Name:_____

Homework #1 Computer Organization Due: September 7, 2017 (Thursday) by 4:00 PM

1. Perform the following calculations (unsigned and infinite number of bits/digits):

(a)	(b)	(c)	(d)
111101102	10010002	E952E ₁₆	E952E ₁₆
+ <u>01100011</u> ₂	-0111101_{2}	+ <u>5AE74</u> 16	- <u>5AE74</u> 16

2. Represent the following decimal numbers in binary using **16-bit** signed magnitude, one's complement, and two's complement:

decimal #	signed magnitude 16-bits	one's complement 16-bits	two's complement 16-bits
9210			
-4010			

3. Using 16-bits what is the range of values for each of the following representations: (Leave your answer as an equation contain powers of 2.)

a) unsigned integers:

b) signed integers using two's complement:

4. What decimal (base 10) value is represented by the 32-bit signed, two's complement value FFFF A7E9₁₆? (The 32-bits two's complement value is shown as a hexidecmal so I did not need to write a 32-bit binary number.)

5. Use Booth's algorithm to calculate the 14-bit product of $1100101_2 \times 1101101_2$.

6. Convert -179.375₁₀ to its 32-bit IEEE-754 floating point representation.

8. For the same values of A and B in question 7, would the high-level language assignment statement "C = A+B" assign C the *mathematically* correct sum if A, B and C were using the 64-bit IEEE 754 floating point format? (explain your answer)