
D
enverÕs new international air-
port was to be the pride of the
Rockies, a wonder of modern

engineering. Twice the size of Manhat-
tan, 10 times the breadth of Heath-
row, the airport is big enough to land
three jets simultaneouslyÑin bad
weather. Even more impressive than
its girth is the airportÕs subterranean
baggage-handling system. Tearing like
intelligent coal-mine cars along 21
miles of steel track, 4,000 indepen-
dent ÒtelecarsÓ route and deliver lug-
gage between the counters, gates and
claim areas of 20 diÝerent airlines. A
central nervous system of some 100
computers networked to one another
and to 5,000 electric eyes, 400 radio
receivers and 56 bar-code scanners
orchestrates the safe and timely ar-
rival of every valise and ski bag.

At least that is the plan. For nine
months, this Gulliver has been held
captive by LilliputiansÑerrors in the
software that controls its automated
baggage system. Scheduled for take-
oÝ by last Halloween, the airportÕs
grand opening was postponed until
December to allow BAE Automated
Systems time to ßush the gremlins
out of its $193-million system. Decem-
ber yielded to March. March slipped
to May. In June the airportÕs planners,
their bond rating demoted to junk
and their budget hemorrhaging red
ink at the rate of $1.1 million a day in
interest and operating costs, conced-
ed that they could not predict when
the baggage system would stabilize
enough for the airport to open.

To veteran software developers, the
Denver debacle is notable only for its
visibility. Studies have shown that for
every six new large-scale software
systems that are put into operation,
two others are canceled. The average
software development project over-
shoots its schedule by half; larger
projects generally do worse. And

TRENDS IN COMPUTING

SoftwareÕs Chronic Crisis
by W. Wayt Gibbs, staÝ writer

SOFTWARE GLITCHES in an automated baggage-handling sys-
tem force Denver International Airport to sit empty nine months
after airplanes were to Þll these gates and runways (top). The sys-

86 SCIENTIFIC AMERICAN September 1994 Copyright 1994 Scientific American, Inc.

some three quarters of all large sys-
tems are Òoperating failuresÓ that ei-
ther do not function as intended or
are not used at all.

The art of programming has taken
50 years of continual reÞnement to
reach this stage. By the time it reached
25, the diÛculties of building big
software loomed so large that in the
autumn of 1968 the NATO Science
Committee convened some 50 top
programmers, computer scientists
and captains of industry to plot a
course out of what had come to be
known as the software crisis. Al-
though the experts could not con-
trive a road map to guide the indus-
try toward Þrmer ground, they did
coin a name for that distant goal :
software engineering, now deÞned
formally as Òthe application of a sys-
tematic, disciplined, quantiÞable ap-
proach to the development, opera-
tion and maintenance of software.Ó

A quarter of a century later soft-
ware engineering remains a term of
aspiration. The vast majority of com-
puter code is still handcrafted from
raw programming languages by arti-
sans using techniques they neither
measure nor are able to repeat con-
sistently. ÒItÕs like musket making
was before Eli Whitney,Ó says Brad J.
Cox, a professor at George Mason
University. ÒBefore the industrial rev-
olution, there was a nonspecialized
approach to manufacturing goods
that involved very little interchange-
ability and a maximum of craftsman-
ship. If we are ever going to lick this
software crisis, weÕre going to have to
stop this hand-to-mouth, every-pro-
grammer-builds-everything-from-the-
ground-up, preindustrial approach.Ó

The picture is not entirely bleak. In-
tuition is slowly yielding to analysis
as programmers begin using quanti-
tative measurements of the quality of
the software they produce to improve

Despite 50 years of progress, the software industry remains
years—perhaps decades—short of the mature engineering discipline

needed to meet the demands of an information-age society

SCIENTIFIC AMERICAN September 1994 87

tem that is supposed to shunt luggage in 4,000 independent Òtele-
carsÓ along 21 miles of track still opened, damaged and misrout-
ed cargo as testing continued in July (bottom).

Copyright 1994 Scientific American, Inc.

the way they produce it. The mathemat-
ical foundations of programming are
solidifying as researchers work on ways
of expressing program designs in alge-
braic forms that make it easier to avoid
serious mistakes. Academic computer
scientists are starting to address their
failure to produce a solid corps of soft-
ware professionals. Perhaps most im-
portant, many in the industry are turn-
ing their attention toward inventing the
technology and market structures need-
ed to support interchangeable, reusable
software parts.

ÒUnfortunately, the industry does
not uniformly apply that which is well-
known best practice,Ó laments Larry E.
DruÝel, director of Carnegie Mellon Uni-
versityÕs Software Engineering Institute.
In fact, a research innovation typically
requires 18 years to wend its way into
the repertoire of standard programming
techniques. By combining their eÝorts,
academia, industry and government
may be able to hoist software develop-
ment to the level of an industrial-age en-
gineering discipline within the decade.
If they come up short, societyÕs head-
long rush into the information age will
be halting and unpredictable at best.

Shifting Sands

ÒWe will see massive changes [in
computer use] over the next few years,
causing the initial personal computer
revolution to pale into comparative in-
signiÞcance,Ó concluded 22 leaders in
software development from academia,
industry and research laboratories this
past April. The experts gathered at Hed-
sor Park, a corporate retreat near Lon-
don, to commemorate the NATO con-
ference and to analyze the future direc-
tions of software. ÒIn 1968 we knew
what we wanted to build but couldnÕt,Ó
reßected CliÝ Jones, a professor at the
University of Manchester. ÒToday we
are standing on shifting sands.Ó

The foundations of traditional pro-
gramming practices are eroding swiftly,
as hardware engineers churn out ever
faster, cheaper and smaller machines.
Many fundamental assumptions that
programmers makeÑfor instance, their
acceptance that everything they pro-
duce will have defectsÑmust change in
response. ÒWhen computers are em-

bedded in light switches, youÕve got to
get the software right the Þrst time be-
cause youÕre not going to have a chance
to update it,Ó says Mary M. Shaw, a pro-
fessor at Carnegie Mellon.

ÒThe amount of code in most con-
sumer products is doubling every two
years,Ó notes Remi H. Bourgonjon, di-
rector of software technology at Philips
Research Laboratory in Eindhoven. Al-
ready, he reports, televisions may con-
tain up to 500 kilobytes of software; an
electric shaver, two kilobytes. The pow-
er trains in new General Motors cars
run 30,000 lines of computer code.

Getting software right the Þrst time
is hard even for those who care to try.
The Department of Defense applies rig-
orousÑand expensiveÑtesting stan-
dards to ensure that software on which
a mission depends is reliable. Those
standards were used to certify Clemen-

tine, a satellite that the DOD and the
National Aeronautics and Space Admin-
istration directed into lunar orbit this
past spring. A major part of the Clem-
entine mission was to test targeting
software that could one day be used in
a space-based missile defense system.
But when the satellite was spun around
and instructed to Þx the moon in its
sights, a bug in its program caused the
spacecraft instead to Þre its maneuver-
ing thrusters continuously for 11 min-
utes. Out of fuel and spinning wildly,
the satellite could not make its rendez-
vous with the asteroid Geographos.

Errors in real-time systems such as
Clementine are devilishly diÛcult to
spot because, like that suspicious sound
in your car engine, they often occur only
when conditions are just so [see ÒThe
Risks of Software,Ó by Bev Littlewood
and Lorenzo Strigini; SCIENTIFIC AMER-
ICAN, November 1992]. ÒIt is not clear
that the methods that are currently
used for producing safety-critical soft-
ware, such as that in nuclear reactors
or in cars, will evolve and scale up ade-
quately to match our future expecta-
tions,Ó warned Gilles Kahn, the scien-
tiÞc director of FranceÕs INRIA research
laboratory, at the Hedsor Park meeting.
ÒOn the contrary, for real-time systems
I think we are at a fracture point.Ó

Software is buckling as well under
tectonic stresses imposed by the in-
exorably growing demand for Òdistrib-
uted systemsÓ: programs that run coop-
eratively on many networked comput-
ers. Businesses are pouring capital into
distributed information systems that
they hope to wield as strategic weap-
ons. The inconstancy of software de-
velopment can turn such projects into
Russian roulette.

Many companies are lured by goals
that seem simple enough. Some try to
reincarnate obsolete mainframe-based
software in distributed form. Others
want to plug their existing systems into
one another or into new systems with
which they can share data and a friend-
lier user interface. In the technical lingo,
connecting programs in this way is of-
ten called systems integration. But Bri-
an Randell, a computer scientist at the
University of Newcastle upon Tyne, sug-
gests that Òthere is a better word than
integration, from old R.A.F. slang: name-
ly, Ôto graunch,Õ which means Ôto make
to Þt by the use of excessive force.Õ Ó

It is a risky business, for although

88 SCIENTIFIC AMERICAN September 1994

SOFTWARE IS EXPLODING in size as so-
ciety comes to rely on more powerful
computer systems (top). That faith is
often rewarded by disappointment as
most large software projects overrun
their schedules (middle) and many fail
outright (bottom)Ñusually after most of
the development money has been spent.

100
M

IL
LI

O
N

S
 O

F
 IN

S
T

R
U

C
T

IO
N

S

1960

APOLLO

MERCURY

GEMINI

SPACE
SHUTTLE

SPACE
STATION

U.S. MANNED
SPACEFLIGHT
PROGRAM

1970 1980 1990 2000

10,240

5,120

2,560

1,280

640

320

160

80

40

20

10

0

P
R

O
JE

C
T

 S
IZ

E
 (

F
U

N
C

T
IO

N
 P

O
IN

T
S

)

MONTHS
0 10 20 30 40 50 60

U.S. AVERAGE
PROJECT
SCHEDULE

PLANNED

ACTUAL

SOURCE: Software Productivity Research

SOURCE: Barry W. Boehm

SOURCE: Software Productivity Research

P
R

O
JE

C
T

 S
IZ

E
 (

F
U

N
C

T
IO

N
 P

O
IN

T
S

)

PERCENT

10,240

5,120

2,560

1,280

640

320

160

80

40

20

10

0
0 10 20 30 40 50

U.S. AVERAGE
CANCELLATION
PROBABILITY

75

50

25

0

Copyright 1994 Scientific American, Inc.

software seems like malleable
stuÝ, most programs are actually
intricate plexuses of brittle logic
through which data of only the
right kind may pass. Like hand-
made muskets, several programs
may perform similar functions
and yet still be unique in design.
That makes software difÞcult to
modify and repair. It also means
that attempts to graunch sys-
tems together often end badly.

In 1987, for example, Califor-
niaÕs Department of Motor Vehi-
cles decided to make its custom-
ersÕ lives easier by merging the
stateÕs driver and vehicle reg-
istration systemsÑa seemingly
straightforward task. It had
hoped to unveil convenient one-
stop renewal kiosks last year. In-
stead the DMV saw the projected
cost explode to 6.5 times the
expected price and the delivery
date recede to 1998. In Decem-
ber the agency pulled the plug
and walked away from the seven-
year, $44.3-million investment.

Sometimes nothing fails like
success. In the 1970s American
Airlines constructed SABRE, a vir-
tuosic, $2-billion ßight reservation sys-
tem that became part of the travel in-
dustryÕs infrastructure. ÒSABRE was the
shining example of a strategic informa-
tion system because it drove American
to being the worldÕs largest airline,Ó re-
calls Bill Curtis, a consultant to the Soft-
ware Engineering Institute.

Intent on brandishing software as ef-
fectively in this decade, American tried
to graunch its ßight-booking technolo-
gy with the hotel and car reservation
systems of Marriott, Hilton and Budget.
In 1992 the project collapsed into a
heap of litigation. ÒIt was a smashing
failure,Ó Curtis says. ÒAmerican wrote
oÝ $165 million against that system.Ó

The airline is hardly suÝering alone.
In June IBMÕs Consulting Group released
the results of a survey of 24 leading
companies that had developed large
distributed systems. The numbers were
unsettling: 55 percent of the projects
cost more than expected, 68 percent
overran their schedules and 88 percent
had to be substantially redesigned.

The survey did not report one critical
statistic: how reliably the completed
programs ran. Often systems crash be-
cause they fail to expect the unexpected.
Networks amplify this problem. ÒDis-
tributed systems can consist of a great
set of interconnected single points of
failure, many of which you have not
identiÞed beforehand,Ó Randell ex-
plains. ÒThe complexity and fragility of
these systems pose a major challenge.Ó

The challenge of complexity is not
only large but also growing. The bang
that computers deliver per buck is dou-
bling every 18 months or so. One result
is Òan order of magnitude growth in
system size every decadeÑfor some in-
dustries, every half decade,Ó Curtis says.
To keep up with such demand, pro-
grammers will have to change the way
that they work. ÒYou canÕt build sky-
scrapers using carpenters,Ó Curtis quips.

Mayday, Mayday

When a system becomes so complex
that no one manager can comprehend
the entirety, traditional development
processes break down. The Federal Avi-
ation Administration (FAA) has faced
this problem throughout its decade-old
attempt to replace the nationÕs increas-
ingly obsolete air-traÛc control system
[see ÒAging Airways,Ó by Gary Stix; SCI-
ENTIFIC AMERICAN, May].

The replacement, called the Advanced
Automation System (AAS), combines all
the challenges of computing in the
1990s. A program that is more than a
million lines in size is distributed across
hundreds of computers and embedded
into new and sophisticated hardware,
all of which must respond around the
clock to unpredictable real-time events.
Even a small glitch potentially threat-
ens public safety.

To realize its technological dream,
the FAA chose IBMÕs Federal Systems

Company, a well-respected leader
in software development that has
since been purchased by Loral.
FAA managers expected (but did
not demand) that IBM would use
state-of-the-art techniques to es-
timate the cost and length of the
project. They assumed that IBM
would screen the requirements
and design drawn up for the sys-
tem in order to catch mistakes
early, when they can be Þxed in
hours rather than days. And the
FAA conservatively expected to
pay about $500 per line of com-
puter code, Þve times the indus-
try average for well-managed de-
velopment processes.

According to a report on the
AAS project released in May by
the Center for Naval Analysis,
IBMÕs Òcost estimation and devel-
opment process tracking used in-
appropriate data, were performed

inconsistently and were routinely ig-
noredÓ by project managers. As a re-
sult, the FAA has been paying $700 to
$900 per line for the AAS software.. One
reason for the exorbitant price is that
Òon average every line of code devel-
oped needs to be rewritten once,Ó be-
moaned an internal FAA report.

Alarmed by skyrocketing costs and
tests that showed the half-completed
system to be unreliable, FAA adminis-
trator David R. Hinson decided in June
to cancel two of the four major parts
of the AAS and to scale back a third.
The $144 million spent on these failed
programs is but a drop next to the $1.4
billion invested in the fourth and cen-
tral piece: new workstation software
for air-traÛc controllers.

That project is also spiraling down
the drain. Now running about Þve years
late and more than $1 billion over bud-
get, the bug-infested program is being
scoured by software experts at Carnegie
Mellon and the Massachusetts Institute
of Technology to determine whether it
can be salvaged or must be canceled
outright. The reviewers are scheduled
to make their report in September.

Disaster will become an increasingly
common and disruptive part of soft-
ware development unless programming
takes on more of the characteristics of
an engineering discipline rooted Þrmly
in science and mathematics [see box on

page 92]. Fortunately, that trend has al-
ready begun. Over the past decade in-

SCIENTIFIC AMERICAN September 1994 89

EXPERIMENTALIST Victor R. Basi-
li helped found the Software Engi-
neering Laboratory to push pro-
gramming onto a firmer founda-
tion of mathematics and science.

Copyright 1994 Scientific American, Inc.

dustry leaders have made signiÞcant
progress toward understanding how to
measure, consistently and quantitative-
ly, the chaos of their development pro-
cesses, the density of errors in their
products and the stagnation of their
programmersÕ productivity. Research-
ers are already taking the next step:
Þnding practical, repeatable solutions
to these problems.

Proceeds of Process

In 1991, for example, the Software
Engineering Institute, a software think
tank funded by the military, unveiled
its Capability Maturity Model (CMM).
ÒIt provides a vision of software engi-
neering and management excellence,Ó
beams David Zubrow, who leads a proj-
ect on empirical methods at the insti-
tute. The CMM has at last persuaded
many programmers to concentrate on
measuring the process by which they
produce software, a prerequisite for
any industrial engineering discipline.

Using interviews, questionnaires and
the CMM as a benchmark, evaluators
can grade the ability of a programming
team to create predictably software that
meets its customersÕ needs. The CMM
uses a Þve-level scale, ranging from
chaos at level 1 to the paragon of good
management at level 5. To date, 261
organizations have been rated.

ÒThe vast majorityÑabout 75 per-
centÑare still stuck in level 1,Ó Curtis
reports. ÒThey have no formal process,
no measurements of what they do and
no way of knowing when they are on
the wrong track or oÝ the track alto-
gether.Ó (The Center for Naval Analysis
concluded that the AAS project at IBM
Federal Systems Òappears to be at a
low 1 rating.Ó) The remaining 24 per-
cent of projects are at levels 2 or 3.

Only two elite groups have earned
the highest CMM rating, a level 5. Mo-
torolaÕs Indian programming team in
Bangalore holds one title. LoralÕs (for-
merly IBMÕs) on-board space shuttle
software project claims the other. The
Loral team has learned to control bugs
so well that it can reliably predict how
many will be found in each new ver-
sion of the software. That is a remark-
able feat, considering that 90 percent
of American programmers do not even
keep count of the mistakes they Þnd,
according to Capers Jones, chairman of
Software Productivity Research. Of those
who do, he says, few catch more than a
third of the defects that are there.

Tom Peterson, head of LoralÕs shuttle
software project, attributes its success
to Òa culture that tries to Þx not just
the bug but also the ßaw in the testing
process that allowed it to slip through.Ó
Yet some bugs inevitably escape detec-
tion. The Þrst launch of the space shut-
tle in 1981 was aborted and delayed for
two days because a glitch prevented the
Þve on-board computers from synchro-
nizing properly. Another ßaw, this one
in the shuttleÕs rendezvous program,
jeopardized the Intelsat-6 satellite res-
cue mission in 1992.

Although the CMM is no panacea, its
promotion by the Software Engineering
Institute has persuaded a number of
leading software companies that quan-
titative quality control can pay oÝ in
the long run. RaytheonÕs equipment di-
vision, for example, formed a Òsoftware
engineering initiativeÓ in 1988 after
ßunking the CMM test. The division be-
gan pouring $1 million per year into
reÞning rigorous inspection and test-
ing guidelines and training its 400 pro-
grammers to follow them.

Within three years the division had
jumped two levels. By this past June,

most projectsÑincluding complex ra-
dar and air-traÛc control systemsÑ
were Þnishing ahead of schedule and
under budget. Productivity has more
than doubled. An analysis of avoided
rework costs revealed a savings of
$7.80 for every dollar invested in the
initiative. Impressed by such successes,
the U.S. Air Force has mandated that all
its software developers must reach lev-
el 3 of the CMM by 1998. NASA is re-
portedly considering a similar policy.

Mathematical Re-creations

Even the best-laid designs can go
awry, and errors will creep in so long
as humans create programs. Bugs
squashed early rarely threaten a proj-
ectÕs deadline and budget, however.
Devastating mistakes are nearly always
those in the initial design that slip un-
detected into the Þnal product.

Mass-market software producers, be-
cause they have no single customer to
please, can take a belated and brute-
force approach to bug removal : they
release the faulty product as a ÒbetaÓ
version and let hordes of users dig up
the glitches. According to Charles Si-
monyi, a chief architect at Microsoft,
the new version of the Windows oper-
ating system will be beta-tested by
20,000 volunteers. That is remarkably
eÝective, but also expensive, ineÛcient
andÑsince mass-produced PC prod-
ucts make up less than 10 percent of
the $92.8-billion software market in
the U.S.Ñusually impractical.

Researchers are thus formulating
several strategies to attack bugs early
or to avoid introducing them at all.
One idea is to recognize that the prob-
lem a system is supposed to solve al-
ways changes as the system is being
built. DenverÕs airport planners saddled
BAE with $20 million worth of changes
to the design of its baggage system long
after construction had begun. IBM has
been similarly bedeviled by the indeci-
sion of FAA managers. Both companies
naively assumed that once their design
was approved, they would be left in
peace to build it.

Some developers are at last shedding
that illusion and rethinking software as
something to be grown rather than
built. As a Þrst step, programmers are
increasingly stitching together quick
prototypes out of standard graphic in-
terface components. Like an architectÕs

90 SCIENTIFIC AMERICAN September 1994

ALL OF FRANCEÕS 6,000 electric trains
will use speed- and switching-control
software developed by GEC Alsthom
using mathematical methods to prove
that the programs are written correctly.

Copyright 1994 Scientific American, Inc.

scale model, a system prototype can
help clear up misunderstandings be-
tween customer and developer before a
logical foundation is poured.

Because they mimic only the outward
behavior of systems, prototypes are of
little help in spotting logical inconsis-
tencies in a systemÕs design. ÒThe vast
majority of errors in large-scale soft-
ware are errors of omission,Ó notes
Laszlo A. Belady, director of Mitsubishi
Electric Research Laboratory. And mod-
els do not make it any easier to detect
bugs once a design is committed to
code.

When it absolutely, positively has to
be right, says Martyn Thomas, chair-
man of Praxis, a British software com-
pany, engineers rely on mathematical
analysis to predict how their designs
will behave in the real world. Unfortu-
nately, the mathematics that describes
physical systems does not apply within
the synthetic binary universe of a com-
puter program; discrete mathematics, a
far less mature Þeld, governs here. But
using the still limited tools of set theo-
ry and predicate calculus, computer
scientists have contrived ways to trans-
late speciÞcations and programs into
the language of mathematics, where
they can be analyzed with theoretical
tools called formal methods.

Praxis recently used formal methods
on an air-traÛc control project for
BritainÕs Civil Aviation Authority. Al-
though PraxisÕs program was much
smaller than the FAAÕs, the two shared
a similar design problem: the need to
keep redundant systems synchronized
so that if one fails, another can instant-
ly take over. ÒThe diÛcult part was
guaranteeing that messages are deliv-
ered in the proper order over twin net-
works,Ó recalls Anthony Hall, a princi-
pal consultant to Praxis. ÒSo here we
tried to carry out proofs of our design,
and they failed, because the design was
wrong. The beneÞt of Þnding errors at
that early stage is enormous,Ó he adds.
The system was Þnished on time and
put into operation last October.

Praxis used formal notations on only
the most critical parts of its software,
but other software Þrms have employed
mathematical rigor throughout the en-
tire development of a system. GEC Als-
thom in Paris is using a formal method
called ÒBÓ as it spends $350 million to
upgrade the switching- and speed-con-
trol software that guides the 6,000 elec-
tric trains in FranceÕs national railway
system. By increasing the speed of the
trains and reducing the distance be-
tween them, the system can save the
railway company billions of dollars that
might otherwise need to be spent on
new lines.

Safety was an obvious concern. So
GEC developers wrote the entire design
and Þnal program in formal notation
and then used mathematics to prove
them consistent. ÒFunctional tests are
still necessary, however, for two rea-
sons,Ó says Fernando Mejia, manager
of the formal development section at
GEC. First, programmers do occasion-
ally make mistakes in proofs. Secondly,
formal methods can guarantee only
that software meets its speciÞcation,
not that it can handle the surprises of
the real world.

Formal methods have other problems
as well. Ted Ralston, director of strate-
gic planning for Odyssey Research As-
sociates in Ithaca, N.Y., points out that
reading pages of algebraic formulas is
even more stultifying than reviewing
computer code. Odyssey is just one of
several companies that are trying to au-
tomate formal methods to make them
less onerous to programmers. GEC is
collaborating with Digilog in France to
commercialize programming tools for
the B method. The beta version is being
tested by seven companies and institu-
tions, including Aerospatiale, as well as
FranceÕs atomic energy authority and
its defense department.

On the other side of the Atlantic, for-
mal methods by themselves have yet to
catch on. ÒI am skeptical that Americans
are sufÞciently disciplined to apply for-
mal methods in any broad fashion,Ó
says David A. Fisher of the National In-
stitute of Standards and Technology
(NIST). There are exceptions, however,
most notably among the growing circle
of companies experimenting with the
Òclean-room approachÓ to programming.

The clean-room process attempts
to meld formal notations, correctness
proofs and statistical quality control
with an evolutionary approach to soft-
ware development. Like the microchip
manufacturing technique from which it
takes its name, clean-room development
tries to use rigorous engineering tech-
niques to consistently fabricate prod-
ucts that run perfectly the Þrst time.
Programmers grow systems one func-
tion at a time and certify the quality of
each unit before integrating it into the
architecture.

Growing software requires a whole
new approach to testing. Traditionally,
developers test a program by running
it the way they intend it to be used,
which often bears scant resemblance
to real-world conditions. In a clean-
room process, programmers try to as-
sign a probability to every execution
pathÑcorrect and incorrectÑthat
users can take. They then derive test
cases from those statistical data, so
that the most common paths are test-
ed more thoroughly. Next the program
runs through each test case and times
how long it takes to fail. Those times
are then fed back, in true engineering
fashion, to a model that calculates how
reliable the program is.

Early adopters report encouraging re-
sults. Ericsson Telecom, the European
telecommunications giant, used clean-
room processes on a 70-programmer
project to fabricate an operating sys-
tem for its telephone-switching com-
puters. Errors were reportedly reduced
to just one per 1,000 lines of program
code; the industry average is about 25
times higher. Perhaps more important,

SCIENTIFIC AMERICAN September 1994 91

RAYTHEON HAS SAVED $17.2 million in software costs since 1988, when its equip-
ment division began using rigorous development processes that doubled its pro-
grammersÕ productivity and helped them to avoid making expensive mistakes.

S
T

A
R

T
 O

F
 IN

IT
IA

T
IV

E

R
E

W
O

R
K

 C
O

S
T

(P
E

R
C

E
N

T
 O

F
 T

O
T

A
L

C
O

S
T

)

P
R

O
D

U
C

T
IV

IT
Y

 IN
C

R
E

A
S

E
 (P

E
R

C
E

N
T

)

175

1987 1988 1989 1990 1991 1992 1993 1994

SAVINGS OF $17.2 MILLION

150

100

50

125

75

25

SOURCE: Raytheon

0

50

40

30

20

10

0

Copyright 1994 Scientific American, Inc.

92 SCIENTIFIC AMERICAN September 1994

Progress toward Professionalism

Educated professionals
Analysis and theory
Progress relies on science
Analysis enables new applications
Market segmentation by product
 variety

Virtuosos and talented amateurs
Design uses intuition and brute force
Haphazard progress
Knowledge transmitted slowly

and casually
Extravagant use of materials
Manufacture for use rather than

for sale

Skilled craftsmen
Established procedure
Pragmatic refinement
Training in mechanics
Economic concern for cost
 and supply of materials
Manufacture for sale

1970s: Structured programming methods
 gain favor

1980s: Fourth-generation languages released
1990s: Reuse repositories founded

SOFTWARE ENGINEERING

1950s: Programs are small and intuitive
1970s:

1990s:

1956: IBM invents FORTRAN

1968:

1972: Smalltalk object-oriented language released
1980s: Formal methods and notations refined

1980s:

CHEMICAL ENGINEERING

1775:

1300s: Alchemists discover alcohol
 1700s: Lye boiled to make soap

1774: Joseph Priestley isolates oxygen
1808: John Dalton publishes his atomic theory

1887: George E. Davis identifies functional operations
1922: Hermann Staudinger explains polymerization

1823:

1850s:

1857:

1915:

1994:

1994: Isolated examples only of
 algorithms, data structures,
 compiler construction

PRODUCTION

CRAFT

COMMERCIALIZATION

SCIENCE

PROFESSIONAL ENGINEERING

PRODUCTION

CRAFT

SCIENCE

PROFESSIONAL ENGINEERING

PRODUCTION

CRAFT

SCIENCE

PROFESSIONAL ENGINEERING

COMMERCIALIZATION

COMMERCIALIZATION

Some safety-critical systems (such
as in defense and transportation) use
rigorous controls

ENGINEERING EVOLUTION
PARADIGM

Most dyes made from vegetables

French Academy offers reward
for method to convert brine (salt)
to soda ash (alkali)

Most government and management
information systems use some
production controls

Most personal computer software
is still handcrafted

SABRE airline reservation
system is rare success

Donald E. Knuth publishes his theory of algorithms
and data structures

William Henry Perkin founds synthetic
dye industry

Pollution of British Midlands
by alkali plants

Nicolas Leblanc’s industrial alkali
process first put into operation

Du Pont operates chemi-
cal megaplants

Arthur D. Little refines and
demonstrates unit operations

Engineering disciplines share common stages in their
evolution, observes Mary M. Shaw of Carnegie Mellon

University. She spies interesting parallels between soft-
ware engineering and chemical engineering, two fields
that aspire to exploit on an industrial scale the processes
that are discovered by small-scale research.

Like software developers, chemical engineers try to de-
sign processes to create safe, pure products as cheaply and
quickly as possible. Unlike most programmers, however,
chemical engineers rely heavily on scientific theory, math-

ematical modeling, proven design solutions and rigorous
quality-control methods—and their efforts usually succeed.

Software, Shaw points out, is somewhat less mature,
more like a cottage industry than a professional engineer-
ing discipline. Although the demand for more sophisticat-
ed and reliable software has boosted some large-scale pro-
gramming to the commercial stage, computer science
(which is younger than many of its researchers) has yet to
build the experimental foundation on which software en-
gineering must rest.

Copyright 1994 Scientific American, Inc.

the company found that develop-
ment productivity increased by
70 percent, and testing produc-
tivity doubled.

No Silver Bullet

Then again, the industry has
heard tell many times before of
Òsilver bulletsÓ supposedly able to
slay werewolf projects. Since the
1960s developers have peddled
dozens of technological innova-
tions intended to boost produc-
tivityÑmany have even presented
demonstration projects to ÒproveÓ
the verity of their boasts. Advo-
cates of object-oriented analysis
and programming, a buzzword du
jour, claim their approach repre-
sents a paradigm shift that will
deliver Òa 14-to-1 improvement in
productivity,Ó along with higher
quality and easier maintenance,
all at reduced cost.

There are reasons to be skepti-
cal. ÒIn the 1970s structured pro-
gramming was also touted as a
paradigm shift,Ó Curtis recalls.
ÒSo was CASE [computer-assisted
software engineering]. So were
third-, fourth- and Þfth-generation lan-
guages. WeÕve heard great promises for
technology, many of which werenÕt
delivered.Ó

Meanwhile productivity in software
development has lagged behind that of
more mature disciplines, most notably
computer hardware engineering. ÒI
think of software as a cargo cult,Ó Cox
says. ÒOur main accomplishments were
imported from this foreign culture of
hardware engineeringÑfaster machines
and more memory.Ó Fisher tends to
agree: adjusted for inßation, Òthe value
added per worker in the industry has
been at $40,000 for two decades,Ó he as-
serts. ÒWeÕre not seeing any increases.Ó

ÒI donÕt believe that,Ó replies Richard
A. DeMillo, a professor at Purdue Uni-
versity and head of the Software Engi-
neering Research Consortium. ÒThere
has been improvement, but everyone
uses diÝerent deÞnitions of productivi-
ty.Ó A recent study published by Capers
JonesÑbut based on necessarily dubi-
ous historical dataÑstates that U.S. pro-
grammers churn out twice as much
code today as they did in 1970.

The fact of the matter is that no one
really knows how productive software
developers are, for three reasons. First,
less than 10 percent of American com-
panies consistently measure the pro-
ductivity of their programmers.

Second, the industry has yet to settle
on a useful standard unit of measure-
ment. Most reports, including those

published in peer-reviewed computer
science journals, express productivity
in terms of lines of code per worker
per month. But programs are written in
a wide variety of languages and vary
enormously in the complexity of their
operation. Comparing the number of
lines written by a Japanese program-
mer using C with the number produced
by an American using Ada is thus like
comparing their salaries without con-
verting from yen to dollars.

Third, Fisher says, Òyou can walk into
a typical company and Þnd two guys
sharing an oÛce, getting the same sal-
ary and having essentially the same
credentials and yet Þnd a factor of 100
diÝerence in the number of instruc-
tions per day that they produce.Ó Such
enormous individual diÝerences tend
to swamp the much smaller eÝects of
technology or process improvements.

After 25 years of disappointment
with apparent innovations that turned
out to be irreproducible or unscalable,
many researchers concede that com-
puter science needs an experimental
branch to separate the general results
from the accidental. ÒThere has always
been this assumption that if I give you
a method, it is right just because I told
you so,Ó complains Victor R. Basili, a
professor at the University of Maryland.
ÒPeople are developing all kinds of
things, and itÕs really quite frightening
how bad some of them are,Ó he says.

Mary Shaw of Carnegie Mellon points

out that mature engineering
Þelds codify proved solutions in
handbooks so that even novices
can consistently handle routine
designs, freeing more talented
practitioners for advanced proj-
ects. No such handbook yet ex-
ists for software, so mistakes are
repeated on project after project,
year after year.

DeMillo suggests that the gov-
ernment should take a more ac-
tive role. ÒThe National Science
Foundation should be interested
in funding research aimed at ver-
ifying experimental results that
have been claimed by other peo-
ple,Ó he says. ÒCurrently, if itÕs not
groundbreaking, Þrst-time-ever-
done research, program oÛcers
at the NSF tend to discount the
work.Ó DeMillo knows whereof he
speaks. From 1989 to 1991 he di-

rected the NSFÕs computer and compu-
tation research division.

Yet Òif software engineering is to be
an experimental science, that means it
needs laboratory science. Where the
heck are the laboratories?Ó Basili asks.
Because attempts to scale promising
technologies to industrial proportions
so often fail, small laboratories are of
limited utility. ÒWe need to have places
where we can gather data and try things
out,Ó DeMillo says. ÒThe only way to do
that is to have a real software develop-
ment organization as a partner.Ó

There have been only a few such part-
nerships. Perhaps the most successful
is the Software Engineering Laboratory,
a consortium of NASAÕs Goddard Space
Flight Center, Computer Sciences Corp.
and the University of Maryland. Basili
helped to found the laboratory in 1976.
Since then, graduate students and NASA

programmers have collaborated on Òwell
over 100 projects,Ó Basili says, most
having to do with building ground-sup-
port software for satellites.

Just Add Water

Musket makers did not get more pro-
ductive until Eli Whitney Þgured out
how to manufacture interchangeable
parts that could be assembled by any
skilled workman. In like manner, soft-
ware parts can, if properly standard-
ized, be reused at many diÝerent scales.
Programmers have for decades used li-

SCIENTIFIC AMERICAN September 1994 93

AS CEO of Incremental Systems,
David A. Fisher learned firsthand
why software components do not
sell. Now he supervises a $150-
million federal program to create
a market for software parts.

Copyright 1994 Scientific American, Inc.

braries of subroutines to avoid rewriting
the same code over and over. But these
components break down when they are
moved to a different programming lan-
guage, computer platform or operating
environment. ÒThe tragedy is that as
hardware becomes obsolete, an excel-
lent expression of a sorting algorithm
written in the 1960s has to be rewrit-
ten,Ó observes Simonyi of Microsoft.

Fisher sees tragedy of a diÝerent
kind. ÒThe real price we pay is that as a
specialist in any software technology
you cannot capture your special capa-
bility in a product. If you canÕt do that,
you basically canÕt be a specialist.Ó Not
that some havenÕt tried. Before moving
to NIST last year, Fisher founded and
served as CEO of Incremental Systems.

ÒWe were truly world-class in three of
the component technologies that go
into compilers but were not as good in
the other seven or so,Ó he states. ÒBut
we found that there was no practical
way of selling compiler components;
we had to sell entire compilers.Ó

So now he is doing something about
that. In April, NIST announced that it
was creating an Advanced Technology
Program to help engender a market for
component-based software. As head of
the program, Fisher will be distributing
$150 million in research grants to soft-
ware companies willing to attack the
technical obstacles that currently make
software parts impractical.

The biggest challenge is to Þnd ways
of cutting the ties that inherently bind

programs to speciÞc computers and to
other programs. Researchers are inves-
tigating several promising approach-
es, including a common language that
could be used to describe software
parts, programs that reshape compo-
nents to match any environment, and
components that have lots of optional
features a user can turn on or oÝ.

Fisher favors the idea that compo-
nents should be synthesized on the ßy.
Programmers would Òbasically capture
how to do it rather than actually doing
it,Ó producing a recipe that any comput-
er could understand. ÒThen when you
want to assemble two components, you
would take this recipe and derive com-
patible versions by adding additional
elements to their interfaces. The whole

94 SCIENTIFIC AMERICAN September 1994

Since the invention of computers, Americans have domi-
nated the software market. Microsoft alone produces

more computer code each year than do any of 100 nations,
according to Capers Jones of Software Productivity Research
in Burlington, Mass. U.S. suppliers hold about 70 percent of
the worldwide software market.

But as international networks sprout and large corpora-
tions deflate, India, Hungary, Russia, the Philippines and
other poorer nations are discovering in software a lucrative
industry that requires the one resource in which they are
rich: an underemployed, well-educated labor force. Ameri-
can and European giants are now competing with upstart
Asian development companies for contracts, and in response
many are forming subsidiaries overseas. Indeed, some man-
agers in the trade predict that software development will
gradually split between Western software engineers who
design systems and Eastern programmers who build them.

“In fact, it is going on already,” says Laszlo A. Belady, di-
rector of Mitsubishi Electric Research Laboratory. AT&T,
Hewlett-Packard, IBM, British Telecom and Texas Instru-
ments have all set up programming teams in India. The Pact
Group in Lyons, France, reportedly maintains a “software
factory” in Manila. “Cadence, the U.S. supplier of VLSI de-
sign tools, has had its software development sited on the
Pacific rim for several years,” reports Martyn Thom-
as, chairman of Praxis. “ACT, a U.K.-based systems
house, is using Russian programmers from the for-
mer Soviet space program,” he adds.

So far India’s star has risen fastest. “Offshore de-
velopment [work commissioned in India by foreign
companies] has begun to take off in the past 18 to
24 months,” says Rajendra S. Pawar, head of New
Delhi–based NIIT, which has graduated 200,000 In-
dians from its programming courses (photograph).
Indeed, India’s software exports have seen a com-
pound annual growth of 38 percent over the past
five years; last year they jumped 60 percent—four
times the average growth rate worldwide.

About 58 percent of the $360-million worth of
software that flowed out of India last year ended up
in the U.S. That tiny drop hardly makes a splash in
a $92.8-billion market. But several trends may pro-

pel exports beyond the $1-billion mark as early as 1997.
The single most important factor, Pawar asserts, is the

support of the Indian government, which has eased tariffs
and restrictions, subsidized numerous software technology
parks and export zones, and doled out five-year tax ex-
emptions to software exporters. “The opening of the Indian
economy is acting as a very big catalyst,” Pawar says.

It certainly seems to have attracted the attention of large
multinational firms eager to reduce both the cost of the
software they need and the amount they build in-house.
The primary cost of software is labor. Indian programmers
come so cheap—$125 per unit of software versus $925 for
an American developer, according to Jones—that some
companies fly an entire team to the U.S. to work on a proj-
ect. More than half of India’s software exports come from
such “body shopping,” although tightened U.S. visa restric-
tions are stanching this flow.

Another factor, Pawar observes, is a growing trust in the
quality of overseas project management. “In the past two
years, American companies have become far more comfort-
able with the offshore concept,” he says. This is a result in
part of success stories from leaders like Citicorp, which de-
velops banking systems in Bombay, and Motorola, which
has a top-rated team of more than 150 programmers in

A Developing World

Copyright 1994 Scientific American, Inc.

thing would be automated,Ó he explains.
Even with a $150-million incentive

and market pressures forcing compa-
nies to Þnd cheaper ways of producing
software, an industrial revolution in
software is not imminent. ÒWe expect
to see only isolated examples of these
technologies in Þve to seven yearsÑand
we may not succeed technically either,Ó
Fisher hedges. Even when the technolo-
gy is ready, components will Þnd few
takers unless they can be made cost-ef-
fective. And the cost of software parts
will depend less on the technology in-
volved than on the kind of market that
arises to produce and consume them.

Brad Cox, like Fisher, once ran a soft-
ware component company and found
it hard going. He believes he has Þg-

ured out the problemÑand its solution.
CoxÕs Þrm tried to sell low-level pro-
gram parts analogous to computer
chips. ÒWhatÕs diÝerent between soft-
ware ICs [integrated circuits] and sili-
con ICs is that silicon ICs are made of
atoms, so they abide by conservation
of mass, and people therefore know
how to buy and sell them robustly,Ó he
says. ÒBut this interchange process that
is at the core of all commerce just does
not work for things that can be copied
in nanoseconds.Ó When Cox tried sell-
ing the parts his programmers had cre-
ated, he found that the price the mar-
ket would bear was far too low for him
to recover the costs of development.

The reasons were twofold. First, re-
casting the component by hand for each
customer was time-consuming; NIST

hopes to clear this barrier with its Ad-
vanced Technology Program. The other
factor was not so much technical as cul-
tural : buyers want to pay for a compo-
nent once and make copies for free.

ÒThe music industry has had about a
century of experience with this very
problem,Ó Cox observes. ÒThey used to
sell tangible goods like piano rolls and
sheet music, and then radio and televi-
sion came along and knocked all that
into a cocked hat.Ó Music companies
adapted to broadcasting by setting up
agencies to collect royalties every time
a song is aired and to funnel the mon-
ey back to the artists and producers.

Cox suggests similarly charging users
each time they use a software compo-
nent. ÒIn fact,Ó he says, Òthat model
could work for software even more eas-
ily than for music, thanks to the infra-
structure advantages that computers
and communications give us. Record
players donÕt have high-speed network
links in them to report usage, but our
computers do.Ó

Or will, at least. Looking ahead to the
time when nearly all computers are con-
nected, Cox envisions distributing soft-
ware of all kinds via networks that link
component producers, end users and
Þnancial institutions. ÒItÕs analogous to
a credit-card operation but with ten-
tacles that reach into PCs,Ó he says. Al-
though that may sound ominous to
some, Cox argues that Òthe Internet now
is more like a garbage dump than a
farmerÕs market. We need a national in-
frastructure that can support the distri-
bution of everything from GrandmaÕs
cookie recipe to AppleÕs window man-
agers to Addison-WesleyÕs electronic
books.Ó Recognizing the enormity of the
cultural shift he is proposing, Cox ex-
pects to press his cause for years to
come through the Coalition for Electron-
ic Markets, of which he is president.

The combination of industrial pro-

cess control, advanced technological
tools and interchangeable parts promis-
es to transform not only how program-
ming is done but also who does it.
Many of the experts who convened at
Hedsor Park agreed with Belady that
Òin the future, professional people in
most Þelds will use programming as a
tool, but they wonÕt call themselves
programmers or think of themselves as
spending their time programming. They
will think they are doing architecture,
or traÛc planning or Þlm making.Ó

That possibility begs the question of
who is qualiÞed to build important sys-
tems. Today anyone can bill herself as
a software engineer. ÒBut when you have
100 million user-programmers, frequent-
ly they will be doing things that are life
criticalÑbuilding applications that Þll
prescriptions, for example,Ó notes Bar-
ry W. Boehm, director of the Center for
Software Engineering at the University
of Southern California. Boehm is one of
an increasing number who suggest cer-
tifying software engineers, as is done
in other engineering Þelds.

Of course, certiÞcation helps only if
programmers are properly trained to
begin with. Currently only 28 universi-
ties oÝer graduate programs in soft-
ware engineering; Þve years ago there
were just 10. None oÝer undergraduate
degrees. Even academics such as Shaw,
DeMillo and Basili agree that computer
science curricula generally provide poor
preparation for industrial software de-
velopment. ÒBasic things like designing
code inspections, producing user docu-
mentation and maintaining aging soft-
ware are not covered in academia,Ó Ca-
pers Jones laments.

Engineers, the infantry of every in-
dustrial revolution, do not spontane-
ously generate. They are trained out of
the bad habits developed by the crafts-
men that preceded them. Until the
lessons of computer science inculcate a
desire not merely to build better things
but also to build things better, the best
we can expect is that software develop-
ment will undergo a slow, and proba-
bly painful, industrial evolution.

SCIENTIFIC AMERICAN September 1994 95

Bangalore building software for its
Iridium satellite network.

Offshore development certainly
costs less than body shopping, and
not merely because of saved airfare.
“Thanks to the time differences be-
tween India and the U.S., Indian soft-
ware developers can act the elves
and the shoemaker,” working over-
night on changes requested by man-
agers the previous day, notes Rich-
ard Heeks, who studies Asian com-
puter industries at the University of
Manchester in England.

Price is not everything. Most East-
ern nations are still weak in design
and management skills. “The U.S.
still has the best system architects in
the world,” boasts Bill Curtis of the
Software Engineering Institute. “At
large systems, nobody touches us.”
But when it comes to just writing
program code, the American hege-
mony may be drawing to a close.

FURTHER READING
ENCYCLOPEDIA OF SOFTWARE ENGINEER-
ING. Edited by John J. Marciniak. John
Wiley & Sons, 1994.

SOFTWARE 2000: A VIEW OF THE FUTURE
Edited by Brian Randell, Gill Ringland
and Bill Wulf. ICL and the Commission
of European Communities, 1994.

FORMAL METHODS: A VIRTUAL LIBRARY.
Jonathan Bowen. Available in hypertext
on the World Wide Web as http://www.
comlab.ox .ac.uk/archive/ formal-
methods.html

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

INDIA’S
SOFTWARE
EXPORTS

(MILLIONS OF
U.S. DOLLARS)

6

10

39

52

67

100

128

164

225

360

483

1,000

NOT AVAILABLE

SOURCES: NIIT, NASSCOM

Copyright 1994 Scientific American, Inc.

