
The View through MetaLens:
Usage Patterns for a Meta-Recommendation

System

AUTHORS
J. Ben Schafer
Department of Computer Science
University of Northern Iowa
Cedar Falls, IA 50614-0507 USA
+1 319 273 2187

schafer@cs.uni.edu

Joseph A. Konstan
Computer Science and Engineering
University of Minnesota
Minneapolis, MN 55455USA
+1 612 625 4002

konstan@cs.umn.edu

John Riedl
Computer Science and Engineering
University of Minnesota
Minneapolis, MN 55455USA
+1 612 625 4002

riedl@cs.umn.edu

ABSTRACT

In a world where a person’s number of choices can be overwhelming, recommender systems help

users find and evaluate items of interest. They do so by connecting users with information regarding

the content of recommended items or the opinions of other individuals. Such systems have become

powerful tools in domains such as electronic commerce, digital libraries, and knowledge management.

In this paper, we address such systems, as well as a relatively new class of recommender system called

meta-recommenders. Meta-recommenders provide users with personalized control over the generation

of a single recommendation list formed from a combination of rich data using multiple information

sources and recommendation techniques. We discuss observations made from the public trial of a

meta-recommender system in the domain of movies, and lessons learned from the incorporation of

features that allow persistent personalization of the system. Finally, we consider the challenges of

building real-world, usable meta-recommenders across a variety of domains.

1. INTRODUCTION
My poor generation, we're on for the ride,
an ocean of choices, pulled out on the tide.
We're handed a beach ball, and told to pick a side.
Drowned in information. My poor generation.
 - "My Poor Generation," Moxy Früvous [1]

On a daily basis we are "drowned in information" as we choose from the overwhelming number of

options in "an ocean of choices." To keep abreast of the latest developments in our career field, we can

choose from a whole host of journal articles, conference proceedings, textbooks, and web sites. During

our personal time we must choose which television show to watch, which movie to see, which CD to

play, or which book to read. The number of options from which to choose in each of these categories

is often more than we can possibly process. While the Internet has been touted as "the great

equalizer"[2], it has also made the situation worse. Where we were previously limited to the journals

carried by our library or the books available at our local bookstore, the Internet has given us access to

hundreds of libraries around the world and bookstores that carry millions rather than thousands of

titles. In the end, it has become impossible even to evaluate all of the information in a given category,

let alone "consume" it all.

Fortunately, the same technology that has contributed to the problem has provided us with a

portion of the solution. Recommender Systems have emerged as powerful tools for helping users

reduce information overload. These systems use a variety of techniques, ranging from ephemeral

attribute matching to persistent personalized suggestions. Regardless of technique, these systems

attempt to help users identify the items that best fit their needs, their tastes, or even both.

In this paper, we discuss a new class of recommendation interface known as meta-recommendation

systems. These systems present recommendations fused from "recommendation data" from multiple

information sources. Meta-recommendations systems encourage users to provide both ephemeral and

persistent information requirements, so the resulting recommendations blend query-fit with long-term

personalization. Furthermore, these systems provide a high level of user control over the combination

of recommendation data, providing users with more unified and meaningful recommendations. In

presenting meta-recommenders, we discuss data and observations obtained from the public release of a

meta-recommendation system for the domain of movies. We consider the usefulness of the

introduction of persistent personalization for individual users. Finally, we consider the challenges of

building real-world, usable meta-recommenders across a variety of domains.

2. RELATED WORK

2.1 Recommender System Actions
According to Resnick and Varian [3], "in a typical recommender system people provide

recommendations as inputs, which the system then aggregates and directs to appropriate recipients."

This definition includes three classes of systems. Suggestion systems provide a list of candidate items

or recommendations. Estimation systems provide an estimate of user preference on specific items or

predictions. Comment systems provide access to textual recommendations of members of a

community.

In our work [4], we have extended this definition by using the term "recommender system" to refer

not only to systems that specifically recommend items but also to those that help users evaluate items.

Such systems include feature-search systems, which provide users with the ability to express explicitly

an interest in items with a particular set of features. While the line between feature-search systems and

keyword retrieval systems is a fine one, the distinction lies in the overall feel of the system. These

"recommendations" serve as an important first step in the user's decision-making process. In this

paper, we will use the term "recommender system" to refer to any system that provides a

recommendation, prediction, opinion, or user-configured list of items that assists the user in evaluating

items.

2.2 Recommender System Algorithms
Although the algorithms used within these systems vary, most are based on one or more of three

classes of technology: data mining, information filtering and retrieval, and collaborative filtering.

The term data mining refers to a broad spectrum of mathematical modeling techniques and

software tools that are used to find patterns in data. Recommender systems that incorporate data

mining techniques make their recommendations using knowledge learned from the actions and

attributes of users. These systems are often based on the development of user profiles that can be

persistent (based on demographic or item "consumption" history data), ephemeral (based on the actions

during the current session), or both. While recommender systems using data mining techniques are

common in the domain of e-commerce [4], these techniques are not used in the present research, and no

exemplars are discussed.

The earliest "recommender systems" were information filtering and retrieval systems designed to

fight information overload in textual domains. Recommender systems that incorporate information

retrieval methods are frequently used to satisfy ephemeral information needs from relatively static

databases. Conversely, recommender systems that incorporate information filtering (IF) methods are

frequently used to identify items that match relatively stable and specific information needs in domains

with a rapid turnover or frequent additions. Although information retrieval and information filtering

are considered fundamentally different tasks [5], they are based on similar techniques. In this paper we

will consider both under the singular term "information filtering."

Without computers, we often receive recommendations by listening to what those around us have

to say. If many people in my office state that they enjoyed a particular movie, or if a member of my

book club who I tend to agree with suggest a given book, then I treat these as recommendations.

Collaborative filtering (CF) is an attempt to facilitate the process of "word of mouth." Users provide

the system with evaluations of items that may be used to make "recommendations" to other users. The

simplest of CF systems provides generalized recommendations by aggregating the evaluations of the

community at large. More advanced systems personalize the process by forming an individualized

neighborhood for each user consisting of a subset of users whose opinions are highly correlated with

those of the original user.

2.3 Recommender System Applications
The algorithms discussed in the previous section have been employed in the creation of numerous

research and commercial recommender systems that demonstrate that such systems are powerful tools

for helping connect users with items of interest. In this section we will attempt to demonstrate the

scope of these techniques through a brief review of several of these applications. A complete review of

the broad range of recommender system applications is beyond the scope of this article, and several

articles and books have already been written on this topic [4] [6].

Recommender systems employing information filtering techniques often do so through the use of

IF agents. Operating in the domain of Usenet news, NewT [7] employs a vector-space-based genetic

algorithm to learn which articles should be selected and which should not. Ripper [8] and RE:Agent

[9] use learning techniques to classify e-mail based on a user's prior actions. Amalthaea [10] is a multi-

agent system for recommending information sources on the Internet. Information filtering agents keep

track of a user's interests while information discovery agents search and retrieve documents matching

the user's interest profile.

Commercial applications of IF-based recommender systems include library and clipping services,

such as webclipping.com, which use keyword searches of online newspaper, magazines, Usenet

groups, and web pages to deliver recommended information to customers.

Recommender systems based on collaborative filtering have produced recommendations in a

variety of domains. Operating on email and Usenet news postings, Tapestry [11] allows users to

identify other users whose knowledge should be trusted (e.g. "show all books on 'agents' in which

Nathan's evaluation contains 'outstanding'"). These rules actively establish a neighborhood for

recommendations. The original GroupLens project [12] provides automated neighborhoods for

recommendations in Usenet news. Users rate articles, and GroupLens automatically recommends other

articles to them. This work was expanded to include the release of MovieLens (movielens.umn.edu), a

CF system for the domain of movies [13]. Ringo [14] uses CF techniques to provide users with

recommendations about audio CDs. In addition, Ringo has support for message boards – independent

of the recommender system – on which users can discuss their music tastes. Finally, while the previous

examples rely on explicit ratings, PHOAKS [15] uses implicit ratings to create a recommender system

by examining Usenet news postings to find "endorsements" of web sites and creating a listing of the

top web sites endorsed in each newsgroup.

Commercial applications of CF-based recommender systems include e-commerce sites, such as

Amazon.com, which use implicit recommendations via purchase history and/or explicit

recommendations via "rate it" features to generate recommendations of products to purchase.

2.4 Hybrid Recommender Systems
As researchers have studied different recommender system technologies, many have suggested that

no single technology works for all situations. Thus, hybrid systems have been built in an attempt to use

the strengths of one technology to offset the weaknesses of another. Burke [16] discusses several

different hybridization methods, but points out that most hybrid systems involve the combination of

collaborative filtering with either a content-based (IF) or data mining technique. While a thorough

discussion of such systems is beyond the scope of this article, and has already been completed [16], we

will present a simple introduction to hybrid systems in this section.

Tango [17] recommends articles in the domain of an online newspaper. It does so by creating

separate recommendations from CF and IF algorithms and merging these using a separate combination

filter. Tango’s collaborative filter provides true personalization of the community used. Rather than

using a “fixed” ratio for the averaging of the recommendations provided by the two filters, the

combination filter employed by Tango uses per-user, per-article weights. The calculation of these

weights takes into account the degree of confidence each filter has in a particular document’s

recommendation, as well as error analysis for each filter’s past performance for the user in question.

Torres et al. [18] present the results of several experiments involving TechLens. Similar to Tango,

TechLens combines both a collaborative filter and a content-based filter to recommend research papers.

In both offline and online studies they consider five different algorithms for combining the

recommendations from these filters, including sequential algorithms. These techniques take the

recommendations from one filter as a seed to the second filter. They conclude that different algorithms

should be used for recommending different kinds of papers, although they discovered that sequential

algorithms tend to produce poor results under most circumstances.

The SmartPad supermarket product recommender system [19] suggests new or previously

unpurchased products to shoppers creating shopping lists on a personal digital assistant (PDA). The

SmartPad system considers a consumer’s purchases across a store’s product taxonomy.

Recommendations of product subclasses are based upon a combination of class and subclass

associations drawn from information filtering and co-purchase rules drawn from data mining. Product

rankings within a product subclass are based upon the products’ sales rankings within the user’s

consumer cluster, a less personalized variation of collaborative filtering.

Nakamura and Abe [20] describe a system for the automatic recording of programs using a

personal video recorder (Tivo, UltimateTV, etc.). They implement a set of “specialist” algorithms that

use probabilistic estimation to produce recommendations that are both content-based (based on

information about previously recorded shows from the electronic program guide) and collaborative

(based on the viewing patterns of similar users). Their system also incorporates an intelligent

scheduling algorithm. In most other domains, although based on the system’s recommendations, the

user takes the final action. With a personalized video system, the video recorder takes the action. In

principle at least, the recorder can take only a limited number of actions (record too many shows and

the storage drive will fill up). Thus, the decision to take action must include information regarding not

only which shows are worth recording but also resource allocation (will doing so prevent me from

recording a “better” show in a few hours?).

Commercial applications of hybrid-based recommender systems include search tools such as

Google (www.google.com) that combines results of both content searches (keyword analysis) and

collaborative recommendations (authoritativeness). Brin and Page [21] calculate the

“authoritativeness” of page pt by summing the authoritativeness of those pages in set P which link to pt.

The more pages that link to pt, and in turn, the higher the authoritativeness of these pages, the higher

the authoritativeness score for pt.

Our work builds on the hybrid systems by developing a recommender framework that is able to

incorporate inputs from multiple sources simultaneously. The sources we consider are covered by the

hybrid systems, but since each hybrid system is developed to work with a closed set of source, no

single system incorporates as much data on the items being recommended. Further, the meta-

recommender framework we propose is flexible to the emergence of future data sources.

2.5 Recommending in Other Domains
While a traditional CF-based recommender requires users to provide explicit feedback, a social

navigation system attempts to mine the social activity records of a community of users to implicitly

extract the importance of individuals and documents [22]. Such activity may include Usenet messages,

system usage history, citations, or hyperlinks. TopicShop [23] is an information workspace which

allows groups of common websites to be explored, organized into user defined collections, manipulated

to extract and order common features, and annotated by one or more users. These actions on their own

may not be of large interest, but the collection of these actions can be mined by TopicShop and

redistributed to other users to suggest sites of general and personal interest. Agrawal et. al [24]

explored the threads of newsgroups to identify the relationships between community members.

Interestingly, they concluded that due to the nature of newsgroup postings – users are more likely to

respond to those with whom they disagree – “links” between users are more likely to suggest that users

should be placed in differing partitions rather than the same partition. Although this technique has not

been directly applied to the construction of recommendations, such an application seems a logical field

of future study.

Although traditional recommenders suggest what item a user should consume they have tended to

ignore changes over time. Temporal recommenders suggest when a recommendation should be made

or when a user should consume an item. Adomavicius et. al [25] suggest the construction of a

recommendation warehouse which stores ratings in a hypercube. This multidimensional structure can

store data on not only the traditional user and item axes, but also for additional profile dimensions such

as time. Through this approach, queries can be expanded from the traditional “what items should we

suggest to user X” to “at what times would user X be most receptive to recommendations for product

Y.” Hamlet [26] is a system designed to minimize the purchase price of airplane tickets. Hamlet

combines the results from time series analysis, Q-learning, and the Ripper algorithm to create a multi-

strategy data-mining algorithm. By watching for trends in airline pricing and suggesting when a ticket

should be purchased, Hamlet was able to save the average user 23.8% when savings was possible.

Finally, Miller et. al. consider the challenges inherent when converting systems which are

normally tied down to the desktop to systems for our increasingly mobile society. They discuss an

interface that helps users of MovieLens take their recommendations with them through the use of a

recommender system for the occasionally connected PDA [27].

The work in this paper is focused on recommending in traditional domains, not the emerging

domains described in this subsection. However, we see the long-term impact of meta-recommenders as

extending beyond traditional domains to include many of these emerging domains. For instance, meta-

recommenders will have to be developed to incorporate temporal information, or to operate in the

limited environment of a PDA.

3. METALENS

3.1 THE NEED FOR META-RECOMMENDERS
Consider the following scenario. Mary's 8-year-old nephew is visiting for the weekend, and she

would like to take him to the movies. Mary has several criteria for the movie that she will select. She

would like a comedy or family movie rated no "higher" than PG-13. She would prefer that the movie

contain no sex, violence or offensive language, last less than two hours and, if possible, show at a

theater in her neighborhood. Finally, she would like to select a movie that she herself might enjoy.

Traditionally, Mary might decide which movie to see by checking the theater listings in the

newspaper and asking friends for recommendations. More recently, her quest might include the use of

the Internet to access online theater listings and search databases of movie reviews. Additionally, she

might be able to obtain personalized, CF-based recommendations from a web site such as MovieLens.

Producing her final selection, however, requires a significant amount of manual intervention; Mary

must visit each source to gather the data and then decide how to apply this data in making her final

decision.

The hybrid systems mentioned in the previous section are a significant step toward solving

problems like Mary’s. A hybrid movie recommendation system would provide Mary with lists of

movies blended from her long-standing collaborative filtering and content-interest profiles. It is likely,

however, that such a system would not offer her the ability to provide information that might improve

the recommendations produced by the combination algorithm. For example, if given access to the

combination algorithm, Mary could indicate that predictions should be biased less towards the British

art films she frequently likes and more toward the family movies appropriate for her nephew, or that

the movie should be relatively free of offensive language and last less than two hours.

Similar situations can be found across a variety of domains. A consumer can use dozens of

sources to gather a variety of attribute data and opinions regarding a product. Internet users browsing

for information on a given topic can try any number of search engines, each of which uses a slightly

different mechanism for determining the "top recommendations." Knowledge workers would like to

combine a variety of techniques including keyword analysis, citation analysis, and the

recommendations of other users to select appropriate documents. Even the addition of hybrid systems

does not completely solve the problem. A user can't tell Google to weigh the currency of the web

pages more highly in a search for "world cup results" even if currency may be part of the underlying

algorithm. Thus, the user may be forced to process the recommendations manually in order to weed

out the results from previous years. Similarly, a user may find it difficult to tell his hybrid

recommendation newspaper that, while he was interested in the first dozen articles about the latest

political scandal, he isn’t really interested in reading any more.

In prior work [28] we have defined a new form of hybrid system with the level of user control

needed to allow for the meaningful blending of recommendations from multiple techniques and

sources. These systems, known as meta-recommenders, provide users with personalized control over

the generation of a single recommendation list formed from a combination of rich data using multiple

information sources and recommendation techniques. Based on the lessons we learned from existing

hybrid systems, we built the MetaLens Recommendation Framework (MLRF), a general architecture

for the construction of meta-recommenders. Using this framework, we implemented MetaLens, a

meta-recommender for the domain of movies. Much like Mary, who makes her final choice by

examining several movie data sources, MetaLens uses IF and CF technologies to generate

recommendation scores from several Internet film sites. In the remainder of this section, we will

briefly explain MLRF and discuss the personalization features added prior to the first public trial of

MetaLens.

3.2 The MetaLens Recommendation Framework
The MetaLens Recommendation Framework (MLRF) (Figure 1) is an architectural framework

within which multiple meta-recommenders can be constructed. It does so through a three-layer

process. We will explain this process through the context of MetaLens for movies.

The user interface for MetaLens centers on two screens. On the preferences screen, users indicate

their ephemeral requirements for their movie search. They do this by providing information

concerning nineteen features of movies and theaters including genre, MPAA rating, critical reviews,

and distance to the theater (Table 1). For each feature the user may indicate the specific factors he

considers important (e.g., "I want to see a film from the ‘comedy’ or ‘family’ genre"), a weight that

indicates how important it is that the recommended movie matches these factors (e.g., "It is very

important that the movie I see be one of the genres I selected") and a “Display Info?” selection which

indicates that data related to the specific feature should be included with the recommendations. As an

example, Figure 2 might represent a portion of Mary's requirements for the movie that she views with

her nephew. When Mary submits her preferences, the interface layer validates the information

provided, formats it, and transfers control to the computation layer.

Prior to making any computation, the computation layer requests that the data layer produce the

appropriate information concerning the theater/movie/show time triples for the user's location. The

data layer gathers the information either from a local cache or through runtime data acquisition using

three sources – Yahoo Movies, Rotten Tomatoes, and MovieLens. Yahoo Movies (movies.yahoo.com)

provides information concerning movies and theaters including genre, MPAA rating, content, show

times, and theater location. This data is relatively static; for instance, a movie’s MPAA rating should

never change, and show times at a particular theater tend to be modified on a regular schedule typically

centered on the Friday release of new movies. Because of this, data from Yahoo Movies is gathered is

gathered offline by several cached data modules which collect information on regular, but potentially

independent, schedules to account for newly added entities and allow for potential changes in known

entities. Similarly, a cached data module gathers data from Rotten Tomatoes

(www.rottentomatoes.com) regarding critical review information, including the number of critics rating

the movie and the percentage of favorable reviews. Finally, MovieLens provides personalized

prediction information on a user/movie basis. Since these predictions may change at any time based on

new or modified data by other users of the system, a runtime acquisition module acquires this data.

The Rotten Tomatoes and MovieLens modules must also negotiate a data fusion process to coordinate

their data with that extracted from Yahoo Movies. While each of these three sites lists the title of each

movie, we must resolve variations in title format (‘The In-Laws’ vs. ‘In-Laws, The’) and different

releases of movies with the same name (Is that the 2003 or the 1979 version of ‘The In-Laws’?).

Once all of the data is gathered, it is returned to the computation layer. The algorithm employed

by the computation layer is based on the extended Boolean information retrieval algorithm proposed by

Salton et al [29] as a way to rank partial matches in Boolean queries in the domain of document

retrieval. In traditional Boolean retrieval, the keyword query “Computer AND Science” will not return

documents containing only the word “computer.” However, in many situations this document is better

than documents containing neither of these keywords. Thus, their algorithm returns this first document

higher than these “null” documents but lower than documents containing both keywords. Additionally,

it provides a capability to weight each of these keywords. For example, users may indicate that a

document containing only the word “computer” should be treated more favorably than a document

containing only the word “science.”

This algorithm is an ideal initial choice for meta-recommenders. In essence, Mary submits a query

that says “I want a movie that is a comedy or family movie rated no “higher” than PG-13, containing

no sex, violence or bad language, lasting less than two hours and, showing at a theater in my

neighborhood.” A traditional Boolean query of these requirements will return only movies matching

ALL of these features. Most users, however, will settle for a movie matching a majority of these

features. As applied in the computation layer, this algorithm treats the recommendation process as the

submission of an AND joined information retrieval query using Equation 1. In this equation, I is the

item being evaluated (a movie, theater, show time triple), Q is the “query” provided by the user, wa is

the weight associated with “feature a” by the user, and da is the degree to which the feature matches the

user’s query.

∑
∑

∈

∈

−
−=

featuresa
a

featuresa
aa

w

dw
QISimilarity 2

22)1(
1),((Equation 1)

The value of da is calculated as follows:

• For features that match a requirement on a single option (i.e. “the movie theater should be offering

discounted tickets for the particular showtime”), we chose to represent each item by a binary score

of 1 or 0. Realistically, this choice may not be the best option for all features. For example, a

movie less than 130 minutes is represented by a score of 1 while a movie greater than 130 minutes

is represented by a score of 0. We could imagine the use of a “decay function” which reduces the

score from 1 to 0 as the runtime increases above 130 minutes. However, this involves an analysis

of user expectations we have not yet explored.

• For features that can match on one of several options (i.e. “the movie should be either comedy or

family movie”), each item is represented by a standard Boolean score based on the submission of

an OR joined query on the requested options. For example, a movie with one of its genres listed as

“comedy” is represented by a score of 1. A movie with one of its genres listed as “comedy” and

one of its genres listed as “family” is represented by a score of 1. A movie with none of its genres

listed as “comedy” or “family” is represented by a score of 0. In fact, this procedure fails to use

some of the power of the Extended Boolean Information Retrieval algorithm. The base algorithm

is designed to score items with two or more items in an OR joined string higher than items

containing only one of the items in that string. However, this distinction was deemed to be

irrelevant in this recommendation domain. That is, to most users a “family comedy” is no better a

match than simply a “family” movie. Thus a standard Boolean OR is used instead.

• For features in which the input value is a numerical score (i.e. the MovieLens predicted rating, the

average user score), each item is represented by a normalized score from 0 to 1 inclusive. For

example, MovieLens predictions range from 1 to 5 stars. A 5 star movie is normalized to a score

of 1. A 1 star movie is normalized to a score of 0. A 3.5 star movie is normalized to a score of

0.625.

MetaLens judges overall query fit based on recommendation scores from these multiple data

sources. No attempt is made to resolve potential information conflicts. Instead, each piece of data is

converted as-is, and the item match scores combined to calculate a query-fit score for each triple.

These are returned to the interface layer where the recommendations are sorted to contain only the

highest-rated triple for each movie – each movie is recommended once in conjunction with the theater

and show time that best fits the user's requirements – and the final recommendations displayed. Thus,

according to

Figure 3, MetaLens recommends that Mary should take her nephew to see the 4:50 showing of

“Kangaroo Jack” at the CEC-Crossroads 12 Theater complex.

Users may obtain additional information about any of the recommended movies or theaters by

selecting the hyperlink of the item in question. This spawns a separate browser window containing

information about the item. Furthermore, results may be "tweaked" by the user who may modify the

requirements or weights for each feature, thus modifying which subset of features is considered

optimal.

3.3 Persistent Personalization Features
In addition to the base design of MLRF, which allows for the ephemeral personalization of the

recommendation request, the publicly tested version of MetaLens contains several features allowing

users to configure the system for persistent personalization. These consist of membership-level

personalization and query-level personalization.

Membership-level personalization focuses on data which is expected to remain relatively constant

from session to session. Although users may modify this data at any time, doing so involves an

interface separate from the base meta-recommender. Data gathered for membership-level

personalization include the US ZIP code for which the user wishes to receive recommendations,

theaters in that ZIP Code that he wishes to exclude from recommendations, and the number of

recommendations to display (currently “top-10” or “all”).

Query-level personalization focuses on data that may change from session to session. When a user

first uses MetaLens, each of the features on the preferences screen is set to its “MetaLens Default”

value. This default setting consists of “all off” or “all on” when a selection list is needed or an

“average” value when numerical input is needed, has the importance of every feature set to a mid-range

“sort of important” value, and has the “Display Info?” selection turned off for all features. Users may

easily modify these settings to represent their requirements for the recommendations. As previously

demonstrated, Mary can configure the preferences screen to indicate the ephemeral requirements she

has when taking her nephew to the movies. But what if this situation is a common occurrence? Mary

doesn’t want to adjust repeatedly this default query into one that actually represents her needs. Upon

submitting any query, Mary has the option of saving the preference values as a query profile under a

name of her choice. Profiles can be selected on future visits and submitted as-is or tweaked to fit the

specific situation. Profiles can be adjusted and saved again, or can be saved as new variations. Finally,

Mary may even indicate which query profile she wishes to use as her personal default (Figure 4).

3.4 The Accuracy of Meta-recommenders
While this paper discusses several issues concerning the use of MetaLens, it will not discuss the

“accuracy” of the system nor compare it to any of the benchmarks set forth by other recommendation

algorithms. This choice was made as a conscious decision. It is unclear how you would evaluate the

“accuracy” of MetaLens given existing data. For example, a traditional recommender system in the

domain of movies needs to compare whether the movies that it is recommending to a user are ones the

user would agree are “good” movies. Since these user opinions are frequently inputs to traditional

recommenders, this data exists, and traditional “train/test” techniques can be applied. However, the

recommendations from MetaLens predicts how well a movie, theater, and specific showtime will fit a

user’s overall profile for what it is they are looking for. Existing data sets do not provide user ratings

in a manner consistent with this recommendation approach. We are in the process of gathering data

that would allow us to perform various accuracy analyses.

4. Analysis of Public Usage of MetaLens
Our previous work was designed to consider the interfaces for meta-recommenders and controlled

user studies suggested that users found these systems more helpful than “traditional” systems. With

this work we wanted to consider what happened when users were given free reign with a public meta-

recommender. To address this interest, we conducted an initial public trial of MetaLens for movies.

During the first eight weeks in which MetaLens was offered as a part of the MovieLens website1, 838

users "registered" and submitted 1668 queries to MetaLens. The majority of these 838 users visited

MetaLens only once during the 8-week period (Table 2). Although we are interested in users in

general, we are particularly interested in active users. We have defined active users as those who used

MetaLens during three or more distinct sessions. Fifty-eight users (7% of all MetaLens users) fit into

this category2. Of the 1668 total queries submitted to MetaLens, 603 (36.2%) were submitted by active

users. In considering how users interacted with MetaLens, we are particularly interested in which

movie/theater features users consider important, and if users would take advantage of personalization

features. In the remainder of this section we will focus on data and observations related to these issues.

4.1 Movie/Theater Features
Assume that all users have approximately the same requirements for selecting a movie. If this

were the case, there would be no need for the level of personalization provided by meta-recommenders.

Designers could simply build a system to look for the exact set of features that all users want. Prior

work, however, has indicated that users prefer personalized control of the combination of

1 Since much of the power of MetaLens derives from its inclusion of personalized movie predictions from

MovieLens, MetaLens has been initially released as a feature of the MovieLens website.

recommendation data [28]. We have proposed that there are two differing but complementary reasons

for this. First, different users have very different interests and requirements. While theater location

may be a deciding factor for one user it may have little to no impact for another user. Second, what is

important to a user today may not be important tomorrow. That is, while a user may be unwilling to

drive 30 minutes with his children, he may be willing to do so when it is just him and his spouse.

Because of this, we designed MetaLens with a large and diverse set of movie and theater features.

We were interested in which of these features users consider important. It was our belief that this large

set of data provided users with a better system and that each of the pieces of recommendation data we

made available to users would be considered important at some point to some user.

Table 3 summarizes the weight assigned to each of the nineteen feature across the 1668 queries

submitted to MetaLens. Observe that each of the features received the highest weight available in at

least one query, and eighteen of the nineteen features received this weight in at least 1% of the queries.

Among active users we get fairly similar results (Table 4). Seventeen of the nineteen features received

the highest weight available in at least one query, while fifteen received this weight in at least 1% of

the queries.

On the surface, these results would appear to validate our belief that providing a large set of data is

advantageous since every piece of data is considered important to some segment of users. At the same

time, we note that, over all users, the most commonly provided weight for eighteen of the nineteen

features was the default value set by the system. Furthermore, seventeen of the nineteen features had

the zero weight as the second most common weight. Among active users, only eight of the features

have the default weight as the most commonly-provided value, but nine of the features were most

commonly set to zero weight. In other words, all users, and particularly active users, found many of

the features to be irrelevant to their query.

To consider this from a different direction we consider the distribution of the "non-default"

weights. That is, when users take the time to modify a feature's weight from its default value, do they

tend to consider the feature important (raised from the default) or not important (lowered)? Over all

users, fifteen of nineteen features were more frequently lowered than raised (each of these is

statistically significant with z scores ranging from –10 to –41). Among active users, sixteen of

nineteen features were more frequently lowered than raised (z scores ranging from –4 to –34). An

2 For comparison, during the three calendar-month period that encompassed this study, 4724 users visited

active user is nearly three times as likely to downgrade a features weight from the default weight as she

is to raise it (statistically significant difference, p<.05). This may suggest that users are mostly happy

with the relative weights we assign to the features they care to use, but want to eliminate many of the

features from the ranking.

A third way of analyzing "importance" is to consider which features users select to display with

their recommendations. The assumption that we can make is that if a user selects the “Display Info?”

option for a particular feature, they consider that piece of data to be an important part of their decision

making process. The results of this analysis are in Table 5. Observe that for all but the “special”

feature, at least 10% of the queries submitted by both all users and active users asked to have the

feature included in the final recommendation table.

Regardless of which “metric” we use to analyze the data, it would appear that our initial beliefs

were justified. Although many of these movie and theater features were considered unimportant by a

large segment of the user base, each item was considered important, even a "must," by a different

segment. Potential implications of this are explored more in sections 5 and 6.

4.2 Query Profiles
We previously described MetaLens’ ability for users to create and save queries for later retrieval.

These "query profiles" become an important piece of the personalization of MetaLens. Anecdotally, it

has been observed that users of systems like MovieLens often want a recommendation from the system

with a recurring set of parameters – "I want to take my children to see a movie tonight."3 While the

weights and selections within that request may change slightly over time, the "base" of the request is

the same (a movie rated no higher than PG-13 and over by 9:30). Query profiles allow users to

configure the system to save these individual base preferences and even set up profiles for different

daily moods. In doing so, they improve the end system by reducing the amount of future effort

required to get recommendations.

Of the 838 users who submitted at least one query to MetaLens, 278 (33%) of them established

355 profiles. For future reference, we will refer to these users as "Power Users." Table 6 lists the

distribution of number of profiles created by power users. On initial inspection, this seems to be a

MovieLens. Of these, 724 visited the site during three or more sessions (15.2%).

3 Indeed, we subsequently added the ability to save named queries to the basic features in MovieLens. This feature
is quite popular.

particularly poor result - only one third of all users created a query profile. However, further analysis

reveals some interesting observations.

As the number of visits by a user increases, so does the likelihood that he will become a power

user. Among the 156 users who used MetaLens on two or more sessions, 87 (56%) were power users.

Among the 58 active users, 44 (76%) were power users. The increased likelihood of more frequent

users becoming power users is statistically significant (p < .05). Another way of looking at this is to

consider the probability that a user has saved a profile. Over all users, a profile was saved during 22%

of the sessions. If this distribution is consistent over active users, then we would expect 52.5% of users

to have at least one profile when they obtained active user status. However, we observe that 41 of the

58 active users (70.7%) had saved at least one profile by the completion of their third session. Thus,

we are able to conclude that active users are more likely to be power users.

Similarly, we are able to conclude that power users are more likely to be active users. Of the users

who created one or more query profiles on their initial visit, 24.8% of these power users came back to

use the site on at least one other visit. This is nearly twice the return rate of those who do not become

power users (12.8%) with statistical significance. While 16% of power users become active users, this

rate is only 7% among users in general.

5. CAN YOU HAVE ACCESS TO TOO MUCH DATA?
While we consider our hypothesis from section 4.1 to be valid, analysis of the data also indicated

that, as a whole, users are interested in less data than we had originally expected. Recall that when

users modify the interest weight for a feature from its default weight, they most commonly set this

weight to zero (no interest) for seventeen of the nineteen features used in MetaLens (Table 3). In light

of this observation, it seems relevant to ask, can you have access to too much data?

In an effort to address this issue a sampling of MetaLens “users” were sent email invitations to

participate in an online survey. Of those sent invitations, 26 subjects accepted and completed the two-

part survey. These users consisted of 10 active users and 16 non-active users.

In part one, subjects were asked several questions concerning their MetaLens usage. Users were

asked to indicate what they felt were the strengths of MetaLens. Users were provided with a list of six

potential strengths and were given the option to enter additional strengths as well (although none opted

to do so). The average user selected 2.6 of the six strengths, with a majority of users indicating they

felt MetaLens provided relevant recommendations. A majority felt that the data used in this

recommendation process was one of the strengths as well. User responses are summarized in Table 7.

Another question asked users to indicate what they felt were the weaknesses of MetaLens. Users

were provided with a list of six potential weaknesses and were given the option to enter additional

items as well (again, none opted to do so). The average user selected one of the six weaknesses. The

most common response was that MetaLens uses too much non-relevant data. User responses are

summarized in Table 8. Interestingly, of the eleven users who provided this response, six also

indicated that the data used by MetaLens was a strength.

Part two of this survey provided users with access to demonstration versions of two new

MetaRecommenders built within the MetaLens Recommendation Framework – MetaLite and

MetaClick. MetaLite was developed to see if users would be interested in a meta-recommender with

access to less information. In deciding which features to include in MetaLite, we originally proposed

selecting the top five features. However, which features qualify as the “top five” varies depending on

the metric used. MovieLens, Genre, Cream %, Not Seen, and Distance were the five features receiving

the highest average weight. If we consider the features receiving the most “Must” votes, however,

Distance is replaced by MPAA rating. In the end, rather than choose which metric to consider, we

chose to implement MetaLite with these six features. MetaLite uses the interface design used for

MetaLens. Other than a reduction in the number of features that users can incorporate into their

queries, MetaLite is identical to MetaLens.

MetaClick was developed to see if users would be more interested in a meta-recommender

requiring almost no input from the user. In considering the relatively low return rate experienced with

MetaLens, one explanation is that users have a hard time translating their desires into categories of

features. Perhaps users would be willing to give up some of the control over the formation of their

recommendations in return for a simplified way to indicate their interests.

MetaClick consists of six single line descriptions of scenarios for the type of movie a user might

be interested in viewing (e.g. “chick flicks,” “date night,” “movie with the kids”). Each scenario is

connected with a system-defined “query profile” containing weights, values, and display information

for the nineteen movie and theater values used by the original MetaLens framework. Users simply

select which description best fits their mood for the evening. The profile corresponding to that

description is sent to the MetaLens recommendation engine, and recommendations are returned as

though the user had taken the time to configure MetaLens himself.

 Users were given a brief description of each system, were allowed to interact with each at will,

and were asked several questions concerning their perceived use of the systems. For each system,

subjects were asked to indicate if they would be likely to use the system. While 23 of the 26 (88.4 %)

indicated that they would use MetaLite, only 18 (69.2%) indicated they felt they would use MetaClick.

Subjects were then presented with three system-vs-system comparisons, and asked to estimate which

system they would be most likely to use. The results of this comparison are presented in Table 9.

Finally, users were given the opportunity to comment on each system. Although few uses took

advantage of this opportunity, comments concerning MetaLite were relatively evenly split between

those who felt that it took away what they loved about MetaLens (access to all that data), and those

who felt MetaLite improved on MetaLens by simplifying the process.

In an effort to better analyze the results of the pairwise comparisons summarized in Table 9, a

ranking of the three systems was generated for each user based on the results of the three comparisons.

Each time a system “won” a comparison, it received one point. Systems receiving a “same” score,

each received one half a point. Based on this method, the three systems received rankings on a scale of

zero (the system I would use the least) to two (the system I would use the most). Average rankings

over all test subjects, as well as rankings based on the activity level of subjects are displayed in Table

10.

Among all users, MetaLite is ranked higher than MetaClick. This ranking is seen again when

considering non-active users. In this case, MetaLite is ranked higher than either of the other two

systems. However, when we consider active users, we see very different results. In fact, active users

rank MetaLens higher than either of the other two systems. Finally, active users rank MetaLens higher

than non-active users do while non-active users rank MetaLite higher than active users do.

6. DESIGN IMPACT OF LESSONS LEARNED
When considering the observations discussed in sections 4 and 5, we have identified several

lessons learned that have a variety of implications for designers of future meta-recommenders.

When first designing MetaLens, we proposed that such a system is helpful because it assists users

in consolidating and evaluating a large quantity of recommendation data. As such, we argued that it

seems relevant to provide users with access to as much recommendation data as possible and let them

configure the system to best fit their needs. Sections 4.1 and 5 showed us that while this belief is likely

correct, designers must tread lightly around the belief that “more is better.” While it is true that users

have a variety of needs, in which case building a system with access to a large variety of data may be

beneficial, a significant segment of users seemed more interested in a system with a limited amount of

data. While the data isn’t conclusive, it could be speculated that those who didn’t return to use the

system did so because they found it too overwhelming. Yet, those who were frequent users of the

system seemed to do so specifically because of the large amount of recommendation data available.

These results suggest that future systems should consider a design that allows users to “start small.”

That is, systems should provide access to the core set of data that is deemed to be the bare bones data

required to make a useful recommendation. However, such systems must be easily modified to

increase the amount of data used in their recommendations to allow active users access to the diverse

data they seem to desire. Such systems may take the format of common search engines – providing a

simple search mechanism with “advanced features” hidden one layer down from the main search – or

may take the format of a “plug and play” system such as the modular systems described in the next

section.

Statistical analysis suggests both that power users are more likely to become active users and that

active users are more likely to become power users. It is difficult to conclude which is the cause and

which is the effect without specifically studying the return rates of those without access to query

profiles. However, it seems apparent that there is a correlation between the tendency to personalize a

system and the frequency with which one uses the system. One reason electronic commerce sites

implement recommender applications is in an effort to increase consumer loyalty to the site [4]. This

being the case, we may conclude that if personalization capabilities increase the likelihood of a user

being a repeat user, they may also increase the user's loyalty to the site.

7. FUTURE WORK
We are interested in several areas of future work concerning meta-recommenders. These include

the transfer of meta-recommenders to other domains, the future role of personalization, and additional

interfaces for meta-recommendation systems.

While results indicate that meta-recommenders are a promising class of recommender systems,

these results are based on a system limited to the domain of movies and whose users are experienced

MovieLens users and thus may not represent users at large. The MLRF was designed to be domain-

neutral, but it remains to be seen whether the benefit and acceptance of such systems will transfer to

other domains. While we expect our results to generalize to other domains, including e-commerce,

web search engines, and knowledge management, we must consider how the design of meta-

recommenders may change based on the domain. For example, what adaptations have to be made in

domains where item-features are less objective? For example, in the domain of books would features

such as Library of Congress classification, genre, keyword, and author be helpful? Our initial

expectation is that meta- recommenders will be most useful in domains with a wide variety of objective

information about the content, and in which that objective information is important to users’ decisions.

Thus, while we would expect a meta-recommender in the domain of books to be valuable, we suspect

that users may find meta-recommenders even more valuable in domains such as automobiles or

technical reports.

How do such systems handle access to privileged data? MetaLens depends on the receipt of

recommendation data from third parties. When this data is publicly accessible, there are few problems.

However, many sites restrict data access to registered users of the site. An additional protocol would

need to be added to the MetaLens framework allowing for the acquisition of data by a registered user.

For example, a meta-recommender in the domain of automobiles might allow for the integration of

recommendations from Consumer Reports only for those users with memberships at

consumerreports.com.4

Analysis of which features users include in their decision-making process suggests that different

users have very different requirements. While one user will insist on having access to a particular

feature, another will absolutely never use it. The creation of “modular” systems would allow users to

build custom recommenders based on the features each user feels is important. The creation of such a

system, however, is not expected to be a trivial matter. The recommendation framework will need to

be modified to accommodate easy and quick changes to the overlying system. Similarly, it is not

uncommon for users of recommender systems to request that “Feature X” be added into the system. A

recommender system using the MLRF should be able to handle inputs from any recommendation data

source as long as the input is provided in a format that can be easily fused with the base data. The

4 We should make it clear that current US copyright law and terms of use for web sites would prevent non-research

systems from directly "scraping" content from movie information sites as we've done. Some public sites do
provide interfaces for such queries, and other may be willing to do so in exchange for a link back to the site, but
the challenge of supporting access to individually subscribed or licensed data is likely to be an important one.

framework would need to be modified, however, to allow for the dynamic input of data and the

recommendation algorithm adjusted to handle a varying number of recommendation features.

Finally, we are interested in how the recommendation process might change as we make

modifications to the various interfaces with which users interact. One of the advantages of meta-

recommenders is that they involve such a rich assortment of recommendation data. While the present

interface matches other similar interfaces, user interface design experts like Shneiderman [30] would

argue that the current interface does not allow users to interact properly with the data since users cannot

directly see a query’s affect on the recommendation. We are very interested in the affect that “dynamic

query” interfaces may have on the way users interact with a meta-recommender.

8. CONCLUSIONS
In this paper we have discussed meta-recommenders – a new way to help users find

recommendations that are understandable, usable, and helpful. We have discussed observations made

from the public release of a meta-recommender system in the domain of movies, and lessons learned

from the incorporation of features that allow persistent personalization of the system. These include

the observation that giving users access and personalized control over a wide variety of data may make

for more meaningful recommendations, and that features which allow for persistent personalization of

meta-recommenders may generate more loyal users. All told, we feel these results provide a

meaningful foundation for the design of future meta-recommenders.

9. REFERENCES
[1] Moxy Früvous, (1999). My Poor Generation. Thornhill [Audio Recording]. The Bottom Line

Record Company.

[2] Dugan, I.J. (1996). The Internet is the Great Equalizer. Business Week, Enterprise Edition, October
21, 1996. (URL: http://www.businessweek.com/1996/43/b349849.htm)

[3] Resnick, P. and Varian, H.R. (1997). Recommender Systems. CACM 40(3), pp. 56-58.

[4] Schafer, J.B., Konstan, J.A., and Riedl, J. (2001). E-Commerce Recommendation Applications.
Data Mining and Knowledge Discovery 5(1/2) pp.115-153.

[5] Belkin, N.J. and Croft, W.B. (1992). Information Filtering and Information Retrieval: Two Sides
of the Same Coin? CACM 35(12) pp.29-38.

[6] Riedl, J., Konstan, J.A, and Vrooman, E. (2002). Word of Mouse: The Marketing Power of
Collaborative Filtering. Warner Business Books.

[7] Maes, P. (1994). Agents that Reduce Work and Information Overload. CACM 37(7) pp.31-40.

[8] Cohen, W.W. (1996). Learning Rules that classify E-mail. Proceedings of the AAAI Spring
Symposium on Machine Learning on Information Access.

[9] Boone, G. (1998). Concept Features in RE:Agent, an Intelligent Email Agent. Proceedings of
Autonomous Agents 98. pp.141-148.

[10] Moukas, A. and Zacharia, G. (1997). Evolving a Multi-agent Information Filtering solution in
Amalthaea. Proceedings of Autonomous Agents 97 pp.394-403.

[11] Goldberg, D., Nichols, D., Oki, B.M., and Terry, D. (1992). Using Collaborative Filtering to
Weave an Information Tapestry. CACM 35(12) pp.31-70.

[12] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J. (1994). GroupLens: An Open
Architecture for Collaborative Filtering of Netnews. CSCW 94, pp. 175-186.

[13] Dahlen, B.J., Konstan, J.A., Herlocker, J.L., Good, N., Borchers, A., Riedl, J. (1998). Jump-
starting movielens: User benefits of starting a collaborative filtering system with "dead data".
University of Minnesota TR 98-017.

[14] Shardanand, U. and Maes, P. (1995). Social Information Filtering: Algorithms for Automating
Word of Mouth. Proceedings of CHI-95 pp.210-217.

[15] Terveen, L., Hill, W., Amento, B., McDonald, D., and Creter, J. (1997). PHOAKS: A System for
Sharing Recommendations. CACM 40(3) pp.59-62.

[16] Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and
User-Adapted Interaction, v. 12, pp 331-370.

[17] Claypool, M., Gokhale, A., and Miranda, T. (1999). Combining Content-Based and Collaborative
Filters in an Online Newspaper. ACM SIGIR Workshop on Recommender Systems.

[18] Torres, R., McNee, S., Abel, M., Konstan, J.A., and Riedl, R. (2004). Enhancing Digital Libraries
with TechLens. Proceedings of JCDL’04. pp 228-236.

[19] Lawrence, R.D., Almasi, G.S., Kotlyar, V., Viveros, M.S., and Duri, S.S. (2001). Personalization
of Supermarket Product Recommendations. Data Mining and Knowledge Discovery 5(1/2) pp 11-
32.

[20] Nakamura, A. and Abe, N. (2000). Automatic Recording Agent for Digital Video Server.
Proceedings of MM-00 pp.57-66.

[21] Brin, S. and Page, L. (1998). The Anatomy of a Large-scale Hypertextual Search Engine.
Computer Networks and ISDN Systems, 30(1-7), pp 107-117.

[22] Munro, A., Hook, K., and Benyon, D. (editors) (1999), Social Navigation of Information Space,
Springer Verlag.

[23] Amento, B., Terveen, L., Hill, W., Hix, D., & Schulman, R (2003). Experiments in Social Data
Mining: The TopicShop System, ACM Transactions on Computer-Human Interaction, 10, 1, pp
54-85.

[24] Agrawal R., Rajagopalan, S., Srikant, R., & Xu, Y. (2003). Mining newsgroups using networks
arising from social behavior. Proceedings of the Twelfth World Wide Web Conference. pp. 529-
535

[25] Adomavicius, G., & Tushilin, A. (2001). Extending Recommender Systems: A Multidimensional
Approach. IJCAI-01 Workshop on Intelligent Techniques for Web Personalization (ITWP’2001).

[26] Etzioni, O., Knoblock, C.A., Tuchinda, R., & Yates, A. (2003). To Buy or Not to Buy: Mining
Airfare Data to Minimize Ticket Purchase Price, Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp 119-128.

[27] Bradley N. Miller, Istvan Albert, Shyong K. Lam, Joseph A. Konstan, John Riedl. (2003).
MovieLens Unplugged: Experiences with an Occasionally Connected Recommender System.
Proceedings of ACM 2003 International Conference on Intelligent User Interfaces (IUI'03)

[28] Schafer, J.B., Konstan, J.A., and Reidl, J. (2002). Meta-recommendation Systems: User-controlled
Integration of Diverse Recommendations. Proceedings of CIKM-02 pp. 196-204.

[29] Salton, G., Fox, E., and Wu, H. (1983). Extended Boolean Information Retrieval. CACM 26(11)
pp.1022-1036.

[30] Shneiderman, B. (1998). Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Addison Wesley Longman, Inc.

10. TABLES

 Meaning
Avg User An aggregate score from user comments at Yahoo Movies
Content Decreases the rating of movies containing selected objectionable content
CreamMin The number of reviews from “cream of the crop” critics at RottenTomatoes
Cream % The percent of “cream of the crop” critics liking the movie
CriticMin The # of total reviews at RottenTomatoes
Critic % The percent of the critics liking the movie
Discount Gives preference to showtimes where the tickets are at a discount
Distance The distance from a user’s ZIP code to the theater
Distributor The distributor of the film
End Time What time the movie ends
Genre Genre of the film
MaxLength Movies should not exceed this amount of time
MinLength Movies should be at least this amount of time
MovieLens Gives preferences to movies that the user is expected to like
MPAA What the MPAA rates the movie
Not Seen Will not recommend movies the user has seen (rated in MovieLens)
Release How recently the movie was released
Special Is the theater equipped to handle handicapped or hearing impaired patrons
Start Time What time does the movie start

Table 1: Movie/Theater features and their meaning

Sessions Users
1 682
2 98
3 17
4 13
5 3
6 7
7 5
8 3
9 3
10-19 5
20-29 1
30-39 1

Table 2: Number of sessions per user.

User Selection of Feature Weight Direction when default

weight is modified
Movie/
Theater
Feature 0 0.25 0.5

default
0.75 1 Must

(1)

Avg.
Weight

Lowered Raised

MovieLens 11 9 513 387 748 NA 0.78 1.7% 98.3%
Not Seen 5 101 17 622 133 273 439 0.70 12.3% 87.7%
Genre 227 119 839 201 158 124 0.53 41.7% 58.3%
Cream % 274 126 827 181 142 118 0.50 47.6% 52.4%
Distance 319 175 932 123 79 40 0.43 66.5% 33.5%
Critic % 368 136 910 152 63 39 0.42 67.1% 32.9%
End Time 406 42 1033 76 85 24 0.42 69.3% 30.7%
Discount 480 30 932 115 49 62 0.40 70.8% 29.2%
Start Time 448 63 987 72 78 20 0.40 75.8% 24.2%
Avg User 355 278 833 168 34 NA 0.39 74.5% 25.5%
MPAA 500 108 852 67 56 85 0.39 75.0% 25.0%
CreamMin 496 94 933 66 55 24 0.37 80.3% 19.7%
Release 548 61 960 78 8 13 0.34 84.3% 15.7%
MinLength 576 88 880 54 52 18 0.34 86.0% 14.0%
CriticMin 536 101 955 30 30 16 0.34 89.3% 10.7%
Content 634 43 923 24 26 18 0.32 90.9% 9.1%
MaxLength 664 106 822 30 30 16 0.30 91.0% 9.0%
Distributor 782 47 783 5 5 44 0.27 93.9% 6.1%
Special 841 9 816 1 0 1 0.25 99.8% 0.2%
All Features 8566 1652 16352 1963 1971 1101 0.42 67.0% 33.0%

Table 3: MetaLens distribution of feature weights – all users.

5 “Not Seen” was added shortly after the original deployment of MetaLens and was not on option for 83 of the

1668 queries.

User Selection of Feature Weight Direction when default

weight is modified
Movie/
Theater
Feature 0 0.25 0.5

default
0.75 1 Must

(1)

Avg.
Weight

Lowered Raised

MovieLens 4 1 104 75 419 NA 0.87 1.0% 99.0%
Not Seen 6 61 2 152 11 114 235 0.75 14.9% 85.1%
Cream % 127 67 201 69 56 83 0.51 48.3% 51.7%
Genre 154 85 225 34 36 69 0.44 63.2% 36.8%
End Time 205 15 292 40 49 2 0.38 70.7% 29.3%
Critic % 199 52 267 56 14 15 0.36 74.7% 25.3%
MPAA 243 46 237 3 15 59 0.34 79.0% 21.0%
Discount 248 3 278 37 5 32 0.34 77.2% 22.8%
Start Time 244 26 251 38 44 0 0.34 76.7% 23.3%
Avg User 181 135 202 66 19 NA 0.34 78.8% 21.2%
Distance 193 115 251 21 17 6 0.32 87.5% 12.5%
CreamMin 292 31 209 24 41 6 0.29 82.0% 18.0%
Release 289 19 256 31 1 7 0.27 88.8% 11.2%
Distributor 310 17 234 0 0 42 0.27 88.6% 11.4%
CriticMin 299 38 242 0 21 3 0.26 93.4% 6.6%
MinLength 311 26 249 1 10 6 0.25 95.2% 4.8%
Content 328 13 254 0 2 6 0.23 97.7% 2.3%
MaxLength 326 39 219 6 2 11 0.23 95.1% 4.9%
Special 397 1 205 0 0 0 0.17 100.0% 0.0%
All Features 4411 731 4328 512 865 582 0.37 72.4% 27.6%

Table 4: MetaLens distribution of feature weights – active users.

6 “Not Seen” was added shortly after the original deployment of MetaLens and was not on option for 28 of the 603

queries.

 All Users Active Users
Avg User 31.1% 44.9%
Content 17.8% 26.2%
CreamMin 13.7% 17.9%
Cream % 29.0% 43.3%
CriticMin 13.4% 18.9%
Critic % 25.2% 40.3%
Discount 13.7% 20.4%
Distance 17.4% 20.6%
Distributor 9.8% 17.1%
End Time 13.2% 18.4%
Genre 43.1% 51.7%
MinLength 33.2% 44.8%
MovieLens 51.1% 73.8%
MPAA 34.1% 50.2%
Release 13.5% 16.3%
Special 1.5% 0.7%
Start Time 20.0% 30.5%

Table 5: Feature inclusion in the recommendation table.

Number of
Profiles

Users

1 230
2 32
3 10
4 3
5 2
9 1

Table 6: Number of profiles per power user.

Strength Number of

respondents
Data used in recommendation process 15
Relevant recommendations 15
Timely recommendations 12
Easy to use 10
Let’s me indicate my mood 8
The ability to save queries 8
Table 7: User reported strengths of MetaLens.

Weakness Number of

respondents
Too much non-relevant data used 11
Difficult to use 4
Too slow 4
Recommendations not relevant 4
Not enough relevant data used 3
Theater/Distance info not relevant 3

Table 8: User reported weaknesses of MetaLens

 MetaLens MetaLite MetaClick The Same
MetaLens vs. MetaLite 8 13 NA 5
MetaLens vs. MetaClick 16 NA 8 2
MetaLite vs. MetaClick NA 16 5 5

Table 9: User reported system preferences

 MetaLens MetaLite MetaClick
All Users 1.06 (0.79) 1.31 (0.63) 0.63 (0.73)
Active Users 1.55 (0.64) 1.00 (0.47) 0.45 (0.83)
Non-Active Users 0.75 (0.66) 1.50 (0.73) 0.75 (0.66)

Table 10: Projected “rankings” of the three systems. [Mean (Std. Dev.)]

11. CAPTIONS FOR ILLUSTRATIONS

Figure 1: MetaLens Recommendation Framework – The data layer gathers data from three
internet sources. Data from Yahoo Movies is the reference data and data from the other sources
must undergo data fusion to ensure all data contains the same keys. The computation layer
receives query requirements from the interface layer, applies an extended Boolean retrieval
algorithm to the data from the data layer, and returns recommendations to the interface layer
which formats the recommendations for human consumption.

Figure 2: MetaLens Preferences Screen (partial) – The preferences screen allows users to provide
information on 19 different query attributes. For each attribute, this involves either selecting
which subset of features are desired or which limits will be allowed. It also includes indicating
the degree to which movies should be rewarded for fitting the requirements (or penalized for not
fitting the requirements as the case may be) and whether information about the attribute should
be displayed with recommendations.

Figure 3: MetaLens Recommendation Screen – The recommendation screen displays the
movie/theater/showtime triple for each movie with the highest query fit score, as well as
movie/theater attribute data selected on the preferences screen.

Figure 4: Options for saving Query Profiles – Each query submitted from the preferences screen,
may be saved as a new or existing query for future use.

12. FIGURES/ILLUSTRATIONS

Figure 1: MetaLens Recommendation Framework

Data Fusion Data Fusion

Interface LayerMetaLens System Interface
Module

Computation Module

Data Layer

Computation Layer

Movie
Lens

Module

Rotten
Toma-
toes

Module

The Internet

Yahoo Modules

Figure 2: MetaLens Preferences Screen (partial)

Figure 3: MetaLens Recommendation Screen

Figure 4: Options for saving Query Profiles

