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19.1 THE CLUSTERING TASK

Clustering refers to the grouping of records, observations, or cases into classes of
similar objects. A cluster is a collection of records that are similar to one another
and dissimilar to records in other clusters. Clustering differs from classification in
that there is no target variable for clustering. The clustering task does not try to clas-
sify, estimate, or predict the value of a target variable. Instead, clustering algorithms
seck to segment the entire data set into relatively homogeneous subgroups or clusters,
where the similarity of the records within the cluster is maximized, and the similarity
to records outside this cluster is minimized.

For example, the Nielsen PRIZM segments, developed by Claritas Inc., repre-
sent demographic profiles of each geographic area in the United States, in terms of
distinet lifestyle types, as defined by zip code. For example, the clusters identified for
zip code 90210, Beverly Hills, California, are as follows:

e Cluster # 01: Upper Crust Estates
Cluster # 03: Movers and Shakers
Cluster # 04: Young Digerati
Cluster # 07: Money and Brains
Cluster # 16: Bohemian Mix.

@

8

]

The description for Cluster # 01: Upper Crust is “The nation’s most exclusive
address, Upper Crust is the wealthiest lifestyle in America, a haven for empty-nesting
couples between the ages of 45 and 64. No segment has a higher concentration of
residents earning over $100,000 a year and possessing a postgraduate degree. And
none has a more opulent standard of living.”

Examples of clustering tasks in business and research include the following:

e Target marketing of a niche product for a small-capitalization business that does
not have a large marketing budget.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantat D, Larose.
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e For accounting auditing purposes, to segment financial behavior into benign
and suspicious categories. L -

e Asa dimensiqn—reduction tool when a data set has hundreds of attributes.

e Dor gene expi‘ession clustering, where very large quantities of genes may
exhibit similar behavior. '

Clustering is often performed as a preliminary step in a data mining process,
with the resulting clusters being used as further inputs into a different technique
downstream, such as neural networks. Owing to the enormous size of many
present-day databases, it is often helpful to apply clustering analysis first, to reduce
the search space for the downstream algorithms. In this chapter, after a brief look at
hierarchical clustering methods, we discuss in detail k-means clustering; in Chapter
20, we examine clustering using Kohonen networks, a structure related to neurall
networks.

Cluster analysis encounters many of the same issues that we dealt with in the
chapters on classification. For example, we shall need to determine

e how to measure similarity;
e how to recode categorical variables;

how to standardize or normalize numerical variables;

@

e how many clusters we expect to uncover.

For simplicity, in this book, we concentrate on Buclidean distance between
records:

— 2
dnsciigean(@Y) = PUEESH
i
where x=ux, x5, ..., X, and y=y,, ¥3, ..., y,, represent the m attribute values of
two records. Of course, many other metrics exist, such as city-block distance:

dcity-block(xay) = lei - yi'
i

ot Minkowski distance, which represents the general case of the foregoing two met-
rics for a general exponent g :

/g
Uy — q
Dfinkowski (%, ¥) = Z % — il
i
For categorical variables, we may again define the “different from’ function for com-
paring the 7th attribute values of a pair of records:
) 0 ifx;, =y
different(x,, y,) = ' ?/_L
1 otherwise
where x; and y; are categorical values. We may then substltute different (x;, ;) for the
ith term in the Fuclidean distance metric above.

For optimal performance, clustering algorithms, just like algorithms for classi-
fication, require the data to be normalized so that no particular variable or subset of




variables dominates the analysis. Analysts may use either the min—max normalization
or Z-score standardization, discussed in earlier chapters:

' X — mi

Min — max normalization: X* = ———= Hg]:z(}g)
divation: X* = S X

Z-score standardization: X* = .‘__?I_n.%ag

All clustering methods have as their goal the identification of groups of records
such that similarity within a group is very high while the similarity to records in other
groups is very low. In other words, as shown in Figure 19.1, clustering algorithms
seek to construct clusters of records such that the berween-cluster variation is large
compared to the within-cluster variation. This is somewhat analogous to the concept
behind analysis of variance.

Between-cluster variation; <—>

Within-cluster variation:  _____; -

Figure 19.1  Clusters should have small within-cluster variation compared to the between—
cluster variation.

19.2 HIERARCHICAL CLUSTERING METHODS

Clustering algorithms are either hierarchical or nonhierarchical. In hierarchical
clustering, a treelike cluster structure (dendrogram) is created through recursive
partitioning (divisive methods) or combining (agglomerative) of existing clusters.
Agglomerative clustering methods initialize each observation to be a tiny cluster of
its own. Then, in succeeding steps, the two closest clusters are aggregated into a
new combined cluster. In this way, the number of clusters in the data set is reduced
by one at each step. Eventually, all records are combined into a single huge cluster.
Divisive clustering methods begin with all the records in one big cluster, with the
most dissimilar records being sphit off recursively, into a separate cluster, until
each record represents its own cluster. Because most computer programs that apply
hierarchical clustering use agglomerative methods, we focus on those.
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Distance between records is rather straightforward once appropriate recoding
and normalization has taken place. But how do we determine distance between clus-
ters of records? Should we consider two clusters to be close if their nearest neighbors
are close or if their farthest neighbors are close? How about criteria that average out
these extremes?

We examine several criteria for determining distance between arbitrary clusters
A and B:

e Single linkage, sometimes termed the nearest-neighbor approach, is based on
the minimum distance between any record in cluster A and any record in cluster
B. In other words, cluster similarity is based on the similarity of the most similar
members from each cluster. Single linkage tends to form long, slender clusters,
which may sometimes lead to heterogeneous records being clustered together.

e Complete linkage, sometimes teried the farthest-neighbor approach, is based
on the maximum distance between any record in cluster A and any record in
cluster B. In other words, cluster similarity is based on the similarity of the
most dissimilar members from each cluster. Complete linkage tends to form
more compact, spherelike clusters.

e Average linkage is designed to reduce the dependence of the cluster-linkage
criterion on extreme values, such as the most similar or dissimilar records. In
average linkage, the criterion is the average distance of all the records in cluster
A from all the records in cluster B. The resulting clusters tend to have approx—
imately equal within-cluster variability.

Let us examine how these linkage methods work, using the following small,
one-dimensional data set:

2 5 9 15 16 18 25 33 3 . 45

19.3  SINGLE-LINKAGE CLUSTERING

Suppose that we are interested in using single-linkage agglomerative clustering on
thzs data set. Agglomerative methods start by assigning each record to its own cluster.
Then, single linkage seeks the minimum distance between any records in two clusters.
Figure 19.2 illustrates how this is accomplished for this data set. The minimum cluster
distance is clearly between the single-record clusters where each contains the value
33, for which the distance must be 0 for any valid metric. Thus, these two clusters are
combined into a new cluster of two records, both of value 33, as shown in Figure 19.2.
Note that, after step 1, only nine (n — 1) clusters remain. Next, in step 2, the clusters
containing values 15 and 16 are combined into a new cluster, because their distance
of 1 is the minimum between any two clusters remaining.
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Figure 19.2 - Single-linkage agglomerative clustering on the sample daia set.

Here are the remaining steps:

e Step 3. The cluster containing values 15 and 16 (cluster { 15,16}) is combined
with cluster {18}, because the distance between 16 and 18 (the closest records
in each cluster) is 2, the minimum among remaining clusters.

o Step 4: Clusters {2} and {5} are combined.

e Step 5: Cluster {2,5} is combined with cluster {9}, because the distance ,
between 5 and 9 (the closest records in each cluster) is 4, the minimum among
remaining clusters.

e Step 6: Cluster {2,5,9} is combined with cluster {15,16,18}, because thé dis-
tance between 9 and 15 is 6, the minimum among remaining clusters.

e Step 7: Cluster {2,5,9,15,16,18} is combined with cluster {25}, because the
distance between 18 and 25 is 7, the minimum among remaining clusters.

e Step 8: Cluster {2,5,9,15,16,18,25} is combined with cluster {33,33}, because
the distance between 25 and 33 is 8, the minimum among remaining clusters.

® Step 9: Cluster {2,5,9,15,16,18,25,33,33} is combined with cluster {45}. This
last cluster now contains all the records in the data set.

19.4 COMPLETE-LINKAGE CLUSTERING

Next, let us examine whether using the complete-linkage criterion would result in
a different clustering of this sample data set. Complete linkage seeks to minimize
the distance among the records in two clusters that are farthest from each other
Figure 19.3 illustrates complete-linkage clustering for this data set.
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Figure 19.3 Complete-linkage agglomerative clustering on the sample data set.

e Step 1. As each cluster contains a single record only, there is no difference
between single linkage and complete linkage at step 1. The two clusters each
containing 33 are again combined,

e Step 2. Just as for single linkage, the clusters containing values 15 and 16 are
combined into a new cluster. Again, this is because there is no difference in the
two criteria for single-record clusters. ;

e Step 3: Al this point, complete linkage begins to diverge from its predecessor.
In single linkage, cluster {15,16} was at this point combined with cluster { 18],
But complete linkage looks at the farthest neighbors, not the nearest neighbors.
The farthest neighbors for these two clusters are 15 and 18, for a distance of 3.
This is the same distance separating clusters {2} and {5}. The complete-linkage
criterion is silent regarding ties, so we arbitrarily select the first such combina-
tion found, therefore combining the clusters {2} and {5} into a new cluster.

e Step 4: Now cluster {15,16} is combined with cluster {18}.

@ Step 5: Cluster {2,5} is combined with cluster {9}, because the complete-
linkage distance is 7, the smallest among remaining clusters.

o Step 6: Cluster {25} is combined with cluster {33,33}, with a complete-linkage
-distance of 8. :

o Step 7: Cluster {2,59} is combined with cluster {15,16,18}, with a
complete-linkage distance of 16.

o Step & Cluster {25,33,33} is combined with cluster {45}, with a
complete-linkage distance of 20. '

e Step 9: Cluster {2,5,9,15,16,18} is combined with cluster {25,33,33 45} All
records are now contained in this last large cluster.

Finally, with average linkage, the criterion is the average distance Of all the
records in cluster A from all the records in cluster B. As the average of a single
record is the record’s value itself, this method does not differ from the earlier meth-
ods in the early stages, where single-record clusters are being combined. At step 3,
average linkage would be faced with the choice of combining clusters {2} and {5},
or combining the {15,16} cluster with the single-record {18} cluster. The avérage
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distance between the {15,16} cluster and the {18} cluster is the average of |18 — 15]
and |18 — 161, which is 2.5, while the average distance between clusters {2} and {5} is
of course 3. Therefore, average linkage would combine the {15,16} cluster with clus-
ter {18} at this step, followed by combining cluster {2} with cluster {5}. The reader
may verify that the average-linkage criterion leads to the same hierarchical structure
for this example as the complete-linkage criterion. In general, average linkage leads
to clusters more similar in shape to complete linkage than does single linkage. -

19.5 Kk-MEANS CLUSTERING

The k-means clustering algorithm! is a straightforward and effective algorithm for
finding clusters in data. The algorithm proceeds as follows: |
o Step I: Ask the user how many clusters k the data set should be partitioned into.
& Step 2: Randomly assign & records to be the initial cluster center locations.

e Step 3: For each record, find the nearest cluster center. Thus, in a sense, each
- cluster center “owns” a subset of the records, therehy representing a partition
of the data set. We therefore have k clusters; C, G, ..., C.

e Step 4: For each of the k clusters, find the cluster centroid, and update the loca-
tion of each cluster center to the new value of the centroid. '

e Step 5: Repéat steps 3—5 until.convergence or termination.
The “nearest™ criterion in step 3 is usually Euclidean distance, although other
criteria may be applied as well. The cluster centroid in step 4 is found as follows.

Suppose that we have n data points (a;, by, ¢|), (¢, b, €)s ..., (ay, by, c,), the
centroid of these points is the center of gravity of these points and is located at point

(Z a/n, Y bi/n Y c; /n,). For example, the points (1,1,1), (1,2,1), (1,3,1), and
(2,1,1) would have centroid
(1+1+1+2 1424341 1+14+1+1

) = (1.25,1.75, 1.00)

4 ’ 4 ’ 4
The algorithm terminates when the centroids no longer change. In other words,
the algorithm terminates when for all clusters C, C,, ..., C,, all the records “owned”

by each cluster center remain in that cluster, Alternatively, the algorithm may termi-
nate when some convergence criterion is met, such as no significant shrinkage in the
mean squared error (MSE):

ko
SSE _ Ziimt Zpec, 4@ mY’
N-k N—k

where SSE represents the sum of squares error, p € C; represents each data point in
cluster i, m; represents the centroid (cluster center) of cluster i, N is the total sample

MSE =

17. MacQueen, Some miethods for classification and analysis of muitivariate observations, Proceedings of
the 5th Berkeley Symposium on Mathematical Statistics and FProbability, Vol. 1, pp. 281-297, University
of California Press, Berkeley, CA, 1967. ) ’
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size, and & is the number of clusters. Recall that clustering algorithms seek to con-
struct clusters of records such that the between-cluster variation is large compared
to the within-cluster variation. Because this concept is analogous to the analysis of
variance, we may define a pseudo-F statistic as follows:

P _ MSB _ SSB/k—1
k=LN-E ™ MSE ~ SSE/N —k

where SSE is defined as above, MSB is the mean square between, and SSB is the sum
of squares between clusters, defined as

‘ _
SSB = Z ny- d(m;, M)*
i=1 S 7
where n; is the number of records in cluster #, m; is the ceniroid (cluster center) for
cluster i, and M is the grand mean of all the data.

MSB represents ‘the between-cluster variation and MSE represents the
within-cluster variation. Thus, a “good” cluster would have a large value of the
pseudo-F stafistic, representing a situation where the between-cluster variation is
large compared to the within-cluster variation. Hence, as the k-means algorithm
proceeds, and the quality of the clusters increases, we would expect MSB to increase,
MSE to decrease, and F to increase.

19.6 EXAMPLE OF k-MEANS CLUSTERING AT WORK

L

Let us examine an example of how the k-means algorithm works. Suppose that we
have the eight data points in two-dimensional space shown in Table 19.1 and plotted
in Figure 19.4 and are interested in uncovering k=2 clusters.

Let us apply the k-means algorithm step by step.

e Step I Ask the user how many clusters k the data set should be partitioned into.
We have already indicated that we are interested in k=2 clusters.

e Step 2: Randomly assign k records to be the initial cluster center locations. For
this example, we assign the cluster centers to be my = (1,1) and m, = (2,1).

@ Step 3 (first pass). For each record, find the nearest cluster center. Table 19.2
contains the (rounded) Euclidean distances between each point and each clus-
ter center m; =(1,1) and m, =(2,1), along with an indication of which cluster
center the point is nearest to. Therefore, cluster 1 contains points {a,e.g}, and
cluster 2 contains points {b,c,d,f,h}.

® Step 4 (first pass): For each of the k clusters find the cluster centroid and update
the location of each cluster center to the new value of the centroid. The centroid

TABLE 19.1 Data points for k-means example

a b c d e - f Ag h
(1,3) 33 @43) (5,3) (L2 @42 (1,1) @2,1)




