..2=76 ..2=50 .2=72
..3=80 ..3=9 ..3=63 ..3=73 .3=85
.. 4=62 . .4=56 ..4=6 ..4=30 4=40
..5=81 ..5=86 ..5=18 . .5=60 5=13
.5=45 .5=8 .5=25 .5=84 5=69
..1=84 ..1=83 .. 1=69 ..1=81 1=24
..2=5 ..2=28 ..2=96 ..2=59 2=81
..3=13 ..3=29 ..3=70 ..3=68 .3=32

4=95 ..4=70 ..4=99 ..4=26 .4=4
..5=14 ..5=15 ..5=44 ..5=40 .5=73

Figure 24 TreePrint Output
4.5.3 UnLock
int global: :UnLock()

UnLock() removes a lock from the designated node.

4.5.4 Count
long global::Count()

Returns the number of data bearing nodes beneath the given global array reference. See Figure
25 for example.

#include <mumpsc/libmpscpp.h>
global A("A");

int main() {

mstring i, j;

for (i =1; i < 11; i++)
for (j =1, j < 11; j++) {
A(i,j) = 5;

41

}

cout << "Full count: " << A().Count() << endl;
cout << "A row count: " << A("5").Count() << endl;
return EXIT SUCCESS;
}

Yields

Full count: 100
A row count: 10

Figure 25 Count Example

4.5.5 GlobalGet(), GlobalData(), GlobalSet()

mstring GlobalGet (mstring global ref)
char * GlobalGet (char * global ref)

mstring GlobalOrder (mstring global ref, int direction)
char * GlobalOrder (char * global ref, int direction)

int GlobalData (mstring global ref)
int GlobalData (char * global ref)

int GlobalSet (mstring global ref, mstring source)
int GlobalSet (mstring global_ref, char * source)
int GlobalSet (char * global ref, mstring source)

These function use the interpreter. These functions are used to permit run time construction and
access to global arrays. In both cases global ref'is a string containing a global array reference. This
string can be dynamically constructed at run time or may be read from a file or another global. Note:
as this facility uses the interpreter, global array references must be preceded by the circumflex
character (7).

In the case of the GlobalGet() functions, the string global array reference is interpreted and the
value stored at the reference returned. If the reference is invalid or no data is stored, the value
returned is the empty string and $test is set to false (zero). If a value is found, $test is set to true and
the value is returned.

GlobalOrder() gives the next or prior value of the last index of the global array reference
depending upon if direction is 1 (next) or -1 (prior). $test is set to 0 in the event of an error and 1 if
there is no error. See Order().

GlobalData() returns a number indicating if the node exists and has descendants (see Datal()).
$test is set to O if there i>s an error, 1 otherwise.

In the case of the GlobalSet() functions, the second argument is a string of data to be stored at
the global array reference. The runtime routines will interpret the global ref and assign the source to
it. The value returned is one if successful ($test is set to 1), zero if not successful ($test set to 0).
Examples:

mstring a,b;

a = III\X(\Ill\II)II;

b = "test string";

if (GlobalSet(a,b) !'= 0) cout << "error\n";

These functions can be used to allow a program to create a text string global array reference and
then use the string to address the global. Note that the target must contain either quoted literals or
variables previously instantiated to the interpreter environment (see $SymSet() and SymGet()).

Generally speaking, these functions will be only used for dynamically constructed global array
references. Most access to globals will be by overloaded shift or assignment operators.

42

4.5.6 double HitRatio(void)

Calculates the native global array processor cache hit ratio since the beginning of the program or
the last call to HitRatio() The native global array file processor, as opposed to the Berkeley Data
Base, keeps track of how many file I/O requests are satisfied from data already in the file system's
cache. This function gives the percentage of cache hits. It only works with the native global array
processor.

4.5.7 Kill
void global::Kill()
This function deletes a node and all its descendants. Examples:

gbl().Kill(); // kill entire global array "gbl"
gbl(a,b,c).Kill(); // kill stated node and all descendants

4.5.8 Length

int mstring::Length()
int mstring::Length(char * pattern string)
int mstring::Length(mstring pattern string)

The function returns the string length of the invoking mstring. For example:
x="ABC";
cout << x.Length() << endl; // writes 3

x = "abcabcabcabc";
cout << x.Length("abc") << endl; // writes 5

If an argument is given, the function returns the number of non-overlapping occurrences of
"pattern_string" in the source string plus 1.

4.5.9 Max
double global: :Max()

Returns the maximum numeric value of the data bearing nodes beneath the given reference. Non-
numeric values are treated as zeros. See Figure 26 for example.

#include <mumpsc/libmpscpp.h>
global A("A");

int main() {
mstring i, j;
for (i =1; 1 < 11; i++)

for (j = 1; j < 11; j++) {
A(i, j) = rand()%1000;

cout << "Max value of all: " << A().Max() << endl;
cout << "Max value of row 10: " << A("10").Max() << endl;
return EXIT SUCCESS;
}

Yields:

Max value of all: 996

Max value of row 10: 932

Figure 26 Max Example

43

4.5.10 Merge
int global: :Merge(global)

Copies the first global and its descendants to the second global. The Merge() function copies
from one array to another. Examples:

Xecute("for i=1:1:9 for j=1:1:9 set "~a(i,j)=i+j");
c().Merge(a()); // copies all of "a to "~c

Xecute("for i=100:1:109 s "b(i)=i");

b("103").Merge(a("3")); // copies "a(3) to ~b(103) and children of
// ~a(3) to be children of ~b(103)

d("").Merge(a("3")); // creates ~d="a(3); ~d(1l)="a(3,1),...
4.5.11 Min
double global::Min()

Returns the minimum numeric value of the data bearing nodes beneath the given reference. Non-
numeric values are treated as zeros. Example:

#include <mumpsc /libmpscpp.h>
global A("A");

int main() {
mstring i, j;
for (1 =1; i < 11; i++)

for (j =1; j < 11; j++) {
A(i,j) = rand() % 1000;
}
cout << "Min value of all: " << A().Min() << endl;
cout << "Min value of row 10: " << A("10").Min() << endl;
return EXIT SUCCESS;
}
Yields:
Min value of all: 11

Min value of row 10: 12
4.5.12 Multiply
void global::Multiply(global B,global ()

The invoking global is multiplied by B and the result is place in C. The number of columns of A
must equal the number of rows of B. The resulting matrix C will have "n" rows and "m" columns
where "n" is the number of rows of "A" and "m" is the number of columns of "B".

In all cases C will be deleted before the operation commences. The data stored at each node must

be numeric. All calculations are performed in double precision arithmetic. Each matrix must be two
dimensional. See Figure 27.

#include <mumpsc/libmpscpp.h>
#include <mumpsc/libmpsrdbms.h>

global d("d");
global e("e");
global f("f");

44

int main() {

d("1", "1") = 2;
d("1", "2") = 3;
d("2", "1") = 1;
d("2", "2") = -1;
d("3", "2") = 0;
d("3", "2") = 4;
e("1", "1") = 5;
e("1", "2") = -2;
e("1", "3") = 4;
e("1", "4") =7,
e("2", "1") = -6;
e("2", "2") = 1;
e("2", "3") = -3;
e("2", "4") = 0;

d().Multiply(e(),f());
PRINT("f","1");

return EXIT SUCCESS;
}

Yields:

> > > > > > > > > D>
—h —h —h —=h —h —h —h —=h —h —h —h —h
o o e o s
WWWWNNNNR R E R
AWNRFRFRAARWOUNRFRFPRRWNRE
o e e e e e e e e
1 L | | |y | | | | |

Figure 27 Multiply Example

4.5.13 Name
mstring global: :Name()

Returns a null terminated pointer to array of characters containing of the global reference with

all variables and expressions in the indices evaluated. See Figure 28.

#include <mumpsc/libmpscpp.h>
global a("a");

int main() {
mstring b = "1", ¢ = "2", d = "3";
cout << a(b, ¢, d, ¢ + d).Name() << endl;
return EXIT SUCCESS;
}

Yields:

45

a(“l“, ||2||’ ||3||’ ||23||)

Figure 28 Name Example

4.5.14 Order
mstring global::Order([int direction])

The Order() function gives the next ascending or descending value of the last index in a global
array reference. The direction, ascending or descending, is given by either the name of the function
or an integer "direction" which is either 1 - next ascending index, or -1 - next descending index. If
'direction' is omitted, ascending is assumed. See Figure 29.

given:

global test("test");

test("1") = "";
test("1", "10") = "";
test("1", "20") = "";
test("5", "1") = "";
test("5", "5") = "";

Then Order() will return the following values:

test().0rder(1) yields "1"

test("1", "").0rder(1) yields "10"

test("1", "10").0rder(1) yields 20

test('l" "20").0rder (1) yields "" (empty string)
test("1").0rder(1) yields "5"

test("5", "").0rder(1) yields "1"

test("5", "1").Order(1) yields "2"

test('5" "2").0rder (1) yields "" (empty string)
test("5").0rder(1) yields "" (empty string)

Similarly, a direction code of -1 will reverse the process:

test().0rder(-1) yields 5
test("5").0rder(-1) yields "1"
test("1").0rder(-1) yields "" (empty string)

Figure 29 Order Example

Use the empty string ("") to get the initial value of an index. When there are no further values,
the empty string is returned.

Note: all keys are stored in ASCII character collating order. This means that numeric keys are
sorted alphabetically rather than numerically.

4.5.15 Avg
double global::Avg()

Returns the average of the values of data bearing nodes beneath the given global array
reference. Example:

#include <mumpsc/libmpscpp.h>
global A("A");

int main() {

46

mstring i,j;
A.Kill();

for (i = 0; i < 1000; i++)
for (j = 1; j <10; j++) {

A(l, j) = 3;

}
cout << A("100").Avg() << endl; // average of nodes below A("100")
cout << A().Avg() << endl; // average of all nodes
GlobalClose;
return 0;
}

Figure 30 Avg Example

The above prints 5.5 - the average value of numeric data bearing nodes beneath A("100"). If there
are non-numeric data elements, they are treated as a zero values and contribute to the result.

The global array object must be specified with indices (i.e., a parenthesized list must follow the
name of the global array object. An empty list means the entire array.

4.5.16 Locks

void CleanLocks(void)
void CleanAllLocks(void)

"CleanLocks()" removes all locks for the current process. "CleanAllL.ocks()" removes all locks for
all processes for which the current directory is the default directory. Locks are implemented by
entries in a file named "Mumps.Locks" created and maintained in the current directory. This file must
be read/write enabled for the current process. You may also delete all locks by removing this file.
Locks are discussed elsewhere but, in brief, they are used to signal ownership of a portion of a global
array. When a lock has been applied to a node, no other process may lock this node, any descendant
node or any parent node. Locking does not actually prevent access, it merely marks a resource as
locked.

int global::Lock()

Creates a lock on the named node. If successful, "$test" will be true (1), false (0) otherwise.
Returns a 1 if the lock succeeds and a 0 otherwise.

The "Lock()" function marks a portion of the data base for exclusive access for an individual user.
The "UnLock()" frees prior locks (see below). The locks are stored in a file named "Mumps.Locks"
which is opened for exclusive access by the locking/unlocking job. The contents of the file may be
deleted to remove all locks. A lock does not actually prevent access to a global but merely marks it as
locked. If another task attempts to place a lock on a locked node, the descendant of a locked node or
a direct parent of a locked node, the lock attempt will fail. Examples:

if (gbl(a, b, c).Lock()) { } // locks gbl(a, b, c) and all children;
if ($lock(gbl(a, b, c))) { }

4.5.17 GlobalClose

This macro closes the global array files. The global arrays must be closed on exit or they will be
corrupt. The macro causes the file system to flush all its buffers and cache and close the file system.
Normally, a "GlobalClose" is executed automatically when your program ends except if your program
is terminated by SIGKILL or SIGSTOP (which cannot be trapped). If your program is using a large
memory based cache (cache's can be 1 GB or more, on some systems), there may be a noticeable
delay in file system shutdown due to the time required to write the cache to disk.

47

4.5.18 Btree
int BTREE(int code, unsigned char * key, unsigned char * data)

BTREE() is a macro permitting direct access to the underlying btree system. The first argument,
"code" is an integer indicating the operation to be performed (see below). The second argument is
the key to be stored consisting of a null-terminated array printable ASCII characters. The length of
the key should be no greater than one quarter of the btree block size whose default value is 8192
(i.e., max key length is about 2048 bytes in the default case). The third argument is the data to be
stored with the key. It is a null-terminated string of printable ASCII characters not greater than the
system defined limit STR MAX (defaults to 4096). An empty string is interpreted as no data to be
stored. Note that the second and third arguments must be unsigned char *. The macro returns an
integer indicating success. It may also alter "key" or "data" to return values or for other purposes.
The contents of "key" and "data" are not preserved across in invocation of BTREE() Examlples of
using BTREE() are given in mumpsc/doc/examples/btree.

Permitted btree operations:
1. STORE - store a key and data value in the btree; retuns zero if successful, non-zero otherwise:

unsigned char key[] = "test key";

unsigned char data[] = "test data";

if (BTREE(STORE, key, data) ==) cout << "stored" << endl;
else cout << "not stored" << endl;

2. RETRIEVE - retrieve data stored with a key; returns zero if successful, non-zero otherwise:

unsigned char key[] = "test key";
unsigned char data[STR MAX];

if (BTREE(RETRIEVE, key, data) == 0)
cout << "retrieved: " << data << endl;
else cout << "not retrieved." << endl;

3. CLOSE - close the btree data base; returns zero:

unsigned char key[] = "";
unsigned char datal]l = "";
BTREE (CLOSE, key, data);

4. XNEXT/PREVIOUS - retrieve next ascendina/descending key; returns one. Value of second and
third arguments become the value of the next ascendina/descendingg key. An initial value of
the empty string for the second argument will retrieve the first/last key and the value of the
second argument becomes the empty string when there are no more ascending/descending
values. An initial value of the empty string for the second argument will retrieve the first/last
key.

unsigned char key[] = "";
unsigned char data[STR MAX],

printf("\nbegin retrieve...\n");

while(l) { // rerteive keys in ascending order
i=BTREE (XNEXT, key, data);
if (strlen((char *) data) == 0) break;
cout << key << endl;

}
4.5.19 Query functions

mstring Query(mstring ref)
mstring Query(char * ref)

48

int Qlength(mstring ref)
int Qlength(char * ref)

mstring Qsubscript(mstring ref, mstring index)
mstring Qsubscript(mstring ref, int index)
mstring Qsubscript(char * ref, int index)

Query() returns an mstring containing the next global array reference in the data base or the
empty string.

Qlength() returns the number of subscripts in the global array reference.
Qsubscript() returns the index'th subscript of a global array reference.

Each of these functions operates on a text representation of a global array reference. See also the
Name() function. The following example makes use of the MeSH subject headings (National Library
of Medicine). The MeSH global array was constructed with statements such shown in Figure 31.

set "mesh("A01")="Body Regions"

set “mesh("AO1","047")="Abdomen"

set “mesh("AO1","047","025")="Abdominal Cavity"

set “mesh("AO1","047","025","600")="Peritoneum"

set “mesh("AO1","047","025","600","225")="Douglas' Pouch"
set "“mesh("AO1","047","025","600","451")="Mesentery"

set “mesh("AO1","047","025","600","451","535")="Mesocolon"
set “mesh("AO1","047","025","600","573")="0mentum"

set “mesh("AO1","047","025","600","678")="Peritoneal Cavity"
set "mesh("AO1","047","025","750")="Retroperitoneal Space"
set “mesh("A01","047","050")="Abdominal Wall"

set “mesh("AO1","047","365")="Groin"

set "mesh("AO1","047","412")="Inguinal Canal"

set “mesh("A01","047","849")="Umbilicus"

set “mesh("A01","176")="Back"

set “mesh("A01","176","519")="Lumbosacral Region"

set "“mesh("AO1","176","780")="Sacrococcygeal Region"
set “mesh("AQ1","236")="Breast"

set “mesh("AO1","236","500")="Nipples"

set “mesh("A01","378")="Extremities"

set “mesh("AO1","378","100")="Amputation Stumps"

set “mesh("AO1","378","610")="Lower Extremity"

set “mesh("AO1","378","610","100")="Buttocks"

set “mesh("AO1","378","610","250")="Foot"

set “mesh("AO1","378","610","250","149")="Ankle"

set “mesh("AO1","378","610","250","300")="Forefoot, Human"
set “mesh("AO1","378","610","250","300","480")="Metatarsus"
set “mesh("A01","378","610","250","300","792")="Toes"

set “mesh("A01","378","610","250","300","792","380")="Hallux"
set “mesh("AO1","378","610","250","510")="Heel"

set “mesh("AO1","378","610","400")="Hip"

set “mesh("AO1","378","610","450")="Knee"

set “mesh("AO1","378","610","500")="Leg"

set “mesh("AO1","378","610","750")="Thigh"

set “mesh("A01","378","800")="Upper Extremity"

set “mesh("A01","378","800","075")="Arm"

set “mesh("AO1","378","800","090")="Axilla"

set “mesh("AO1","378","800","420")="Elbow"

set “mesh("AO1","378","800","585")="Forearm"

set “mesh("AO1","378","800","667")="Hand"

set “mesh("AO1","378","800","667","430")="Fingers"

set “mesh("AO1","378","800","667","430","705")="Thumb"

49

set “mesh("AO1","378","800","667","715")="Wrist"
set “mesh("A01","378","800","750")="Shoulder"
Figure 31 MeSH Headings!

The MeSH headings can be printed as shown in Figure 32.

#include <mumpsc/libmpscpp.h>
// CompiledMtreel.cpp Feb 28, 2007
int main() {

global mesh("mesh");
mstring x;
int i,j;

x=Query(""mesh(0)");
while (1) {
x=Query(x);
if (x=="") break;
if (x.Piece("(",1)!=""mesh") break;
i=Qlength(x);

for (j=0; j<i; j++) cout << " "

cout << Qsubscript(x,i) << " " << x.Eval() << endl;
}

return 0;

}

which yields:

047 Abdomen
025 Abdominal Cavity
600 Peritoneum
225 Douglas' Pouch
451 Mesentery
535 Mesocolon
573 Omentum
678 Peritoneal Cavity
750 Retroperitoneal Space
050 Abdominal Wall
365 Groin
412 Inguinal Canal
849 Umbilicus
176 Back
519 Lumbosacral Region
780 Sacrococcygeal Region
236 Breast
500 Nipples
378 Extremities
100 Amputation Stumps

1 The MeSH (Medical Subject Headings) is a controlled vocabulary hierarchical indexing and classification
system developed by the National Library of Medicine (NLM). The MeSH codes are used to code medical
records and literature as part of an ongoing research project at the NLM. The examples make use of the 2003
MeSH Tree Hierarchy. Newer versions, essentially similar to these, are available from NLM. Note: for clinical
purposes, the copy of the MeSH hierarchy used here is out of date and should not be employed for clinical
decision making. It is used here purely as an example to illustrate a hierarchical index. The 2003 MeSH file
contains approximately 40,000 entries. Each line consists of text along with hierarchical codes describing the
subject heading.

50

610 Lower Extremity
100 Buttocks
250 Foot
149 Ankle
300 Forefoot, Human
480 Metatarsus
792 Toes
380 Hallux
510 Heel
400 Hip
450 Knee
500 Leg
750 Thigh
800 Upper Extremity
075 Arm
090 Axilla
420 Elbow
585 Forearm
667 Hand
430 Fingers
705 Thumb
715 Wrist
750 Shoulder

Figure 32 Query Functions Example

4.5.20 Similarity functions

double Siml(global A, global B)
double Cosine(global A, global B)
double Jaccard(global A, global B)
double Dice(global A, global B)

The global arrays referenced by the invoking object and the passed object are compared and a
similarity value is computed. The functions compute the similarities of the data bearing nodes
beneath the global array references.

These are some commonly used similarity metrics. (see Salton, G; and McGill, M, Introduction to
Modern Information Retrieval, McGraw Hill, 1983). See Figures 33 through 36.

#include <mumpsc/libmpscpp.h>

global A("A");
global B("B");

int main() {

A("1","1","1") = 1,
A("1","1","2") = 1,
A("1","1","3") = 1,
A("1","1","5") = 1,
B("1","1","1") = 1;
B("1","1","2") = 1;
B("1","1","4") = 1;
B("1","1","6") = 1;

cout << Siml(A(“1”,”1"), B("1","1")) << endl;

51

GlobalClose;

return 0;

}
The above prints 2 since there are two nodes in common below the "1,1" levels.
Alternatively:
#include <mumpsc/libmpscpp.h>

global A("A");
global B("B");

int main() {

A('1","1","1") = 2;
A('1","1","2") = 1;
A("1","1","3") = 1,
A('1","1","5") = 1,
B("1","1","1") = 2;
B("1","1","2") = 1;
B("1","1","4") = 1;
B("1","1","6") = 1;

cout << Siml(A(“1”,”1"”), B("1","1")) << endl;
GlobalClose;

return 0;

}

The above prints 5 since there are two nodes in common below the "1,1" levels but one of the set
of nodes in common have a stored value of 2. (2*¥2+1%*1)

Figure 33 Siml Example

#include <mumpsc /libmpscpp.h>

global A("A");
global B("B");

int main() {

>>>>>>>>
HHRFOOOKNW

ONOU A WN
\;v v\; N N e
1 | | | VI | B | |

W oW W
EWN =
\;vvv
i nnun
Y N

52

’
.
’
’
.
’

[cNoN SN

cout << Jaccard(A(), B()) << endl;
GlobalClose;

return 0;

}

prints 1

Figure 34 Jaccard Example

#include <mumpsc/libmpscpp.h>

global A("A");
global B("B");

int main() {

NE NE = wE wE NwE o e

>r>>>r>>>>
coNOUTR, WN -
— — — — — — — —
1 | | I | A 1 |
HFHROOOKKNW

coNOUTPA, WN =

[velvellosRivsBveRosRlvsRvs)
N N N N e e
L T | O | | I

NE NE = N wE NE s ww

[oNoN SNoNOR I N

cout << Dice(A(), B()) << endl;
GlobalClose;

return 0;

}

prints 1

Figure 35 Dice Example

#include <mumpsc/libmpscpp.h>

global A("A");
global B("B");

int main() {

A(ulu) = 3’

53

L | | | Y 1
HFHEFOOOKN

> >> > >
coNOUTEAE WN

OO UTA WN =
1 | | 1 | A 1 O [|
COROOR MM

[velivs e lvsiivelive luecivs)

cout << Cosine(A(), B()) << endl;
GlobalClose;

return 0;

}

prints 0.75
Figure 36 Cosine Example

4.5.21 Transpose
void global::Transpose(global out)

The invoking object is transposed and the result is placed in out. Any prior contents of the array
out are deleted before the operation commences. See Figure 37.

#include <mumpsc/libmpscpp.h>
#include <mumpsc/libmpsrdbms.h>

global d("d");
global f("f");

int main() {

d("1","1")=2;
d("1","2")=3;
d("2","1")=4;
d("2","2")=0;

d().Transpose(f()); // transpose d() placing result in f()

COUt << f(ulu’ulu) << non f(ulu’uzu) << endl;
COU‘t << f(uzu’ulu) << non f(uzu’uzu) << endl;
GlobalClose;

return EXIT_SUCCESS;
}

Yields:

54

wN
[cRF Y

Figure 37 Transpose Example

4.5.22 Centroid
void global::Centroid(global B)

A centroid vector B is calculated for the invoking two dimensional global array. The centroid
vector is the average value for each for each column of the matrix. Any previous contents of the
global array named to receive the centroid vector are lost. The invoking global array (A) must contain
at least two dimensions. See Figure 38.

#include <mumpsc/libmpscpp.h>

global A("A");
global B("B");

int main() {
mstring i,j;
for (i=0; i<10; i++)

for (j=1; j<10; j++) {
A(i,j) = 5;
}

A().Centroid(B());
mstring a="";

) {
B(a).0rder(1);

while (1

a=

if (a=="") break;
co

}

ut << a << " --> " << B(a) << endl;
return 0;

}
Yields:

OCooNOULTEAEWN R
1
1
\

(S NC, NE,NE, O, NE, NE, O, N0,

Figure 38 Centroid Example

The above yields a vector giving the average value of each named column of the matrix "A" (5 in
this case since each column is initialized with 5).

4.5.23 Correlation Functions

void global::TermCorrelate(global B)

55

void global::DocCorrelate(global B, mstring fcnname, double threshold)

These functions build document indexing correlation matrices. The invoking global is assumed to
be a two dimensional document-term matrix whose rows are documents and whose columns
represent the occurrence of terms in the documents (either weights or frequencies).

TermCorrelate() builds a square term-term correlation matrix in B from the invoking document-
term matrix.

DocCorrelate() builds a square document-document correlation matrix from the invoking
document-term matrix. The name of the function to be used in calculating the document-document
similarity is given in fcn and may be Cosine, Jaccard, Dice, or Sim1. The minimum correlation
threshold is given in threshold which defaults to 0.80 if omitted.

#include <mumpsc/libmpscpp.h>

global A("A");
global B("B");

int main() {
long 1i,j;

A("1", "computer") = 5;
A("1", "data") = 2;
A("1", "program") = 6;
A("1", "disk") = 3;
A("1", "laptop") = 7;
A(1;

“1", "monitor") =
A("2", "computer") = 5;
A("2", "printer") = 2;
A("2", "program") = 6;
A("2", "memory") = 3;
A(II2II’ lllaptopll) = 7;
A("2", "language") = 1;
A("3", "computer") = 5;
A("3", "printer") = 2;
A("3", "disk") = 6;
A("3", "memory") = 3;
A("3", "laptop") = 7;
A(

||3||’ IIUSBII) = 1;

A().TermCorrelate(B());

mstring a;
mstring b;
a=l|l|;
while (1) {
a=B(a) .0rder();
if (a == "") break;
cout << a << endl;
b=llll;
while (1) {
b=B(a, b).0Order(1);
if (b == "") break;
COU't <<|| n << b << ||(|| << B(a, b) << ||)|| << end'L;
}

56

}

return 0;

}

Yields:

USB
computer(1)
disk(1)
laptop(1)
memory (1)
printer(1)

computer
USB(1)
data(1l)
disk(2)
language(1)
laptop(3
memory (2
monitor(
printer(
program(

data
computer(1)
disk(1)
laptop(1)
monitor(1)
program(1)
disk
USB(1)
computer(2)
data(1l)
laptop(2)
memory (1)
monitor(1l)
printer(1)
program(1)
language
computer(1)
laptop(1)
memory (1)
printer(1)
program(1)
laptop
USB(1)
computer(3)
data(1l)
disk(2)
language(1)
memory (2)
monitor(1)
printer(2)
program(2)
memory
USB(1)
computer(2)
disk(1)
language(1)
laptop(2)
printer(2)

)

)
)
1)
2
2)

57

program(1)
monitor
computer(1)
data(1l)
disk(1)
laptop(1)
program(1)
printer
USB(1)
computer(2)
disk(1)
language(1)
laptop(2)
memory (2)
program(1)
program
computer(2)
data(1l)
disk(1)
language(1)
laptop(2)
memory (1)
monitor(1)
printer(1)

Figure 39 TermCorrelate Example

The example in Figure 39 gives the number of co-occurences of each word with each other word.
For example, the words "computer" and "memory" co-occur in two vectors (2 nd 3) while the words
"laptop" and "computer" co-occur in all three vectors. If each vector is thought of as a document, the
strength of the co-occurences between words is a measure of similarity for indexing purposes.

#include <mumpsc/libmpscpp.h>

global A("A");
global B("B");

int main() {
long 1,j;

(
A(
A("1","program")=6;
A(Illll’ ||disk||)_3_
A(Illll , Illaptopll)
A(

=7;
“1","monitor")=1;

A("2","computer")=5;
A("2","printer")=2;
A("2","program")=6;
A("2","memory")=3;
A(II2II Illaptopll) 7'
A(IIZII II'Lar]gLIagell)=

("3","computer")=5;
("3","printer")=2;
("3","disk")=6;
("3","memory")=3;
("3","laptop")=7;
("3","USB")=1;

58

A().DocCorrelate(B(),"Cosine",.5);

mstring a;
mstring b;

a= nn

while (1) {

a=B(a) .0rder(1);

if (a == "") break;
cout << a << endl;
b = IIII;

while (1) {

b = B(a, b).0Order(1);

if (b == "") break;

cout <<" " << b << "(" << B(a, b) << ")" << endl;
}

}

return 0;

}

Yields

1

0.887096774193548
.741935483870968

wN
(o}

1 0.887096774193548
3 0.701612903225806

1 0.741935483870968
2 0.701612903225806

Figure 40 DocCorrelate Example

The example in program in Figure 40 calculates the similarities between the document vectors
according to the Cosine method.

4.5.24 IDF
void global: :IDF(double DocCount)

The IDF() function calculates for the global array vector provided the inverse document
frequency weight of each term. The vector should be indexed by words and have stored the number
of documents in which each word occurs. The document count will be replaced by the calculated IDF
value. The IDF is log2(DocCount/Wn)+1 where Wn is the number of documents in which a term
appears (the document frequency). The value DocCount is the total number of documents present in
the collection. See Figure 41.

#include <mumpsc/libmpscpp.h>
global a("a");
int main() {

kill(a());

a("now") ; 2;
a(llisll) = 5;

59

a("the") = 6;
a("time") = 3;
a().IDF(4);
a().TreePrint();
return 0;

yields:

i5s=0.678072
now=2.000000
the=0.415037
time=1.415037

Figure 41 IDF Example

4.5.25 Sum
double global: :Sum()

The global array nodes beneath the referenced global array are summed. Non numeric quantities
are treated as zero. See Figure 42.

#include <mumpsc/libmpscpp.h>
global A("A");
int main() {

mstring i, j;

for (1 =1; 1 < 11; i++)
for (j = 1; j < 11; j++) {
A(i, j) =5;
}
cout << "Full sum: " << A().Sum() << endl;
cout << "A row sum: " << A("5").Sum() << endl;
GlobalClose;
return EXIT SUCCESS;
}
Yields

Full sum: 500
A row sum: 50

Figure 42 Sum Example

4.5.26 Translate

mstring global::Translate(mstring)
mstring global::Translate(mstring, mstring)

If only one mstring argument is given, characters appearing in the argument mstring
are removed from the invoking global.

If two argument mstrings appear and the first and second argument mstring are of
the same length, characters from the invoking global that appear in the first argument
mstring are replaced by their counterparts from the second argument mstring.

60

If the first argument mstring is longer than the second argument mstring, the
characters from the first argument mstring which have no counterpart in the second
argument mstring are removed.

A "counterpart" is a character equally offset in the second argument mstring to the
character in the first argument mstring.

61

5 Direct Btree Access

Programmers may access the btree directly through the builtin BTREE macro. A number of
examples can be found in mumpsc/doc/examples/btree in the distribution.

To access the btree directly from a C++ program:

You must first install the Mumps compiler and MDH. Include at the beginning of your program.
You can now access the btree directly with the BTREE macro (see description below). Note: any keys
you store in the btree co-exist with Mumps/MDH keys. In rare cases, these can interfere with one
another if a key you store lies in the range of a global array key set.

For example, the following program stores NBR_ITERATIONS (defined in btree.h which is
included by libmpscpp.h usually with the value 100,000) of keys and data into the btree and then
retrieves them (this "btestl.cpp" from mumpsc/doc/examples/btree.cpp). See the other examples and
the documentation below for further details. See Figure 43.

o T
*#+ Mumps Compiler Run-Time Support Functions

*#+ Copyright (c) 2001, 2002, 2003, 2004 by Kevin C. 0'Kane

*#+ okane@cs.uni.edu

*H#+

*#+ This library is free software; you can redistribute it and/or

*#+ modify it under the terms of the GNU Lesser General Public

*#+ License as published by the Free Software Foundation; either

*#+ version 2.1 of the License, or (at your option) any later version.
*H#+

*#+ This library is distributed in the hope that it will be useful,

*#+ but WITHOUT ANY WARRANTY; without even the implied warranty of

*#+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
*#+ Lesser General Public License for more details.

*H+

*#+ You should have received a copy of the GNU Lesser General Public
*#+ License along with this library; if not, write to the Free Software
*#+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*#+

*#+ http://www.cs.uni.edu/~okane

*#+

s B L L B
*#+

*#+ Some of this code was originally written in Fortran

*#+ which will explain the odd array and label usage,

*#+ especially arrays beginning at index 1.

*H#+

*#+++++++++HH

#include <mumpsc /libmpscpp.h>

int main() {
long i,j;
unsigned char key[1024],data[1024];
printf("Store sequentially ascending keys");
for (1 = 0; i < NBR _ITERATIONS; i++) {

sprintf((char *) key, "key %ld", i);

62

sprintf((char *) data,"%ld%c", i, 0);

if (!BTREE(STORE, key, data)) {
printf("error\n");

return 1;

}
if (i%60000L == 0) { printf("\n %ld ",i); fflush(stdout); }
if (i%1000 == 0) { putchar('."'); fflush(stdout); }

}

printf("\nretrieve");

for (i = 0; i < NBR _ITERATIONS; i++) {
sprintf((char *) key,"key %ld",i);
if (!'BTREE(RETRIEVE, key, data)) {

printf("error 1\n");
return 1;

}

sscanf((char *) data, "%ld", &j);

if (ji=1) {
printf("error 2\n");
printf("sd !'= %d\n", i, j);

return 1;

}
if (i%60000L == 0) { printf("\n %ld ",i); fflush(stdout); }
if (i%1000 == 0) { putchar('.'); fflush(stdout); }

}
printf("\nlooks good!\n");

strcpy((char *) key, "");
strcpy((char *) data, "");

BTREE (CLOSE, key,data);
return 1;

}

Figure 43 BTREE Example

63

6 Invoking the Mumps Interpreter

The full facilities of the Mumps interpreter can be invoked from C++ programs. The interpreter
reads, parses and executes commands presented to it at run time. It may also read and execute text
files containing Mumps programs. The interpreter is invoked by means of the Xecute() macro and
xecute() functions:

int Xecute("command")

int xecute(mstring command)
int xecute(string command)
int xecute(char * command)

These functions and macro invoke the Mumps interpreter and execute the text replacing
"command". They return 1 of successful, 0 otherwise. With Xecute(), if the mumps command contains
quotes or other special symbols, they will be automatically prefixed with backslashes (e.g., quote
becomer\").

Xecute("set i="test"));
Xecute("fors i=$order(”a(i)) quit:i="" set sum=sum+*a(i)");

Details on the Mumps Language are contained in the file compiler.html in the mumpsc/doc
subdirectory of the Mumps Compiler distribution. See also: mtring::Eval() for expression
interpretation.

7 Miscellaneous Functions

7.1 cvt()
char * cvt(arg)

The function converts the arithmetic argument to a null terminated character string. The
arguments may be long, double, float, and int. Do not use this function more than once in an
expression as the returned pointer is to a static variable in the function. Multiple calls will point to
the same variable.

8 GTK / Glade functions
The following functions may be used with the GTK / Glade programming facility:

8.1.1 void mdh_tree_level add(GtkTreeStore *tree, int depth, char * coll [, char *col2 ...]);

Add the value in copll to the tree at level depth and populate the remaining columns of this row
with col2, col3, ... to a limit of five columns.

8.1.2 int mdh_dialog_new_with_buttons(GtkWindow *win, char * text)

Open a modal popup dialog box with the options “Yes” and “No”. The contents of text will be
displayed. Returns 0 if no is clicked and 1 if yes is clicked. The value -1 is returned if the box is
dismissed without selection.

8.1.3 int mdh_toggle_button_get_active(GtkToggleButton *b)
Returns 1 if the button is active; 0 otherwise.
8.1.4 char * mdh_entry_get_text(GtkEntry *e, char * txt)

Returns the text contents of the specified entry box. The return pointer points to the string
pointed to by txt. The user is responsible for providing a character array pointed to by txt large
enough to contain the text retrieved.

64

8.1.5 void mdh_toggle_button_set_active(GtkToggleButton *b, int v)

The named toggle button will be set to active if the value of v is non-zero; inactive otherwise.
Triggers a toggle signal.

8.1.6 void mdh_entry_set_text(GtkEntry *e, char * txt)
Sets the contents of the named entry box. Triggers a entry changed signal.
8.1.7 void mdh_text_buffer set_text(GtkTextBuffer *t, char * txt)
Sets the contents of the named text buffer.
8.1.8 void mdh_label_set_text(GtkLabel *1, char * txt)
Sets the contents of the named label.
8.1.9 void mdh_widget_hide(GtkWidget *w)
Hides the named widget.
8.1.10 void mdh_widget_show(GtkWidget *w)
Displays the named widget.
8.1.11 char * mdh_tree_selection_get_selected (GtkTreeSelection *t, int col, char *txt)
Returns the value in column 1 of the named tree.
8.1.12 void mdh_tree_store_clear(GtkTreeStore *t)
Clears the named tree store.
8.1.13 double mdh_spin_button_get_value(GtkSpinButton *s)
Returns the value in the named spin button.
8.1.14 void mdh_spin_button_set_value(GtkSpinButton *s, double v)
Sets the value of the named spin button.

8.2 Miscelaneous functions

8.2.1 Boyer-Moore-Gosper Functions
int bmg fullsearch(mstring search string, mstring buffer base)

Returns the number of non-overlapping instances of "search string" in "buffer base". See Figure
44.

#include <mumpsc/libmpscpp.h>

int main() {

mstring a = "now is the time for all good men to come to the aid of the
party";
mstring b = "to";

cout << bmg fullsearch(b, a) << endl;
return EXIT_ SUCCESS;
}

yields:

65

Figure 44 Boyer-Moore Example

These functions are publically available from:

ftp://ftp.uu.net/usenet/comp.sources.unix/volume5/bmgsubs.Z

and are believed to be contributed source and are unrestricted with respect to use and
redistribution, and, that most, if not all, the code was written by employee(s) of the United States and
thus in the public domain. The distribution contains, in part, the following notes:

Here are routines to perform fast string searches using the
Boyer-Moore-Gosper algorithm; they can be used in any Unix program (and
should be portable to non-Unix systems). You can search either a file
or a buffer in memory.

The code is mostly due to James A. Woods (jaw@ames-aurora.arpa)
although I have modified it heavily, so all bugs are my fault. The
original code is from his sped-up version of egrep, recently posted on
mod.sources and available via anonymous FTP from ames-aurora.arpa as
pub/egrep.one and pub/egrep.two. That code handles regular
expressions; mine does not.

These have only been tested on 4.2BSD Vax systems.
-Jeff Mogul

mogul@navajo.stanford.edu
decwrl!glacier!navajo!mogul
BMGSUBS (3L) BMGSUBS (3L)

NAME
(bmgsubs) bmg setup, bmg search, bmg fsearch - Boyer-Moore-Gosper
string search routines

SYNOPSIS
bmg setup(search string, case fold flag)
char *search_string;
int case fold flag;

bmg fsearch(file des, action_func)
int file_des;
int (*action_func)();

bmg search(buffer base, buffer_length, action_ func)
char *buffer_base;

int buffer length;

int (*action func)();

DESCRIPTION
These routines perform fast searches for strings, using the Boyer-
Moore-Gosper algorithm. No meta-characters (such as "*' or “.') are

interpreted, and the search string cannot contain newlines.

Bmg setup must be called as the first step in performing a search. The
search _string parameter is the string to be searched for.
Case _fold flag should be false (zero) 1if characters should match
exactly, and true (non-zero) if case should be ignored when checking
for matches.

Once a search string has been specified using bmg setup, one or more
searches for that string may be performed.

Bmg fsearch searches a file, open for reading on file descriptor
file des (this is not a stdio file.) For each line that contains the
search string, bmg fsearch will call the action_func function specified

66

by the caller as action func(matching line, byte offset). The match-
ing line parameter 1is a (char *) pointer to a temporary copy of the
line; byte offset is the offset from the beginning of the file +to the
first occurence of the search string in that line. Action func should
return true (non-zero) if the search should continue, or false (zero)
if the search should terminate at this point.

Bmg search 1is 1like bmg fsearch, except that instead of searching a
file, it searches the buffer pointed to by buffer base; buffer length
specifies the number of bytes in the buffer. The byte offset parameter
to action func gives the offset from the beginning of the buffer.

If the user merely wants the matching lines printed on the standard
output, the action_func parameter to bmg fsearch or bmg search can be
NULL.

AUTHOR
Jeffrey Mogul (Stanford University), based on code written by James A.
Woods (NASA Ames)

BUGS
Might be nice to have a version of this that handles regular expres-
sions.
There are large, but finite, limits on the 1length of both pattern
strings and text lines. When these limits are exceeded, all bets are
off.
The string pointer passed to action func points to a temporary copy of
the matching 1line, and must be copied elsewhere before action func
returns.
Bmg search does not permanently modify the buffer in any way, but dur-
ing its execution (and therefore when action func is called), the last
byte of the buffer may be temporarily changed.
The Boyer-Moore algorithm cannot find lines that do not contain a given
pattern (like *"grep -v") or count lines ("grep -n"). Although it is
fast even for short search strings, it gets faster as the search string
length increases.

16 May 1986 BMGSUBS (3L)
8.2.2 cvt()

char *cvt(long i)

char *cvt(double i)

char *cvt(float i)

char *cvt(int i)

These functions return a null terminated varying length character string containing in printable
version of the argument. The functions contain short static character arrays and, consequently, are
not threadsafe.

8.2.3 xecute() and command()

command() is a macro that takes a quoted string constant argument. The macro surrounds the
string with an extra set of quotes and processes any embedded quotes to backslash-quote. It then
invokes a function (_ command ()) which strips the extra surrounding quotes. The net effect of this
is that you can pass a quoted string containing quotes without the need for "leaning toothpick"
notation. Example:

xecute(command("for i=1:1:10 "test ",i,!"));
strcpy(target, command("for i=1:1:10 write "test ",i,!"))

67

The argument must be a character string constant.

8.2.4 ErrorMessage()
void ErrorMessage(char * message, int line number)

This function (written in C and part of the underlying legacy library) will print and error message,
close the global array files and terminate the program. The integer "line number" will be printed with
the message. The pre-processor predefined macro " LINE " can be used here. Example:

ErrorMessage("Cannot locate patient", _ LINE_);

8.2.5 Error Exceptions

The toolkit generates (throws) exceptions for certain conditions. For example, when you access
global arrays with the toolkit, the accesses may result in the thrown error exceptions:

1. ConversionException.

2. GlobalNotFoundException

3. MumpsSymbolTableException.
4. NumericRangeException.

The first can occur in any context that attempts to retrieve data from a global array where none
exists. The second occurs if you attempt to convert the contents of a global to a numeric type where
the contents of the global are not valid data for the conversion.

If uncaught, both exceptions will result in program termination.
The following are the exceptions thrown by the toolkit:

1. ConversionException() - usually occurs when you attempt to store a value from a global array
into a numeric variable but the string in the global is not a valid number.

2. GlobalNotFoundException() - thrown by an attempt to reference non-existent global array
data.

3. MumpsSymbolTableException() - thrown by an attempt to fetch the value of a non-esistent
variable from the Mumps runtime symbol table.

4. NumericRangeException() - thrown by attempts to divide by zero or using arguments with
values less that or equal to zero to log functions.

See Figure 45.

#include <mumpsc/libmpscpp.h>
global a("a");

int main() {
long 1i;
a().Kill();
mstring A;
a("1l") = "now is the time";
try {
i
}
catch (ConversionException ce) {
cout << ce.what() << endl;
}
try {
i=a("22");
}

catch (GlobalNotFoundException nf) {
cout << nf.what() << endl;

= a(lllll);

68

}

try {
A=SymGet ("abc");

}
catch (MumpsSymbolTableException st) {
cout << nf.what() << endl;

}

return 0;

Figure 45 Exceptions Examples

8.2.6 HitRatio()
double HitRatio(void)

Calculates the native global array processor cache hit ratio since the beginning of the program or
the last call to HitRatio() The native global array file processor, as opposed to the Berkeley Data
Base, keeps track of how many file I/O requests are satisfied from data already in the file system's
cache. This function gives the percentage of cache hits. It only works with the native global array
processor.

8.2.7 Hashing functions

char * hash(char * str)
long lhash(char * str)

hash() returns either a null terminated character string up to 10 characters in length containing
a numeric hash code of the string passed as an argument. The argument may be up to STR_ MAX
characters in length. lhash() returns an unsigned long value of the hash value.

8.2.8 Dump Global Array Database

void Dump(char * filename)
void Dump(mstring filename)
void Dump(string filename)

void Restore(char * filename)
void Restore(mstring filename)
void Restore(string filename)

The global array data base is dumped (written in its entirety) to filename or read and restored
from filename (null terminated array of chars). Both operations must not be done from the same
program.

8.2.9 Stream Output
friend ostream & operator << (ostream&, global)

A global array may participate in stream output. For example:

gb1("A", "B", "C") << "test test test";
cout << gbl("A", "B", "C") << endl;

The above will print "test test test" (without quotes) followed by the newline character.
Alternatively:

cout << gbl("A", "B", "C").Get() << endl;

will do the same thing (the Get() function returns "char *".

69

8.2.10 Smith-Waterman Alignment Function

int sw(mstring s, mstring t, [int show aligns=0, int show mat=0, int gap=-1, int
mismatch=-1, int match=21])

int sw(string s, string t, [int show aligns=0, int show mat=0, int gap=-1, int
mismatch=-1, int match=21])

int sw(char *s, char *t, [int show aligns=0, int show mat=0, int gap=-1, int
mismatch=-1, int match=2])

Calculate the Smith-Waterman Alignment between strings "s" and "t". Result returned is the
highest alignment score achieved. Parameters other than the first two are optional. If only some of
the optional parameters are supplied, only trailing parameters may be omitted, as per C/C++ rules.

If you compare very long strings (>100,000 character), you may exceed stack space. This can be
increased under Linux with the command:

ulimit -s unlimited
(Other options are ulimit -a and ulimit -aH to show limits).

If "show aligns" is zero, no printout of alternative alignments is produced (default). If
"show aligns" is not zero, a summary of the alternative alignments will be printed. If "show mat" is
zero, intermediate matrices will not be printed (default). The gap and mismatch penalties are -1 and
the match reward is +2. The parameters "gap", "mismatch" and "match" are the gap and mismatch
penalties (negative integers) and the match reward (a positive integer). These values default to -1, -1
and 2 respectively. If insufficient memory is available, a segmentation violation will be raised.]

The first character of each sequence string MUST be blank.
See Figure 46.

#include <mumpsc/libmpscpp.h>

int main() {

char s[] = " now is the time for all good men to come to the aid of the
party";
char t[] = " time for good men";

int i = sw(s, t, 1, 0, -1, -1, 3);

return 0;

}

results in:

S-W Alignments for:
64 now is the time for all good men to come to the aid of the party
22 time for good men

29 men 32

19 men 22
score=12

29 - men 32

18 men 22
score=11

70

11 good men 22
score=24

11 - good men 22
score=23

6 for -- good .ﬁéﬁ 22
score=37

1 time for -- good men 22
score=48

Figure 46 Smith-Waterman Example

8.2.11 Stop list functions: StopINIT(), StopLookup()

void StopInit(mstring file)
void StopInit(string file)
void StopInit(char * file)

int StopLookup(mstring word)
int StopLookup(string word)
int StopLookup(char * word)

StopInit() reads the sorted file "file" of stoplist words into the stoplist container (one word per
line). StopLookup() returns 0 if "word" is not found and 1 if "word" is found in the stoplist.

8.2.12 Synonym Functions: SymInit(), SYN()

int SynInit(mstring filename)
int SynInit(string filename)
int SynInit(char * filename)

mstring SYN(mstring word)
string SYN(string word)
char * SYN(char * word)

SysInit() opens and reads a synonym file and returns the number of lines read. The maximum
number of synonyms permitted is determined by "SYNMAX" in libmpscpp.h (default is 20,000). Each
line of the synonym file consists of multiple words, in lower case, separated from on another by a
single blank. The first word is the root alias and the remaining words are alternative synonyms. The
function SYN() looks up a word. If the word is an alternative synonym, the root alias is returned. If
not, the original word is returned.

8.2.13 int $test

Returns integer 1 or 0 indicating the success or failure of certain previous commands. Some, but
not all, commands set "$test".

8.2.14 Xecute()

int Xecute(char * command)
int Xecute(mstring command)

71

int Xecute(string command)
int Xecute(char * command)

These functions invoke the Mumps interpreter which executes command. Returns 1 of successful,
0 otherwise.

The macro Xecute() is a special case. It is used with character string constants. It will pre-process
a character string constant command and insert the backslash escape character prior to any
embedded quotes thus permitting more normal appearing text (see similar macro command()).

Examples:
mstring c;
Xecute("for i=$0rder(”~a(i)) q:i="" s sum=sum+~a(i)");
c = "for i=1:1:10 write 1i,!";
xecute(c);

c = command("for i=1:1:10 write "ans=",i,!");
xecute(c);

8.2.15 Zseek() Ztell()

bool Zseek(FILE *file, offset)
bool Ztell(FILE *file, offset)

These functions are used in connection with direct access files opened with FILE pointers (see:
fopen()). They are compatible with 64 bit file pointer systems. Zseek() positions the file designated by
file to the offset specified in offset, a positive integer contained in a variable of type mstring or
global.

Ztell() places the current file offset in the file designated by file into the mstring or global
variable represented by offset.

Both functions return 'true' if successful. Ordinarily, file offesets will be obtained by Ztell() and
these will be stored in a data base. These values will be subsequently used in connection wit Zseek()
to reposition the file to the point it was at whe the Ztell() was performed. After re-positioning, the
next input or output operation on the file will occur at the point designated by offset. All offsets are
relative to the start of the file.

72

9 Appendix A

9.1 Perl Compatible Regular Expression Library License

Programs written with the MDH may call upon the Perl Compatible Regular Expression Library.
In some cases, this library is distributed with the Mumps Compiler. The PCRE Library is not covered
by the GNU GPL/LGPL Licenses but, rather, by the license shownn below. The following is the PCRE
license:

PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax

and semantics are as close as possible to those of the Perl 5 language.

Written by: Philip Hazel

University of Cambridge Computing Service,

Cambridge, England. Phone: +44 1223 334714.

Copyright (c) 1997-2001 University of Cambridge

Permission is granted to anyone to use this software for any purpose on any

computer system, and to redistribute it freely, subject to the following

restrictions:

1. This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

2. The origin of this software must not be misrepresented, either by
explicit claim or by omission. In practice, this means that if you use
PCRE in software which you distribute to others, commercially or
otherwise, you must put a sentence like this

Regular expression support is provided by the PCRE library package,
which is open source software, written by Philip Hazel, and copyright
by the University of Cambridge, England.
somewhere reasonably visible in your documentation and in any relevant
files or online help data or similar. A reference to the ftp site for
the source, that is, to
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/
should also be given in the documentation.

3. Altered versions must be plainly marked as such, and must not be
misrepresented as being the original software.

4. If PCRE is embedded in any software that is released under the GNU
General Purpose Licence (GPL), or Lesser General Purpose Licence (LGPL),
then the terms of that licence shall supersede any condition above with
which it is incompatible.

The documentation for PCRE, supplied in the "doc" directory, is distributed

under the same terms as the software itself.

End

73

10 Appendix B

10.1 Using Perl Regular Expressions

Author: Matthew Lockner

In addition to Mumps 95 pattern matching using the '?' operator, it is also possible to perform
pattern matching against Perl regular expressions via the perlmatch function. Support for this
functionality is provided by the Perl-Compatible Regular Expressions library (PCRE), which supports
a majority of the functionality found in Perl's regular expression engine.

The perlmatch function works in a somewhat similar fashion to the '?' operator. It is provided
with a subject string and a Perl pattern against which to match the subject. The result of the function
is boolean and may be used in boolean expression contexts such as the "If" statement.

Some subtleties that differ significantly from Mumps pattern matching should be noted:

1. A Mumps match expects that the pattern will match against the entire subject

string, in that successful matching implies that no characters are left
unmatched even if the pattern matched against an initial segment of the subject
string. Using perlmatch, it is sufficient that the entire Perl pattern matches
an initial segment of the subject string to return a successful match.

. The perlmatch function has the side effect of creating variables in the local

symbol table to hold backreferences, the equivalent concept of $1, $2, $3, ... in
Perl. Up to nine backreferences are currently supported, and can be accessed
through the same naming scheme as Perl ($1 through $9). These variables remain
defined up to a subsequent call to perlmatch , at which point they are replaced
by the backreferences captured from that invocation. Undefined backreferences
are cleared between invocations; that is, if a match operation captured five
backreferences, then $6 through $9 will contain the null string.

10.2 Examples

This program asks the user to input a telephone number. If the data entered looks
like a valid telephone number, it extracts and prints the area code portion using a
backreference; otherwise, it prints a failure message and exits.

Zmain
Write "Please enter a telephone number:",!
Read phonenum

If $$7perlmatch(phonenum, "~ (1-)?2(\(?\d{3}\)?)?(-|)?\d{3}-?\d{4}$") Do
. Write "+++ This looks like a phone number.",!

. Write "The area code is: ",$2,!
Else Do

. Write "--- This didn't look like a phone number.",!
Halt

The output of several sample runs of the program follows:

Please enter a telephone number:
1-123-555-4567

+++ This looks like a phone number.
The area code is: 123

Please enter a telephone number:

74

mailto:lockner@cns.uni.edu?SUBJECT=mumpsc%20-%20Perl%20matching

(123)-555-1234

+++ This looks like a phone number.
The area code is: (123)

Please enter a telephone number:
(123) 555-0987

+++ This looks like a phone number.
The area code is: (123)

As in Perl, sections of the regular expression contained in parentheses define what
is contained in the backreferences following a match operation. The backreference
variables are named in a left-to-right order with respect to the expression, meaning
that $1 is assigned the portion matched against the leftmost parenthesized section of
the regular expression, with further references assigned names in increasing order.
For a much more in-depth treatment of the subject of Perl regular expressions, refer
to the perire manpage distributed with the Perl language (also widely available
online).

75

11 Appendix C
11.1 Mumps 95 Pattern Matching
Author: Matthew Lockner

Mumps 95 compliant pattern matching (the '?' operator) is implemented in this
compiler as given by the following grammar:

pattern ::= {pattern_atom}
pattern_atom ::= count pattern_element
count m=int|""|"."int

|int "' | int "." int
pattern_element ::= pattern_code {pattern_code} | string | alternation
pattern_code :='A'|'C'|'E'|'L'|'N"|'P'|'U’
alternation ::='(' pattern_atom {',’ pattern_atom} ")’

The largest difference between the current and previous standard is the
introduction of the alternation construct, an extension that works as in other popular
regular expressions implementations. It allows for one of many possible pattern
fragments to match a given portion of subject text.

A string literal must be quoted. Also note that alternations are only allowed to
contain pattern atoms and not full patterns; while this is a possible shortcoming, it
is in accordance with the standard. It is a trivial matter to extend alternations to
the ability to contain full patterns, and this may be implemented upon sufficient
demand.

Pattern matching is supported by the Perl-Compatible Regular Expressions library
(PCRE). Mumps patterns are translated via a recursive-descent parser in the Mumps
library into a form consistent with Perl regular expressions, where PCRE then does the
actual work of matching. Internally, much of this translation is simple character-
level transliteration (substituting '|' for the comma in alternation lists, for
example). Pattern code sequences are supported using the POSIX character classes
supported in PCRE and are mostly intuitive, with the possible exception of 'E', which
is substituted with [[:print][:cntrl:]]. Currently, this construct should cover the
ASCII 7-bit character set (lower ASCII).

Due to the heavy string-handling requirements of the pattern translation process,
this module uses a separate set of string-handling functions built on top of the C
standard string functions, using no dynamic memory allocation and fixed-length buffers
for all operations whose length is given by the constant STR_MAX in sysparms.h. If an
operation overflows during the execution of a Mumps compiled binary, a diagnostic is
output to stderr and the program terminates. If such termination occurs too frequently,
simpl

76

12 Index

Alphabetical Index

ASCIL FUIICEION. ...ttt e e e e e ettt e b e s e e e e e et ee b e ba b s e s e e e e eeesaaaabaat e e seeeanasaas
begins FUNCEION.uuuiiiieiiei it

bmg fullsearch...
C St FUNCHION. ...
Class MSEIING . ceuuuieiiiiiieeee ettt
decorate FUNCHion.........coooviiiiiiiiiiiieeiiiieeiice e
DocCorrelate()
EncodeHTML Function
ends Function................
ength Function.........cccccvvvnnninnnnn.
Eval Function.........cccoeeviuemenieiiieeenens
Extract Function.........ccccevvuuennnnnn.
Find Function.................
Global Array Overview..
Global arrays......
GNU GPL/LGPL.....
Horolog Function..
Justify Function.....
Length Functio...
mcvt Function............on,
mdh_dialog new with buttons
mdh entry get text...................
mdh entry set text.....
mdh label set text..............
mdh spin button get value...
mdh_spin_button_set value....
mdh text buffer set text..........
mdh toggle button get active
mdh toggle button set active..........ccccevviiiiiiiiiiiinneriiiiiiiiiiiii,

mdh_tree level add...........cccccviiiiiiiiiiiiiii

mdh tree Selection et SELECTEA.....c.ci ittt et et ettt ettt et et e e e e e e e s e e e bbbttt b ettt e e et eeeeeeeaaaae
mdh tree store clear........cccccccceeeeieenennnns

mdh widget show.......
mstring........ccceeeeveee.
mstring Example............cccceeeeeeee.
mstring Functions and Methods..
mstring Operations..............ccceeeeee
mstring Operator Overloads.....
National Library of MediCine............cooviuiiiiiiiieeeeeeeceeeeeieie e e e ee e
Navigating Globals.......ccovuuuuiiiiieeeeieeeeeree e e e e e e e

Pattern FUNCEION........oiiiiiiiie e
Perl Function......
Piece Function.........

ReadLine Function...............

replace Function..................

S SET FUNCTIO. ..t
ScanAlnum Function...
shred Function...............
ShredQuery Function....
Stem Function.....................

SymGet SymPut Functions...........ccccoeiiiiiiiiiiiiiiiiiine
TermCorrelate().....cuueeeiiiiiieeeiiiiie e e e e e evi s

ToKeN FUNCEION.....ciuiiiiieiie e e e e v
Translate Function.......................

Tree Structured Medical Record..
70 Te B va e Lo R T Lo 1= Al 4 1 Tc [T OSSPSR PPPPPPRRPON

77

	1 The Multi-Dimensional and Hierarchical Database Toolkit
	1.1 Introduction
	1.2 Installation
	1.3 Compiling Programs
	1.4 Writing C++ MDH Programs

	2 Global Array Overview
	2.1 Tree Structured Database Overview
	2.2 MDH Implementation of Globals
	2.3 Global Arrays as Trees and Matrices
	2.4 Accessing Global Arrays
	2.5 Global Array Indices
	2.6 Navigating Globals
	2.7 Locking the Data Base

	3 Class mstring
	3.1 mstring Operations
	3.2 mstring Functions and Methods
	3.2.1 Ascii Function
	3.2.2 begins Function
	3.2.3 c_str Function
	3.2.4 decorate Function
	3.2.5 EncodeHTML Function
	3.2.6 ends Function
	3.2.7 Eval Function
	3.2.8 Extract Function
	3.2.9 Find Function
	3.2.10 Horolog Function
	3.2.11 Justify Function
	3.2.12 Length Function
	3.2.13 mcvt Function
	3.2.14 Pattern Function
	3.2.15 Perl Function
	3.2.16 Piece Function
	3.2.17 ReadLine Function
	3.2.18 replace Function
	3.2.19 ScanAlnum Function
	3.2.20 shred Function
	3.2.21 ShredQuery Function
	3.2.22 Stem Function
	3.2.23 SymGet SymPut Functions
	3.2.24 s_str Function
	3.2.25 Token Function
	3.2.26 Translate Function

	3.3 Basic mstring Example
	3.4 Detailed mstring Examples
	3.4.1 Assignment from Other Data Types
	3.4.2 Arithmetic Operations on mstring
	3.4.3 Miscellaneous mstring Rules

	4 Class global
	4.1 Assignment Operations on global Arrays
	4.2 Arithmetic Operations on global Arrays
	4.3 Operations on global
	4.4 Accessing the Value Stored in a global Array Element
	4.5 global Functions and Methods
	4.5.1 Data()
	4.5.2 TreePrint()
	4.5.3 UnLock
	4.5.4 Count
	4.5.5 GlobalGet(), GlobalData(), GlobalSet()
	4.5.6 double HitRatio(void)
	4.5.7 Kill
	4.5.8 Length
	4.5.9 Max
	4.5.10 Merge
	4.5.11 Min
	4.5.12 Multiply
	4.5.13 Name
	4.5.14 Order
	4.5.15 Avg
	4.5.16 Locks
	4.5.17 GlobalClose
	4.5.18 Btree
	4.5.19 Query functions
	4.5.20 Similarity functions
	4.5.21 Transpose
	4.5.22 Centroid
	4.5.23 Correlation Functions
	4.5.24 IDF
	4.5.25 Sum
	4.5.26 Translate

	5 Direct Btree Access
	6 Invoking the Mumps Interpreter
	7 Miscellaneous Functions
	7.1 cvt()

	8 GTK / Glade functions
	8.1.1 void mdh_tree_level_add(GtkTreeStore *tree, int depth, char * col1 [, char *col2 ...]);
	8.1.2 int mdh_dialog_new_with_buttons(GtkWindow *win, char * text)
	8.1.3 int mdh_toggle_button_get_active(GtkToggleButton *b)
	8.1.4 char * mdh_entry_get_text(GtkEntry *e, char * txt)
	8.1.5 void mdh_toggle_button_set_active(GtkToggleButton *b, int v)
	8.1.6 void mdh_entry_set_text(GtkEntry *e, char * txt)
	8.1.7 void mdh_text_buffer_set_text(GtkTextBuffer *t, char * txt)
	8.1.8 void mdh_label_set_text(GtkLabel *l, char * txt)
	8.1.9 void mdh_widget_hide(GtkWidget *w)
	8.1.10 void mdh_widget_show(GtkWidget *w)
	8.1.11 char * mdh_tree_selection_get_selected(GtkTreeSelection *t, int col, char *txt)
	8.1.12 void mdh_tree_store_clear(GtkTreeStore *t)
	8.1.13 double mdh_spin_button_get_value(GtkSpinButton *s)
	8.1.14 void mdh_spin_button_set_value(GtkSpinButton *s, double v)
	8.2 Miscelaneous functions
	8.2.1 Boyer-Moore-Gosper Functions
	8.2.2 cvt()
	8.2.3 xecute() and command()
	8.2.4 ErrorMessage()
	8.2.5 Error Exceptions
	8.2.6 HitRatio()
	8.2.7 Hashing functions
	8.2.8 Dump Global Array Database
	8.2.9 Stream Output
	8.2.10 Smith-Waterman Alignment Function
	8.2.11 Stop list functions: StopINIT(), StopLookup()
	8.2.12 Synonym Functions: SymInit(), SYN()
	8.2.13 int $test
	8.2.14 Xecute()
	8.2.15 Zseek() Ztell()

	9 Appendix A
	9.1 Perl Compatible Regular Expression Library License

	10 Appendix B
	10.1 Using Perl Regular Expressions
	10.2 Examples

	11 Appendix C
	11.1 Mumps 95 Pattern Matching

	12 Index

