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Abstract

A Bloom �lter is an ingenious randomized data-structure for concisely representing a set

in order to support approximate membership queries. The space eÆciency is achieved at the

cost of a small probability of false positives. It was invented by Burton Bloom in 1970 for

the purpose of spell checking and for many years it was seldom mentioned in other contexts,

except for database optimization. Nevertheless, Bloom's beautiful approach has seen a sudden

resurgence in a variety of large-scale network applications such as shared web caches, query

routing, and replica location. This survey presents a plethora of recent uses of this old data

structure, its modern variants, and the mathematical basis behind them, with the aim of making

these ideas available to a wider community and the hope of inspiring new applications.

1 Introduction
A Bloom �lter is a simple space-eÆcient randomized data structure for representing a set in order
to support membership queries. The space eÆciency is achieved at the cost of a small probability
of false positives, but often this is a convenient trade-o�. Although Bloom �lters were invented in
the 1970's [1] and have been heavily used in database applications (see e.g. [20, 15]), they have only
recently received widespread attention in the networking literature.

This survey presents a plethora of recent uses of Bloom �lters in a variety of network contexts,
with the aim of making these ideas available to a wider community and the hope of inspiring
new applications. We �rst describe the mathematics behind Bloom �lters, their history, and some
important variations. We then consider four types of network-related applications of Bloom �lters:

� Collaborating in overlay and peer-to-peer networks: Bloom �lters can be used for summarizing
content to aid collaborations in overlay and peer-to-peer networks.

� Resource routing: Bloom �lters allow probabilistic algorithms for locating resources.
� Packet routing: Bloom �lters provide a means to speed up or simplify packet routing protocols.
� Measurement: Bloom �lters provide a useful tool for measurement infrastructures used to
create data summaries in routers or other network devices.

We emphasize that this simple categorization is very loose; some applications �t into more than one
of these categories, and these categories are not meant to be exhaustive. Indeed, we suspect that
new applications of Bloom �lters and their variants will continue to bloom in the network literature.
Also, we emphasize that we are providing only brief summaries of the work of many others. If a
speci�c application whets your curiosity, we encourage you to read the full papers.

The theme unifying these diverse applications is that a Bloom �lters o�ers a succinct way of
representing a set or list of items. There are many places in a network where one might like to keep
or send a list, but a complete list requires too much space. A Bloom �lter o�ers a representation
that can dramatically reduce space, at the cost of introducing false positives. If false positives do
not cause signi�cant problems, the Bloom �lter may provide improved performance. We call this
the Bloom �lter principle, and we repeat it for emphasis below.

The Bloom �lter principle: Wherever a list or set is used, and space is a consideration, a Bloom �lter
should be considered. When using a Bloom �lter, consider the potential e�ects of false positives.
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Figure 1: An example of a Bloom �lter. The �lter begins as an array of all 0's. Each item xi in the
set S is hashed k times, with each hash yielding a bit location; these bits are set to 1. To check if
an element y is in the set, hash it k times and check the corresponding bits. The element y1 cannot
be in the set, since one of the bits is a 0. The element y2 is either in the set or it is a false positive.

2 Bloom �lters: Mathematical preliminaries
2.1 Standard Bloom �lters

We begin by presenting the mathematics behind Bloom �lters. A Bloom �lter for representing a set
S = fx1; x2; : : : ; xng of n elements is described by an array of m bits, initially all set to 0. A Bloom
�lter uses k independent hash functions h1; : : : ; hk with range f1; : : : ;mg. We make the natural
assumption that these hash functions map each item in the universe to a random number uniform
over the range f1; : : : ;mg for mathematical convenience. (In practice, reasonable hash functions
appear to behave adequately, e.g. [21].) For each element x 2 S, the bits hi(x) are set to 1 for
1 � i � k. A location can be set to 1 multiple times, but only the �rst change has an e�ect. To
check if an item y is in S, we check whether all hi(y) are set to 1. If not, then clearly y is not a
member of S. If all hi(y) are set to 1, we assume that y is in S, although we are wrong with some
probability. Hence a Bloom �lter may yield a false positive, where it suggests that an element y is
in S even though it is not. Figure 1 provides an example. For many applications, false positives
may be acceptable as long as their probability is suÆciently small.

The probability of a false positive for an element not in the set, or the false positive rate, can
be calculated in a straightforward fashion, given our assumption that hash functions are perfectly
random. After all the elements of S are hashed into the Bloom �lter, the probability that a speci�c
bit is still 0 is �
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= (1� p)k. Note that we use the asymptotic approximations from now

on for convenience.
It is worth noting that in many cases Bloom �lters are described slightly di�erently. Instead of

having one array of size m shared by all of the hash functions, each hash function has a range of
m=k consecutive bit locations disjoint from all others. The total number of bits is still m, but the
bits are divided equally among the k hash functions. Repeating the above analysis, we �nd in this
case that the probability a speci�c bit is 0 is�
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Asymptotically, then, the performance is the same as the original scheme. However, since
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the probability of a false positive is actually always slightly higher with this division. Since the
di�erence is small, this approach may be still be useful for implementation reasons; for example,
dividing the bits among the hash functions may make parallelization of array accesses easier.

Suppose we are given m and n and we wish to optimize for the number of hash functions. There
are two competing forces: using more hash functions gives us more chances to �nd a 0 bit for an
element that is not a member of S, but using fewer hash functions increases the fraction of 0 bits
in the array. The optimal number of hash functions that minimizes f as a function of k is easily
found by taking the derivative. More conveniently, note that f equals exp(k ln(1 � e�kn=m)). Let
g = k ln(1�e�kn=m). Minimizing the false positive rate f is equivalent to minimizing g with respect
to k. We �nd

dg

dk
= ln

�
1� e�

kn

m

�
+

kn

m

e�
kn

m

1� e�
kn

m

:

It is easy to check that the derivative is 0 when k = ln 2 � (m=n); further e�orts reveal that this is a
global minimum. Alternatively, using p = e�kn=m, we �nd

g = �
m

n
ln(p) ln(1� p);

from which symmetry reveals that the minimum value for g occurs when p = 1=2, or equivalently
k = ln 2 � (m=n). In this case the false positive rate f is (1=2)k = (0:6185)m=n: In practice, of course,
k must be an integer, and smaller k might be preferred since they reduce the amount of computation
necessary.

2.2 Hashing vs. Bloom �lters

Another natural way to represent a set is to use hashing. Each item of the set can be hashed into
�(logn) bits, and a (sorted) list of hash values then represents the set. This approach yields very
small error probabilities. For example, using 2 log

2
n bits per set element, the probability that two

distinct elements obtain the same hash value is 1=n2. Hence the probability that any element not
in the set matches some hash value in the set is at most n=n2 = 1=n by the standard union bound.

Bloom �lters can be interpreted as a natural generalization of hashing that allows more interest-
ing tradeo�s between the number of bits used per set element and the probability of false positives.
(Indeed, a Bloom �lter with just one hash function is equivalent to hashing.) Bloom �lters yield a
constant false positive probability even if a constant number of bits are used per set element. For
example, whenm = 8n, the false positive probability is just over 0:02. For most theoretical analyses,
this tradeo� is not interesting; using hashing yields an asymptotically vanishing probability of error
with only �(logn) bits per element. Bloom �lters have therefore received little attention in the
theoretical community. In contrast, for practical applications the price of a constant false positive
probability may well be worthwhile to reduce the necessary space.

2.3 Standard Bloom �lter tricks

The simple structure of Bloom �lters makes certain operations very easy to implement. For example,
suppose one has two Bloom �lters representing sets S1 and S2 with the same number of bits and
using the same number of hash functions. Then a Bloom �lter that represents the union of two sets
can be obtained by taking the OR of the two bit vectors of the original Bloom �lters.

Another nice feature is that Bloom �lters can easily be halved in size. Suppose the size of the
�lter is a power of 2. If one wants to half the size of the �lter, just OR the �rst and second halves
together. When hashing, the high order bit can be masked.



2.4 Counting Bloom �lters

Suppose that we have a set that is changing over time, with elements being inserted and deleted.
Inserting elements into a Bloom �lter is easy; hash the element k times and set the bits to 1.
Unfortunately, one cannot perform a deletion by reversing the process. If we hash the element to be
deleted and set the corresponding bits to 0, we may be setting a location to 0 that is hashed to by
some other element in the set. In this case, the Bloom �lter no longer correctly re
ects all elements
in the set.

To avoid this problem, [8] introduces the idea of a counting Bloom �lter.1 In a counting Bloom
�lter, each entry in the Bloom �lter is not a single bit but instead a small counter. When an item
is inserted, the corresponding counters are incremented; when an item is deleted, the corresponding
counters are decremented. To avoid counter over
ow, we choose suÆciently large counters. Analysis
from [8] (which will appear in the full version of the survey) reveals that 4 bits per counter should
suÆce for most applications.

2.5 Compressed Bloom �lters

In recent work, Mitzenmacher addresses the following question [19]. Suppose that a server is sending
a Bloom �lter to several other servers over a network. Can we gain anything by compressing the
resulting Bloom �lter? If we choose the optimal value for k to minimize the false probability as
calculated above, then p = 1=2. Under our assumption of good random hash functions, the bit
array is essentially a random string of m 0's and 1's, with each entry being 0 or 1 with probability
1/2. It would therefore seem that compression cannot gain when sending Bloom �lters.

Mitzenmacher demonstrates the 
aw in this reasoning. The problem is that we have optimized
the false positive rate of the Bloom �lter under the constraint that there arem bits in and n elements
represented by the �lter. Suppose instead that we optimize the false positive rate of the Bloom �lter
under the constraint that the number of bits to be sent after compression is z, but the size m of
the array in its uncompressed form can be larger. It turns out that by using a larger, but sparser,
Bloom �lter can yield improved false positive rates with a smaller number of transmitted bits.

3 Historical Applications
Bloom �lters were used in early UNIX spell-checkers [18]. Rather than store and search a dictionary,
a Bloom �lter representation of the dictionary was stored. In early systems, where memory was
a scarce and valuable resource, the space savings of a Bloom �lter o�ered signi�cant performance
advantages.

Bloom �lters were proposed by Spa�ord as a means of succinctly storing a dictionary of un-
suitable passwords for security purposes [27]. Manber and Wu describe a simple way to extend the
technique so that passwords that are within edit distance 1 of a dictionary word are also not allowed
[16]. In this setting, a false positive could force a user to avoid a password even if does not lie in
the set of unsuitable passwords.

Bloom �lters have also been used in databases, see e.g. [15, 20]. One use is to speed up semijoin
operations. In a distributed database, one database may wish to send another a list of all cities
where the cost of living is greater than 50,000 dollars, so that the other database can determine all
employees that live in such cities. Instead of sending a list of cities, a Bloom �lter can be sent. The
list of employee/city pairs can be sent back to the �rst database to remove false positives.

4 A Sample Network Application: Distributed Caching
To begin our survey of network applications, we present an early and especially instructive example
of Bloom �lters in a distributed protocol. Fan, Cao, Almeida, and Broder describe Summary Cache,
which uses Bloom �lters for Web cache sharing [8]. In their setup, proxies cooperate in the following
way: on a cache miss, a proxy attempts to determine if another proxy cache holds the desired Web
page. If so, a request is made to that proxy rather than trying to obtain that page from the Internet.

1The name counting Bloom �lter for this data structure was introduced in [19].



For such a scheme to be e�ective, proxies must know the contents of other proxy caches. In
Summary Cache, to reduce message traÆc proxies do not transfer URL lists corresponding to the
exact contents of their caches, but instead periodically broadcast Bloom �lters that represent the
contents of their cache. If a proxy wishes to determine if another proxy has a page in its cache, it
checks the appropriate Bloom �lter. In the case of a false positive, a proxy may request a page from
another proxy, only to �nd that that proxy does not actually have that page cached. In that case,
some additional delay has been incurred. In this setting, false positives and false negatives may occur
even without a Bloom �lter, since the cache contents may change between periodic updates. The
small additional chance of a false positive introduced by using a Bloom �lter is greatly outweighed
by the signi�cant reduction in network traÆc achieved by using the succinct Bloom �lter instead of
sending the full list of cache contents. This technique is used in the open source Web proxy cache
Squid, where the Bloom �lters are referred to as Cache Digests [25].

Since cache contents are changing frequently, [8] suggests that caches use a counting Bloom �lter
to track their own cache contents, and broadcast the corresponding standard 0-1 Bloom �lter to the
other proxies. The alternative would be to construct a new Bloom �lter from scratch whenever an
update is sent; using the counting Bloom �lter both reduces and amortizes this cost. Using delta
compression and compressed Bloom �lters, as described in [19], can yield a further reduction in the
number of bits transmitted.

5 Applications: P2P/Overlay Networks
Peer-to-peer applications are a natural place to use Bloom �lters, as collaborating peers may need
to send each other lists of URLs, packets, or object identi�ers. As an example, an early peer-to-
peer application of Bloom �lters is due to Marais and Bharat [17] in the context of a desktop web
browsing assistant called Vistabar. Cooperative users of Vistabar store annotations and comments
about the web pages they visited in a central repository. Conversely they see these comments
whenever they load an annotated page. Rather than make a request for each URL encountered,
Vistabar periodically downloads a Bloom �lter corresponding to all annotated URLs.

5.1 Moderate-sized P2P networks

Many constructions for peer-to-peer networks are based on distributed hash tables in order to locate
objects [6, 22, 28]. Distributed hash tables are particularly useful for large-scale scalability and for
coping with settings where individual nodes may frequently enter or leave the system.

For moderate-sized and more robust peer-to-peer systems of hundreds of nodes, Bloom �lters may
provide an attractive alternative for locating objects over distributed hash tables. While keeping
a list of objects stored at every other node in a peer-to-peer system may be prohibitive, keeping a
Bloom �lter for every other node may be tractable. For example, instead of using a 64-bit identi�er
for each object, a Bloom �lter could use 8 or 16 bits per object. False positives in this situation yield
extraneous requests for objects to nodes that do not have them. A prototype P2P system dubbed
PlanetP based on this idea is described in [4]; the �lters actually store keywords associated with
documents instead of object IDs. Implementation challenges include how frequently �lters need to
be updated.

In [13], a similar approach that makes additional use of grouping and hierarchy is described.
There the idea is to introduce some hierarchy so that groups of nodes are governed by a leader.
The leaders are meant to me more stable, long-lasting nodes that form a peer-to-peer network using
Bloom �lters in a manner similar to that described above, except that the Bloom �lters cover objects
held by the group. The group leader controls routing within a group and other group-speci�c issues.

5.2 Approximate Set Reconciliation for Content Delivery

Byers, Considine, Mitzenmacher, and Rost [3] demonstrate another area where Bloom �lters can be
useful in peer-to-peer applications. They suggest that peers may want to solve the following type
of approximate set reconciliation problems. Suppose peer A has a set of items SA, and peer B has
a set of items SB . B would like to send A a succinct data structure so that A can start sending B



items that B does not have, that is, items in SA �SB . One approach is to have B send A a Bloom
�lter; A then runs through its elements, checking each one against the Bloom �lter, and sends any
element that does not lie in SB according to the �lter. Because of false positives, not all elements
in SA � SB will be sent, but most will. The authors also consider an alternative data structure
that uses Bloom �lters, but allows for faster determination of elements in SA � SB when the size
of the di�erence is small [3, 2]. This work demonstrates that Bloom �lters can also be useful as
subroutines inside of more complex data structures.

The application [3] targets is the distribution of large �les to many peers in overlay networks. The
authors argue for encoded content. In this setting, peers may wish to collaborate during downloads,
receiving encoded packets from other peers as well as the source, e�ectively increasing the download
rate. The problem of determining what encoded packets peer B needs that peer A has is simply
the problem of determining SB � SA. Since the content is redundantly encoded, obtaining a large
fraction of SB � SA rather than the entire set is suÆcient for this application.

5.3 Set Intersection for Keyword Searches

Reynolds and Vahdat use Bloom �lters in a similar fashion as [3], except their goal is to �nd the set
intersection instead of the set di�erence [23]. Their approach is essentially the same as for database
semijoins. Peer B can send a Bloom �lter representing SB to A; A then sends the elements of SA
that appear to be in SB according to the �lter. False positives yield elements of SA that are in
fact not in SB , but if desired B can then determine these elements to �nd SA \ SB exactly. The
Bloom �lter approach allows SA \SB to be determined with fewer bits transmitted than by having
A sending the entire set SA. Reynolds and Vahdat describe how this approach for set intersection
allows for eÆcient distributed inverted keyword indices for keyword search in an overlay network
over a peer-to-peer architecture. When a document is published, the author also selects a set of
keywords for the document. Each node in the network is responsible for a set of keywords in the
inverted index; hashes of the keyword determine the responsible nodes. To handle conjunctive
queries involving multiple nodes, the set intersection methods above are used to reduce the amount
of information that needs to be sent.

6 Applications: Resource Routing
6.1 A Basic Routing Protocol

Before describing speci�c resource routing protocols in the literature, we provide a general framework
that highlights the main idea of resource routing protocols. This general framework was described
by Czerwinski et al. as part of their architecture for a resource discovery service [5].

Suppose that we have a network in the form of a rooted tree, with nodes holding resources.
Resource requests starting inside the tree head toward the root. Each node keeps a uni�ed list of
resources that it holds or that are reachable through any of its children, as well as individual lists of
resources for it and each child. When a node receives a request for a resource, it checks its uni�ed
list to make sure it has a way of routing that request to the resource. If it does, it checks the
individual lists to �nd how to route the request toward the proper node; otherwise, it passes the
request further up the tree toward the root.

This rather straightforward routing protocol becomes more interesting if the resource lists are
represented by Bloom �lters. The property that a union of Bloom �lters can be obtained by
ORing the corresponding individual Bloom �lters allows easy creation of uni�ed resource lists.
False positives in this situation may cause a routing request to go down an incorrect path. In such
a case backtracking up the tree may be necessary, or a slower but safer routing mechanism may be
used as a back-up. Several recent papers utilize a resource routing mechanism of this form.

6.2 Resource Routing on P2P Networks

Rhea and Kubiatowicz [24] utilize the ideas in the basic protocol above to design a probabilistic
routing algorithm for peer-to-peer location mechanisms, in conjunction with the OceanStore project



[12]. The goal is to ensure that when a requested �le has a �le replica nearby in the system, it is
found and the request is routed eÆciently along a shortest path. Such an algorithm can be used
in conjunction with a more expensive routing algorithm such as those suggested for speci�c P2P
networks [6, 22, 28].

Rhea and Kubiatowicz have each node in the network keep an array of Bloom �lters for every
edge in the overlay topology. There is a Bloom �lter for each distance d, up to some maximum
value, so that the dth Bloom �lter in the array keeps track of �les reachable along an edge via d hops
through the overlay network. Rhea and Kubiatowicz call this array of Bloom �lters an attenuated
Bloom �lter. The attenuated Bloom �lter only �nds �les within d hops, but it is likely to �nd the
shortest path to a �le replica if many paths exist. A more expensive algorithm can be applied if
the �le cannot be found using the attenuated Bloom �lter or if more than d hops are taken, which
suggests a false positive has occurred. Major challenges in this approach involve keeping the Bloom
�lters up-to-date without generating too much network traÆc.

6.3 Geographic Routing

Hsiao suggests using this type of routing for a geographic routing system for mobile computers [11].
For convenience, suppose that the geographic space is a square region that is recursively subdivided
into smaller squares, each one-fourth the size of the previous level. That is, each parent square is
broken into four children squares, giving a natural implicit tree hierarchy. If the smallest square
subregions have size 1 and the size of the original square is k, there will be log

2
k + 1 levels in this

recursive structure.
For the geographic routing scheme, each node contains a Bloom �lter representing the list of

mobile hosts reachable through itself or through its three siblings at each level. Using these �lters,
a source �nds the level corresponding to the smallest geographic region that contains it and the
destination, and then forwards a message to the center of the region corresponding to the sibling that
the destination node currently resides in. Intermediate nodes forward the message appropriately,
recursing down the implicit tree until the destination is reached.

Distributed hashing has also been proposed as a means of accomplished geographic routing [14].
So for both P2P network and geographic routing, Bloom �lters have been suggested as a possible
alternative to distributed hashing that may prove better for systems of intermediate size. Exploring
and understanding the tradeo�s between these two techniques would certainly be an interesting
area for future work.

7 Applications: Packet Routing
In the area of packet routing, several diverse uses of Bloom �lters have been proposed. We examine
how Bloom �lters can be used to aid early detection of forwarding loops, to �nd heavy 
ows for
the Stochastic Fair Blue queue management scheme, and to potentially speed up the forwarding of
multicast packets.

7.1 Detecting Loops in Icarus

Whitaker and Wetherall suggest using a small Bloom �lter in order to avoid forwarding loops in
unicast and multicast protocols [29]. Normally packets trapped in a forwarding loop are detected
and removed from a network using the IP Time-To-Live �eld, whereby a counter keeps track of
the number of hops the packet has taken and removes it if the number of hops grows too large.
If loops are small, the Time-To-Live �eld may not prevent substantial unnecessary looping. While
such loops are rare in the long-standing protocols guiding most Internet traÆc today, the authors
suggest it could be a signi�cant problem for experimental protocols, such as those being suggested
for peer-to-peer networks. To avoid this problem, the authors suggest that each packet carry a
small Bloom �lter in each header, where the Bloom �lter is used to keep track of the set of nodes
visited. Each node has a corresponding mask that can be ORed into the Bloom �lter as it passes;
if the �lter does not change, there may be a loop. False positives may lead to packets incorrectly



being dropped because of an assumed loop. The authors discuss ways to limits the negative e�ects
of false positives in this context.

7.2 Queue Management: Stochastic Fair Blue

Stochastic Fair Blue provides a queue management algorithm that uses a Bloom �lter to detect overly
aggressive or non-responsive 
ows [9]. The idea of using a Bloom �lter to detect 
ow behavior arises
again in our discussion of applications of Bloom �lters to measurement tools.

Each packet is hashed into k bits in a Bloom �lter based on for example the source-destination
pair, so all packets in a 
ow hash to the same bits. Each Bloom �lter entry has an associated
value pi, used to represent a marking probability associated with that bit. The marking probability
associated with a bit goes up by some value Æ if, when a packet arrives, the number of packets queued
in the system corresponding to that bit lies above some threshold; similarly, if when a packet arrives
there are no packets queued in the system corresponding to that bit, then the marking probability
is decreased by Æ. The probability that a packet is marked, which will denote congestion to the
end hosts, is the minimum of the marking probabilities associated with the k Bloom �lter bits after
arrival. Flows that are �lling a bu�er will therefore have higher probabilities of being marked. Flows
that are non-responsive to marking will eventually drive the marking probability high; when it is
above a certain threshold, the router can limit the 
ow to a �xed amount of bandwidth or adopt
some other rate-limiting policy.

A false positive in this situation leads to the misclassi�cation of a well-behaved 
ow. In this case
a 
ow might be punished even though it responds to congestion appropriately. One way to mitigate
this e�ect suggested in [9] is to change the hash functions periodically, so that if a responsive 
ow
is being punished unfairly the resetting of the hash functions makes it extremely unlikely that it
continues to be punished.

7.3 Multicast

When packets are being sent through a multicast tree, the router associates multicast addresses with
interface lists. One way to think of this is that each multicast address corresponds to an associated
list of interfaces, or connections; if a packet associated with a multicast address comes in on one
interface of the list associated with an address, it should be forwarded through all other interfaces
on the list.

Gr�onvall suggests an alternative using Bloom �lters [10]. Instead of keeping a list of interfaces
for each address, there can be a Bloom �lter of addresses associated with each interface. This avoids
the need to store addresses at the router entirely. Parallelization can be used to speed the check
of each packet against all interfaces. Handling the removal of an address from an interface is not
discussed, but one could imagine using a counting Bloom �lter to handle deletions from the Bloom
�lter accordingly.

False positives in this setting lead to some packets being forwarded incorrectly. These packets
will eventually be discarded, either at the next router hop or further down the line, so if the false
positive probability is small the e�ect may not be signi�cant.

8 Applications: Measurement Infrastructure
A growing problem for networks is how to provide a reasonable measurement infrastructure. How
many packets from a given 
ow pass through a router? Has a packet from this source passed
through this router recently? The challenge in coping with such questions lies in the tremendous
amounts of data being processed, making complete measurement extremely expensive. Because of
their succinctness, Bloom �lters may be useful for many such problems, as the examples below
illustrate.

8.1 Recording Heavy Flows

Estan and Varghese present an excellent application of Bloom �lters to traÆc measurement problems
inside of a router, reminiscent of the techniques used in the Stochastic Fair Blue algorithm [7]. (While
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y1   +4
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Figure 2: An example of conservative update. This 
ow can only have been responsible for 2
previous bytes, so when it introduces 4 new bytes, counters should increase only to 6.

the authors do not label their data structure a Bloom �lter variation, it will be clear that it is from
the discussion below.)

The goal is to easily determine heavy 
ows in a router. Each entering packet is hashed k times
into a Bloom �lter. Associated with each location in the Bloom �lter is a counter that records the
number of packet bytes that have passed through the router associated with that location. The
counter is incremented by the number of bytes in the packet. If the minimum counter associated
with a packet is above a certain threshold, the corresponding 
ow is placed on a list of heavy 
ows.
Heavy 
ows can thereby be detected with a small amount of space and a small number of operations
per packet.

A false positive in this situation corresponds to a light 
ow that happens to hash into k locations
that are also hashed into by heavy 
ows, or to a light 
ow that happens to hash into locations hit
by several other light 
ows. All heavy 
ows, however, are detected.

Estan and Varghese also introduce the idea of a conservative update, an interesting variation
that reduces the false positive rate signi�cantly for real data. When updating a counter upon a
packet arrival, it is clear that the number of previous bytes associated with the 
ow of that packet
is at most the minimum over its k counters. Call this Mk. If the new packet has B bytes, the
number of bytes associated with this 
ow is at most Mk +B. So the updated value for each of the
k counters should be the maximum of its current value and Mk + B. Instead of adding B to each
counter, conservative update only changes the values of counter to re
ect the most possible bytes
associated with the 
ow, as shown in the example in Figure 2. This reduces the probability that
several light 
ows hashing to the same location can raise the counter value over the threshold.

8.2 IP Traceback

If one wanted to trace the route a packet took in a network, one way of doing it would be to have
each router in the network record every packet that it forwards. Then each router could be queried
to determine whether it forwarded the given packet, allowing the route of the packet to be traced
backward from its destination. Such a scheme would allow malicious packets to be traced back
along uncorrupted routers in order to �nd their source.

Snoeren et al. suggest this approach, with the addition of using Bloom �lters in order to reduce
the amount of information that needs to be stored in order summarize the set of packets seen, as
part of their Source Path Isolation Engine (SPIE) [26]. A false positive in this setting means that
a router mistakenly identi�es a packet as having been seen. When attempting to trace back the
reverse path of a packet, a false positive would lead to a branching, giving multiple possible paths.
A low false positive rate would keep the branching small and hence the number of possible paths
small as well. Of course to make such a scheme practical the authors give careful consideration to
how much information to store and when to discard stale information.

9 Conclusion
A Bloom �lter is a space-eÆcient representation of a set or a list that handles membership queries.
As we have seen in this survey, there are numerous examples where one would like to use a list



in a network. Especially when space is an issue, a Bloom �lter may be an excellent alternative to
keeping an explicit list. The drawback of using a Bloom �lter is that it introduces false positives.
The e�ect of a false positive must be carefully considered for each speci�c application to determine
whether the impact of false positives is acceptable. This leads us to:

The Bloom �lter principle: Wherever a list or set is used, and space is a consideration, a Bloom �lter
should be considered. When using a Bloom �lter, consider the potential e�ects of false positives.

There seems to be a great deal of room to develop variants or extensions of Bloom �lters for spe-
ci�c applications. For example, we have seen that the counting Bloom �lter allows for approximate
representations of multi-sets, or allows one to track sets that change over time through insertions
and deletions. Since Bloom �lters have received comparatively little attention from the algorithmic
community, there may be a number of improvements to be found.

We expect that the recent burst of applications of Bloom �lters in network systems is really just
the beginning. Because of their simplicity and power, we believe that Bloom �lters will continue to
�nd applications in networks systems in new and interesting ways.
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